
R. Groz and R.M. Hierons (Eds.): TestCom 2004, LNCS 2978, pp. 17–32, 2004.
© IFIP 2004

A Multi-service and Multi-protocol Validation
Platform – Experimentation Results

Ana Cavalli1, Amel Mederreg1, Fatiha Zaïdi1, Pierre Combes2, Wei Monin3,
Richard Castanet4, Marcien MacKaya4, and Patrice Laurençot5

1Institut National des Télécommunications- CNRS Samovar
9 rue Charles Fourier 91011 Evry Cedex

 {ana.cavalli, amel.mederreg, fatiha.zaidi}@int-evry.fr 
2France Telecom R&D/DTL

38,40, rue du Général Leclerc, 92794, Issy les moulineaux, France
pierre.combes@rd.francetelecom.fr 

3France Télécom R&D, Technopole Anticipa
2, avenue Pierre Marzin, 22307, Lannion Cedex, France

wei.monin@rd.francetelecom.fr 
4Université de Bordeaux 1 -Labri

351, cours de la libération 33405 Talence Cedex
{richard.castanet, marcien.mackaya}@labri.u-bordeaux.fr 

5Université de Clermont-Ferrand- Limos
34, Avenue Carnot, 63000, Clermont-Ferrand, France

laurenco@isima.fr 

Abstract. This article presents the implementation of a validation platform
based on formal methods and the experimental results obtained. This platform
allows performing conformance and interoperability tests, analysing the
specification and constructing a performance model for the services. It covers
all stages of the validation which are: formal specification, test architecture
definition, test generation and execution for the defined architecture, and per-
formance evaluation. The test methods and architectures used here make it eas-
ier to detect and localise errors. The platform has been constructed within the
framework of the RNRT (National Telecommunications Research Network)
platform project, PLATONIS. This platform is composed of a network integrat-
ing the different sites of the project partners. The principal application domains
for the platform are telecommunication systems and mobile telephony. In par-
ticular, two different cases study are presented that illustrate the platform's ap-
plicability to the test of mobile 3rd generation protocols and services using
WAP1, GPRS2 and UMTS3. Nevertheless, the platform is generic and can be
used for other types of communication protocols and services.

1 Wireless Application Protocol
2 General Packet Radio Service
3 Universal Mobile Telecommunication System



18 A. Cavalli et al.

1 Introduction

In the last few years major progress has been achieved in the area of networks and
computers, particularly concerning Internet and mobile networks. This evolution has
strengthened the idea of mobile telephony over Internet. This last has entailed the
design of new protocols and services. However, the architectures implemented by
using these protocols and services interconnect heterogeneous elements that needs to
be tested in order to validate their interoperability. Tests and trials on real platforms is
crucial for all the actors involved, such as, operators, service providers and equipment
manufacturers.

This article presents the implementation and the experimentation results of the
PLATONIS multi-protocol and multi-service validation and experimentation platform
[9], [14]. The work has been approved and financed by the RNRT program and is the
result of the collaboration between several research labs and industrial groups. The
objective of PLATONIS platform is to help industry (operators, service providers and
equipment manufacturers) and research to test the conformance, the interoperability
and evaluate the performance of new communication protocols and services. It as-
sures the reliability by detecting functional errors (output and transmission errors) and
performance problems. The platform has been deployed over several sites: Evry (at
INT), Bordeaux (at LABRI), Clemont Ferrand (at LIMOS) and Issy-les-Molineaux
(at France Telecom R&D).

The implementation of the platform integrates the network configuration part and
the open source WAP protocol stack called Kannel [12]. This implementation re-
spects the standard established by the WAP Forum. The results obtained by applying
the platform encompass all test phases: specification, test generation, test execution
and, also, specification analysis. These results also include the definition of new test
methods and architectures. Indeed, in the cases studied, it has been noted that an im-
plementation under test is often embedded in a complex system that does not provide
a directly accessible interface to the implementation under test. This is the case with
the different WAP protocol layers. The fact that there is no direct access makes it
impossible to rely only on classical test methods. This makes it necessary to define
test architectures that incorporate Points of Control and Observation (PCO) and
Points of Observation (PO) in the implementation and use appropriate test methods.
Concerning the formal specification of the protocols, the WAP protocols were de-
scribed using formal methods in order to make it easier to apply automated methods
for test generation. These specifications were done for the different layers involved
and in particular for WSP4, WTP5 and a simplified version of WAE6.

