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Abstract. This paper studies TCP performance focusing on the mean 
fiow transfer delay and the average number of concurrent fiows in the 
system. This is clone for a dynamic population of users, rather than a 
static number of permanent fiows. The modeling approach relies on using 
idealized processor sharing models as a starting point and modifying their 
properties to take into account some of TCP's non-ideal behavior. Tothis 
end, a model is derived that incorporates the effect of packet losses and 
RTTs on the goodput, as well as limited sending rates. Also, the unequal 
sharing of bandwidth between fiows with different RTTs can be treated. 
The delay estimates take into account the initial slow start. Extensive 
ns2 simulations are used to verify the accuracy of the models. 

1 Introduction 

TCP data transfers account for most of the traffic volume in the Internet. TCP 
has been designed to support efficient and reliable transmission of data that 
tolerates variations in tlie throughput. An important task in TCP performance 
analysis is to study the dependence of throughput and file transfer delays as func­
tions of the traffic parameters and network parameters. Traditional approaches 
to modeling TCP performance can be roughly grouped into two classes, which 
we call (i) flow-level models, and (ii) packet-level models. 

Flow-level models are idealized models that include flow level dynamics, but 
ignore the impact of packet losses and round trip times (RTTs) on TCP per­
formance. So-called processor sharing (PS) queues can be used in this context, 
see, e.g., [1] and [2]. PS queueing models and a number of their generalizations 
are attractive due to their insensitivity properties. Packet-level models capture 
more details of the system (RTTs, buffer size, etc.), but assume a constant num­
ber of persistent flows. Here an important result has been the "square-root-p" 
formula (see, e.g., [3]), which captures the impact of RTT on the throughput, 
for a given packet loss probability. By noticing that the throughput affects, in 
return, the packet loss probability, fixed-point models can be used to compute 
both throughput and loss probability, see, e.g., [4], [5] and [6]. The work in [7] 
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on modeling the conditional mean file transfer delay is also a packet-level model 
as no flow-level dynamics are considered. 

Work on combined flowjpacket-level modeling is clone by Gibbenset al. [5]. 
To take into account the fluctuating number of concurrent flows N, they assume 
a priori N to be either Poisson or geometrically distributed. In Lassila et al. 
[8], a model is presented that combines both levels by computing first, at the 
packet level, the conditional throughput given the number of flows. These are 
then used as input to the flow level model by using a model that is sometimes 
called Generalized Processor Sharing (GPS) [9]. Hence the distribution of N 
results from the model. Both approaches apply a packet-level queueing model to 
obtain the throughput (as a fixed point) . In Massoulie and Roberts [2], a GPS 
model is utilized, as well, but no queueing model is used to obtain the packet 
loss probabilities. Bu and Towsley [10] also study a single congested link and 
use the idealized unequal processor sharing model in [11] to provide a model for 
the mean flow transfer delays. In Ayesta et al. [4], a model for short TCP flows 
with stochastic flow arrivals has been given in, where the conditional mean-delay 
model is parameterized by the packet-level estimate for packet loss. To estimate 
the mean number of flows in the system, an M/G/oo approximation is used. 

In this paper we develop a combined flow jpacket-level model for studying 
TCP performance under user-heterogeneity, in the sense of users having differ­
ent RTTs. We first consider a group of TCP users with identical RTTs, sharing 
a single congested link equipped with a finite buffer, and then generalize the 
model to heterogeneaus RTT user groups with an access-rate limitation. Our 
contribution is that our model, while being tractable, covers all above features, 
whereas previous models included them only partially. The model in [10] con­
siders user heterogeneity, but not the impact of limited access rates, nor finite 
buffers. On the other band, the model in [4] considers buffer sizes and limited 
access rates, but not the impact of bandwidth sharing. The GPS model in [8] 
captures finite buffers and limited access rates, but can not be easily extended to 
heterogeneaus RTTs. Our approach is based on deriving a system of differential 
equations representing the expected change per time unit in the packet sending 
rate (throughput) and the number of flows in the system. Thus, it is a general­
ization of the model in [6], where the number of flows is constant. Here we add 
a flow-level equation to the system. From the model we are able to obtain the 
mean delay and mean number of flows in the system. To increase the accuracy of 
the mean-delay estimates, additional heuristics are given to t ake into account the 
effect of initial slow starts. The models are validated through ns2 simulations. 

2 TCP Model with Stochastic Flow Arrivals 

We model the ideal behavior of stochastically arriving Reno-type TCP flows in 
the so-called congestion avoidance phase sharing the capacity of a single bottle­
rreck link. Thus, timeouts are ignored and it is assumed that the sending rate of 
a TCP source increases linearly as long as acknowledgements are received and 
that the rate is halved for each packet loss. To this end a model is derived which 
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consists of two parts: a flow-level modeland a window-level model. At the packet 
level, we make a stationarity assumption and use a finite-buffer M/ G/ 1 queue 
model (finite M/M/1 and M/D/1 models are used in the numerical results). The 
model is first derived for TCP users with the same RTT (homogeneous users) 
and then the model is generalized to the case of heterogeneaus RTTs. 

2.1 Homogeneous TCP Users 

Consider TCP flows sharing a link with capacity C (pktsjsec) and buffer size 
K packets. Flows arrive according to a Poisson process with rate v and the file 
lengths are assumed tobe exponentially distributed with mean 1/ J.l packets. The 
aggregate mean packet sending rate of the TCP population is denoted by >.(t) 
at time t. All flows are assumed to have the same RTT, R( ·), 

R(t) =Ra+ d(t) , 

where Ra represents the constant packet transmission and propagation delays 