This article also presents the formal specification of new services for cellular
phones that require Internet access for their provision. In the project, the services
chosen were based on the location of the subscriber and ran with WAP over GSM,
GPRS and UMTS infrastructure. The services were formally described, implemented

4 Wireless Session Protocol
5 Wireless Transport Protocol
6 Wireless Application Environment



A Multi-service and Multi-protocol Validation Platform – Experimentation Results 19

and validated. The validation was done using test scenarios that were generated from
the specifications (an approach based on an XML parser have been followed).
The generation of test scenarios was also done for the protocols. The execution of
these scenarios was done on the protocol stack and using simulated and real terminal
devices (cellular phone and PDA's -Personal Digital Assistants).

The article also presents the elements forming the approach that allows integrating
the functional validation and the performance evaluation in the same environment.
This approach was used on the same protocols and location services. Let us note that
the performance evaluation of a system needs to be considered as soon as from the
conception phase and stay coherent with the functional validation.

In the following sections the article first introduces the configuration of the plat-
form and presents the new test architectures (section 2). In section 3, the formal speci-
fication of the WAP protocols and the location based services are presented. In sec-
tion 4, the derived performance model is explained. In section 5, the experimental
results obtained using the implemented services and protocol stack, are presented.
Finally, in section 6 the conclusions and perspectives for the work are given.

2 Test Methodology and Architecture

2.1 Platform Configuration

The platform includes several sites corresponding to the partners involved in the pro-
ject. Only the academic sites are open. The platform can be accessed through a mo-
bile phone, a PDA or a simulated mobile terminal. In the case of the mobile phones or
the PDA's, the access is authenticated using a RAS (Remote Access Service). This
service allows the access to the Open Source Kannel WAP protocol stack. This stack
connects the mobile terminals to the different HTTP servers available on the platform
(Apache server, IIS 4.0) and also to the WAP service provider servers (see Fig. 1). A
detailed description of the installation for each site is given in section 2.3.2.

2.2 Test Methodology

The objective is to define a methodology and the architectures for the validation and
trial of the protocols and services. It is also a goal to cover and automate all phases of
the test process: from the specification of the system under test to its execution on the
real platform. This last allows performing conformance and interoperability tests. The
interoperability tests serve to validate that different implementations interact cor-
rectly, that is, the implementations provide the global service as expected and con-
form to the standard. This type of tests allow verifying the interoperability between,
for instance, an application running on the terminal and another on the server. On the
other hand, conformance tests verify that the implementation under test follows the
standard, as for instance, verifying that one of the WAP protocol layers functions
correctly.



20 A. Cavalli et al.

PLATONIS Partners

WAP

Gateway

GSM

Internet

HTTP server

LAN

Modem (RAS)

Development station

WAP

Gateway
HTTP Server
demonstrator

Operator

NAS

Simulator

Fig. 1. The PLATONIS platform.

The test methodology used here is based on two main elements: generation meth-
ods and architectures. Below are described the different steps that constitute this
methodology:
1. First, a precise representation of the system is provided. The description language

used is SDL [4]. The specification needs to take into account the test architecture
and the interactions with the environment.

2. Next, the tests that need to be made are selected by defining test objectives. It
means choosing a strategy for the selection of tests using predefined criteria. To
generate the tests, test generation algorithms are used that have been conceived for
embedded testing and can be easily adapted to objectives based testing. [1] pro-
vides a detailed description of these algorithms.

3. The generated tests are then executed over the test architectures that are proposed
in this article and that are described in detail in the following section.

2.3 Test Architectures

At first, the PLATONIS platform has been applied to validate and trial services for
mobile networks based on WAP, GPRS and UMTS. Due to the heterogeneity and the
complexity of the network elements involved, the classical architectures are not ap-
plicable [7]. This is because several entities in the network must cooperate to provide
the desired service. For this reason, the authors propose a test architecture based on
PCO's and PO's. This architecture is represented in figure 1.

One needs to observe the transit at different strategic points in order to be able to
analyse the data exchanged. This leads to the introduction of Points of Observation
(PO). A PO needs to be set between the mobile terminal and the gateway. In this way
it will be able to collect the data carried by the radio link and the interoperability
between the equipment can be verified. The second PO needs to be located between
the gateway and the server in order to verify that the data transmitted from the gate-



A Multi-service and Multi-protocol Validation Platform – Experimentation Results 21

way to the server is correct. The Point of Control and Observation (PCO) found up-
stream to the mobile device allows initiating transactions and injecting valid, unex-
pected or invalid events, as well as recuperating the results obtained.

M o b i l e
T e r m in a l
S i m u la to r

G a te w a y fo r
th e e x a m i n e d

p r o to c o l
S e r v e rP O

T e s t e r

P OP C O

Fig. 2. Generic architecture for testing a mobile application.

With this architecture, error detection is powerful and allows capturing all the data
exchanged for a given service. If an error occurs between the gateway and the server,
the PO will immediately detect it. It is not necessary to place all the PO's but leaving
one out reduces the observation capability. There is the possibility of optimising the
tests scenarios by removing all the PO's and if a test fails, to reinstall them in order to
make a diagnosis and more easily locate the error or errors. This introduces an incre-
mental test methodology based on the degree of test detection capability.

2.3.1 Obtained Verdict

Each PO is coupled with an interface that allows verifying the progress of the test
which leads to installing one per zone. In figure 2 we need two interfaces: one be-
tween the terminal and the gateway and the other between the gateway and the server.
From each PO we will have a file of saved traces. The properties coming from the test
objectives will be checked over these traces and in this way errors will be detected
and localised. Local verdicts will be pronounced. On the other hand, each PCO will
be able to give a local verdict for its zone by using the test scenario of the property
being verified. The set of all local verdicts is gathered by a central tester that is in
charge of pronouncing the final verdict which will be FAIL, INCONCLUSIVE or
PASS.

2.3.2 Test Architectures for the WAP Protocols and Services

In the beginning, the PLATONIS project partners were interested in the mobile WAP
protocol in order to verify that the implemented platform functioned correctly. This
protocol was selected because the standard is stable and can be modelled (see next
section) and the material that uses it exists and is commercialised.

The test architecture presented in figure 3 is the direct implementation of the
model described before.

Above we find the different PO's and PCO's that are responsible for performing the
local verdicts. The WAP protocol uses a gateway that transforms the data coming
from a WAP navigator (in WML format) to data compatible with the Web servers (in



22 A. Cavalli et al.

HTTP format). This gateway thus implements the different protocol layers that are
required (WDP/UDP7, WTP, WSP) in the WAP protocol.

Intern et

R T C

W A P G atew a y

G S M

P D A (w ith W A P )

P O n°1

P C O , PO n°2
P C O Intern et

H T T P S erve r
+
B D D S erve r

Fig. 3. Test architecture for the WAP.

Knowing that the objective is to test a mobile application, it is necessary to obtain
the final result on a mobile terminal. For this several options exist:
• Create a secondary network that connects the different testers. In this way one can

recuperate the different verdicts without interfering with the application. This solu-
tion requires additional equipment: a mobile terminal that can manage simultane-
ous communications with different mediums. This is not always possible and de-
pends on what protocols are being tested.

• Give the mobile terminal the role of test coordinator and send to it the local results
obtained from the different communication mediums that are part of the system
under test. This solution does not perturb the test since the results are sent after it is
completed, with the bandwidth available to send this data being a client-server type
architecture.
Here we use this second solution for testing the WAP services.
It is also possible to give the gateway the role of remote tester when testing the

WAP protocol stack from the client side. In this case one should follow the test archi-
tecture of figure 3 and add a PCO at the WAP gateway level. In this way all mobiles
can be tested.

3 Functional Verification Model

3.1 Formal Modeling of the Protocol Layers

The modelling of the WAP protocol stack was essentially done for the WTP and WSP
layers as well as a simplified version of WAE. This last layer was necessary to be able
to dynamically control the system under test. The WAP system was studied for the
transmission of messages in connection mode. Following are some important com-
ments on the modelling process:

7 Wireless Datagram Protocol, often replaced by UDP (Unit Datagram Protocol)



A Multi-service and Multi-protocol Validation Platform – Experimentation Results 23

• The WAP standard describes protocols whose behaviour is very complex. This is
particularly the case of WTP. This complexity has resulted in 35 000 lines of SDL
code for the WTP and WSP layers.

• The abstract ASN.1 notation [2] was used to describe the parameter structures
associated to the messages exchanged between protocol layers.

• Effort was made so that the modelling resulted in a modular and flexible one. This
was important so that it could be easily adapted to the different test architectures
defining where the PCO's and PO's are located. The use of the object oriented SDL
2000 made this modularisation possible.
The specifications were found incomplete and often ambiguous. This was particu-

larly true with respect to error behaviour and the parameters corresponding to the
error codes. The specification does not specify and leaves up to the implementation
most non-nominal behaviours. For instance, the behaviour of the WAP protocol re-
ceiving a signal in a state that did not expect it. This type of behaviour can occur very
often due partly to the asynchronous nature of exchanges.

Another case is, for example, when the timer overflows while waiting for a server-
side user action. Here, the processes INITIATOR and RESPONDER, that manage the
transaction, are killed (return to the NULL state according to the specification). Noth-
ing prevents receiving a signal resulting from an user action, though late, particularly
in an asynchronous system. The standard does not give any precisions on this making
it possible for different implementations to resolve the problem differently. This
could create interoperability problems. Formal modelling of the protocols using lan-
guages such as SDL helps eliminating these ambiguities.

3.2 Modeling of the Location Based Services

This section presents the location based services (LBS). These services depend on the
geographical positioning of the user terminal and bring a value added to the service
offer by the mobile phones. An LBS service can be described in the following way: a
mobile phone sends a request to the WAP server via a gateway that transforms the
WAP request into HTTP. The WAP server (LCS -LoCation Services - client) sends a
request to the LCS server in order to locate the phone. The LCS server lies in the
public mobile network PLMN (Public Land Mobile Network). The location of the
terminal is calculated using one of the following technologies: GPS, A-GPS, E-OTD,
CGI-TA or TOA [13]. Once this location established, the WAP server replies the
phone's position.

The knowledge of the user's location allows to develop a new set of applications.
The authors have selected and specified, by using SDL, the following services: Near-
ness Service (for detecting proximity), Itinerary Service (for providing best itinerary
to a given place), Emergency Help Service (with location information), Road Traffic
Service and Search Service (for searching in a data base associated with the preceding
services by using key words).

These services can be integrated on any of the network infrastructures considered
(GSM, GPRS and UMTS). However, the methods applied to calculate the user posi-



24 A. Cavalli et al.

tion depends on the type of network. For each network type, different components are
used to perform the calculations. In this section, we first present the SDL description
of these services independent of the underlying network. Then, the SDL description
of the calculation of the position at the operator level for an UMTS network. The
UMTS case is presented here to illustrate this level of description because it has well
defined LCS interfaces for both types of network switching modes: circuit and packet
modes. For UMTS, the location information is significant and testing its underlying
mechanisms is necessary for guaranteeing the reliability of the network.

3.2.1 SDL Description of Services

The services were specified using the SDL-96 description language in order to make
it easier to modify the specification by adding or eliminating some functionalities.
Data types were defined using ASN.1 allowing the use of variable types such as lists
and tables.

The specification of the services was done in two parts. The first part includes the
behaviour of the users, the mobile terminals, the application server, the WAP gateway
and the LCS server. The second part includes the behaviour of the PLMN for calcu-
lating the locations.

Part 1: SDL Description of the LBS Services
The specification consists of four main blocks . Each block describes respectively: the
behaviour of the terminal or of several terminals (using dynamic instantiation); the
network including the location server and the operator (who gives the temporary
terminal id and the SIM id corresponding to the LCS); the WAP gateway; and, the
application server (hosting the services introduced before). The SDL specification
was developed from an informal description of the services provided by the mobile
telephone operators. The modularity followed allows to easily add new services and,
in accordance to the services one is subscribed to, modify the subscriber profiles. The
specification resulted in a little bit more than 11 000 lines of SDL.

In order to verify that the specification is free from livelocks or deadlocks [15], the
system was simulated using the exhaustive mode.

Part 2: SDL Description of the PLMN Location
In the framework of the UMTS access network and from a LCS [5] perspective, a
public mobile network is composed of a core network (CN) and an access network
(AN). These interact through the Le interface. The GMLC (Gateway Mobile Location
Centre) is the first node in the CN. The LCS client accesses the network through the
Le interface. The routing information is provided by the HLR (Home Location Regis-
ter) via the Lh interface. The GMLC controls the user rights and then transfers the
request to the MSC (Mobile Switching Center) or the SGSN (Serving GPRS Support
Node) via the Lg interface. The SRNC (Serving Radio Network Controller) in the AN
receives the authenticated request from the CN through the Iu interface. The RNC
(Radio Network Controller) manages the AN's resources (i.e. the LMU's - Location
Mesurement Unit), the mobile and the calculations. The LMU recuperates the meas-



A Multi-service and Multi-protocol Validation Platform – Experimentation Results 25

urements from the signals used for determining the location. These entities communi-
cate by messages sent through the Iur, Iub and Uu interfaces.

The SDL specification of LCS was done taking into consideration the location
service architecture as found in UMTS and is briefly described bellow. The system is
comprised of two functional blocks [5]. They are:
• The CN block, CoreNetwork, is composed of the processes that describe the be-

haviour of the GMLC, the HLR and the MSC. In this block, the GMLC process
communicates with the HLR and MSC processes through the Lj and Lg interfaces.

• The AN block, AssessNetwork, is composed of the processes that describe the
behaviour of the SRNC and the NodeB.

4 Performance Evaluation

Performance evaluation allows, first, to avoid system malfunctions caused by over-
congestion of resources. Second, it allows to identify satisfactory system configura-
tions with respect to some well-defined QoS requirements. System performance engi-
neering has been neglected by software engineers primarily due to the difficulty en-
countered in using the methods required for performance modelling. It must be noted
that 80% of the client/server systems need to be rebuilt due to the lower performance
obtained over that required. This should be compared to the cost of performance
evaluation that only represents 3% of the total cost of the development. It would be of
unique interest to develop tools that better integrate performance engineering in the
development process. Particularly in the following aspects: trying to consolidate the
link between performance models and functional models; making performance
evaluation more accessible to non-specialists, improving efficiency in the develop-
ment process; and, integrating event simulation techniques. In this last point, it should
be noted that design of the simulation model is not expressed using mathematical
formulas but by programming. This allows constructing a model as close to reality as
possible without making its complete development necessary. It also adapts very well
when the objective is to compare different technologies or products or when dimen-
sioning the system being conceived. Other elements, such as the end to end distribu-
tion of response time or the loss rate, are very difficult to quantify, making simulation
necessary. The performance models for commercial simulators are based essentially
on queuing theory. Such a system can be represented by a set of material resources
(CPU, buffers, network, ...) accessed by applications (programs or tasks). Eventually,
tasks will concur when accessing forcibly limited resources. This type of problem is
resolved by scheduling mechanisms that can be associated to the access queues. In the
context of the work presented in this article, SES_Workbench [8] was used.

Studying the way to derive a performance model from the functional model was
carried out in order to integrate the functional verification with the performance
evaluation [6]. MSC (Message Sequence Charts) and SDL (Specification Description
Language) are the formalisms that we propose for the specification of the functional



26 A. Cavalli et al.

aspects. The use of MSC [3] is particularly useful in the case of a service platform
where the use of the system can most often be resumed to a limited set of use cases.

Several notations are added to the functional model. These are:
• The EXEC (uni x, y) clause on a component means that the computing resources

associated with the component are busy for length of time uniformly varying be-
tween x and y.

• In a similar way, the DELAY clause indicates a delay but concerning external activ-
ity to the studied system (i.e. protocol interfaces).

• Other syntax structures allow expressing, for instance, the synchronisation between
execution paths, the triggering conditions.
An important point of which we must be aware of here is that a functional model

expresses "what a system does" or the functionality it offers, while the performance
model describes "the use that is made of resources". Therefore, in the case of the
performance model, the functional aspects of the system only appear if they influence
the consumption of the resources. The procedure followed here becomes clearer if
one considers the following elements:
• When modelling, first one must select the software entities associated to the re-

sources (i.e. the CPU that hosts it) and determine the scenarios that describe the
system's common use cases. The software entities are selected according to the de-
sired level of granularity of the results obtained by simulation and of the initial
data (unitary measures) that can be procured.

• An exhaustive simulation of a model, such as the location service model, lead to an
enormous number of different scenarios. Nevertheless, these scenarios are often
redundant from the performance point of view. The choice of one emergency ser-
vice over another does not modify the performance characteristics unless, of
course, one needs to consider different reply times for different service data treat-
ments. Thus, one needs to simplify the model by applying restrictions. This is done
by identifying, in the functional model, the external conditions that influence the
behaviour of the system being validated, the execution delays and making sure that
the data ranges are of pertinence.
The simpler model obtained gives more manageable results when (exhaustively)

simulated. Identification of the behaviour needed for performance evaluation can be
made as well as the decision branch construction for each behaviour. These decisions
are weighted according to the probability and constitute the different performance
simulation request types.

In the case of a service platform, the goal of performance evaluation is to improve
the configuration sizing with respect to the resources allocated for the different ser-
vices running on the same platform. For instance, emergency calls should not be
affected due to an overload of lower priority services. Figure 4 gives a simplified
annotated view of a scenario of an emergency service obtained from the SDL
specification described in section 3. Delays are depicted on the instances
corresponding to the environment of the platform being validated (here only
consisting of a location server). The condition represents a decision branch of the
logical behaviour of the service for the scenario.



A Multi-service and Multi-protocol Validation Platform – Experimentation Results 27

Fig. 4. Emergency Help Service notations.

5 Experimental Results

5.1 Test Generation Experiments

Two approaches to test generation of location based applications are presented in this
section. The first approach relies on the automatic test generation from the SDL
specification of the services and by using a test algorithm. The second approach uses
a WML parser to generate the tests from the WML application. The results obtained
from the generation of tests for the protocols is also presented in this section.

5.1.1 Test Generation for the Nearness Service

In this section we present the test of the Nearness service. The scenario generated
allows verifying the behaviour of the service in a context with the other services. The
test of the other services was performed in a similar manner.

The embedded testing techniques developed at the INT [1] was used for generat-
ing the tests of the service without direct access. Starting from the formal specifica-
tion of the LBS application, a set of test scenarios was automatically generated for the
Nearness service. To do this, the test objectives were defined. These test objectives
are represented in the service specification by a set of transitions to be tested. The
method used allows generating test scenarios with the test objectives as a guide for
their generation.

This method constructs the test scenario from partial simulations of the specifica-
tion, to avoid the state's explosion problem.



28 A. Cavalli et al.

The scenarios obtained allow to perform conformance tests and to detect errors
due to erroneous or unexpected messages. Once the test have been generated and
following the architecture defined in section 2, they are applied to the implementation
in WLM of the service in order to test its functional behaviour. Only the PCO is taken
into consideration during the test of the services, the remaining network is viewed as
a black box. The PO's in the architecture are not used for this type of test.

The first step of this method is the definition of the test objectives. For lack of
space, here we only give a selection of these objectives that illustrate the behaviour of
the Nearness service:
• Test objective 1: Test to see if the application server makes a request for a posi-

tion from the LCS server.
• Test objective 2: Once the location is obtained from the LCS server, test to see if

the application server requests from the user a selection from one of the proximity
interest points.

• Test objective 3: Once the user has made his selection, test to see if the applica-
tion server requests from the user to end the connection or to switch to the Itiner-
ary service to obtain the itinerary to the interest point selected.

• Test objective 4: Test to see if the application server switches from the Nearness
service to the Itinerary service.
Once all the transitions corresponding to the test objectives have been covered, we

obtain a test scenario. We have obtained a test scenario that covers all these objec-
tives. It corresponds to the path that has been followed from the environment to the
last test objective and has a length of 46 transitions.

5.1.2 Test Generation Method Using an WML Parser

Here we are only interested in the WML application. In this case, the terminal, the
gateway and the HTTP server are viewed as a black box. For this, we make the as-
sumption that the information regarding the location is already available and that the
network is reliable in the sense that the communication between the HTTP server and
the terminal works correctly. The test architecture followed is the one presented in
section 2, using only the PCO on the mobile terminal side. The procedure to test the
WML application is as follows:
• Generation of the automata for the WML application: The first step is to generate

the automata representing the behaviour of the application. For this, a tool called
GenTree [5] was developed. This tool takes as input the WML application, per-
forms a lexical and syntactical analysis, generates a behaviour tree, visualises it
and saves it in the form of an automata.

• Conversion of the automata to SDL: The second step is to take the behaviour
automata and convert it to SDL. Work on how to transform an EFSM (Extended
Finite State Machine) to SDL is described in [11]. Using tools available on the
platform, the resulting SDL description is used to automatically generate the tests.



A Multi-service and Multi-protocol Validation Platform – Experimentation Results 29

5.1.3 Test Generation for the WSP and WTP Protocols

As explained before, the WTP and WSP layers are not directly accessible. Therefore,
to test them we must also use the embedded testing techniques. The tests also allow
testing the interoperability between the protocol layers.

For the generation of the tests, test objectives were defined based on the WTP and
WSP specifications from the WAP Forum [10]. The following table gives some in-
sight on the results obtained for the test generation of the standards.

Table 1. Test objectives for the WSP and WTP layers.

Test Objectives
Test scenario length
(in n° of transitions)

Session connection and disconnection phase 53
Refused session connection phase 121
Moved session connection phase 29
Complete transaction phase 98
Transaction abortion phase 144
Session suspension and reactivation phase 93
Session suspension and refused reactivation phase 93
Session suspension and termination phase 67
Complete PUSH transaction without confirmation phase 60
Complete PUSH transaction with confirmation phase 63

W
SP

PUSH confirmation interruption phase 68
Basic transaction class 0 52
Basic transaction class 1 100
Basic transaction class 2 without validation from initia-
tor

135

Basic transaction class 2 with validation from initiator 38
Basic transaction class 2 with interruption from initiator 67

W
T

P

Basic transaction class 2 with interruption from replier 69

5.2 Test Architecture Experiments

In this section we present the deployment of the different PO's and PCO's that make
up the test architecture (figure 3, section 2). Each PO is made up of two parts:
PO_trace for traffic inspection and PO_analysis for giving the local verdict.

In general, the WAP gateways are connected to Internet via a local network. In this
type of network, all the machines can capture the exchanged data. Thus, the PO_trace
can be based on a "sniffer" that will not perturb the network. For portability reasons,
the "sniffer" was implemented in Java using Jpcap. Jpcap is based on Winpcap for
Windows and Lipcap for Unix. On the other hand, PO_analysis has a set of defined
properties that it needs to verify. It will verify them on the trace provided by
PO_trace. Once the verification is done, PO_analysis will produce the local verdict
and send it to the tester that centralises all the verdicts.



30 A. Cavalli et al.

The PO n°2 (see Figure 3) observes the traffic received and emitted by the WAP
gateway. The open source Kannel gateway was used allowing the code modifications
needed for installing the trace tools. The Kannel software is structured as different
layers, each implemented as a thread that communicates with the others by exchang-
ing messages. Following this architecture, PCO's have been located between the dif-
ferent layers. The installed PO is made up of a PO_trace_in that recuperates incoming
traffic, a PO_trace_out that recuperates outgoing traffic and a PO_analysis that in-
spects all the traces and gives out the local verdict. These PO's can be used to test the
behaviour of the gateway when there is no possibility of incorporating the PCO inside
the gateway. The information recuperated by the PO's is very descriptive and includes
the name of primitives, the data transferred, the states reached, etc. Figure 5 depicts a
sample of the trace obtained from the WSP layer PO. The WSP layer is the one that
allows setting up and releasing a session between the client and the server using one
of the two connection modes. In figure 5 one can see the connection between the
client (the PCO program running on the PDA: PDA_Tool-Kit) and the server (with
the IP address 157.159.100.113) using the connection oriented mode (9201). The
message TR-Invoke.ind is used to open the welcome.wml page.

Fig. 5. WSP PO in the Kannel WAP gateway.

The PCO must be capable of sending and receiving different frames as well as the
different local verdicts. A PDA running Windows CE was used making it easier to
program and establishing either a direct connection to GSM or through a mobile
phone equipped with a Irda port. A WAP navigator was developed that implements
the WTP and WSP layers (standard WAP version 1.1) and provides a graphical user
interface that allows loading the test files.



A Multi-service and Multi-protocol Validation Platform – Experimentation Results 31

While the test is being performed, the PDA waits for data that is either informa-
tion feedback or a local verdict. At the end of the test, it waits until it receives all the
verdicts and only then produces the final one based on the rule stated previously.
Figure 6 bellow shows the beginning of a test, including the request for the connec-
tion of figure 5 but seen from another perspective.

Also, to test the protocols found on the client side (mobile), a PCO has been in-
stalled at the WAP Kannel gateway level. The test scenarios produced as presented in
section 4 are executed on the platform using the PCO at the gateway level, but also
using the PDA as previously described.

To give an example, a test scenario produced as presented in section 5.3 will be
described. This scenario is injected at the PCO level and allows testing the "class 2
transaction with interruption from replier". As seen in figure 7, one can observe the
PO level exchanges. In this way we are able to check that the mobile behaves cor-
rectly when an unexpected message is received during the exchanges. Resulting from
this injected error, the existing WML page (that the terminal wanted to access) cannot
be opened due to the message sent via the PCO.

Fig. 7. WSP PO with injected message

6 Conclusion

The platform presented in this article allows performing conformance and interopera-
bility tests, analyse the specification and produce a performance model for the ser-
vices. It covers all of the validation phases: formal specification, test architecture
definition, test generation and execution for the given architecture and performance
evaluation. Its originality lies in its ability to cover several different aspects that start
with the formal specification and end with the incremental implementation of the tests
following an innovative test architecture. It has allowed to experiment with embedded
test techniques and is designed to allow end-users to test real applications in their
environment. It also shows the scalability of the proposed methods.

Fig. 6. WSP PCO at the PDA



32 A. Cavalli et al.

Complementary research on several aspects is being carried out. The test of an
WML application is currently based on a behaviour tree extracted from the specifica-
tion. To be able to use automatic generation tools, this tree is translated to SDL. Cal-
culating test coverage also becomes necessary. Introduction of control and observa-
tion events in the specification is being studied in order to increase the testing
capability of an application.

The complexity of the architecture must be considered in the performance model-
ling. The architecture is composed of many components and is always evolving (i.e.
adding/removing services, evolution of standards). Thus, another important aspect
that is being studied is the component modelling and composition rules and how they
take into account performance and resources.

Finally, the techniques presented here will be applied to other types of mobile
networks, as for instance, ad-hoc networks. This type of networks do not require (or
preferably don't depend on) a centralised management or a fixed network infrastruc-
ture, such as, base stations and fixed access points. Furthermore, dynamic reconfigu-
ration of the network becomes necessary in order to adapt to eventual context
changes. These new characteristics make it necessary to adapt existing test methods
and devise new ones.

References

1. A. Cavalli, D. Lee, Ch. Rinderknecht, and F. Zaïdi. Hit-or-Jump: An Algorithm for Em-
bedded Testing with Applications to IN Services. In Proceedings of FORTE/PSTV’99,
Beijing, China, Octobre 1999.

2. O.Dubuisson. ASN.1. Springer, 1999.
3. ITU-T, Message Sequence Chart (MSC), Recommendation Z.120, November, 1999,

http://www.sdl-forum.org 
4. ITU-T, Specification and Description Language, Recommandation Z.100, Nov. 1999,

http://www.sdl-forum.org
5. M. Mackaya, R. Castanet. Modelling and Testing Location Based Application in UMTS

Networks. IEEE Contel, Zagreb, Croatia, June 2003.
6. W. Monin, F. Dubois, D. Vincent , P. Combes, Looking for a better integration of design

and performance engineering, SDL Forum 2003.
7. O. Rafiq, R. Castanet and C. Chraibi. Towards an environment for testing OSI protocols.

Proc of the International Workshop on Protocol Specification, testing and Verification,
Toulouse, France, 1985.

8. SES Inc. SES WorkBench Modelling Reference manual, 1998.
9. The PLATONIS Consortium. The platonis project. In First International Workshop on

Services Applications in the Wireless Public Infrastructure, Mai 2001.
http: //www-lor.int-evry.fr/platonis.

10. WAP spécification, http://www.wapforum.org.
11. YoungJoon Byun, Beverly A. Sanders, Chang-Sup Keum, Design Patterns of Communi-

cating Extended Finite State Machines in SDL, PloP 2001 conference
12. http://www.kannel.org.
13. http://www.wirelessdevnet.com/channels/lbs/features/mobilepositioning.html.
14. http://www-lor.int-evry.fr/platonis
15. http://www.telelogic.com


	1 Introduction
	2 Test Methodology and Architecture
	2.1 Platform Configuration
	2.2 Test Methodology
	2.3 Test Architectures
	2.3.1 Obtained Verdict
	2.3.2 Test Architectures for the WAP Protocols and Services


	3 Functional Verification Model
	3.1 Formal Modeling of the Protocol Layers
	3.2 Modeling of the Location Based Services
	3.2.1 SDL Description of Services


	4 Performance Evaluation
	5 Experimental Results
	5.1 Test Generation Experiments
	5.1.1 Test Generation for the Nearness Service
	5.1.2 Test Generation Method Using an WML Parser
	5.1.3 Test Generation for the WSP and WTP Protocols

	5.2 Test Architecture Experiments

	6 Conclusion



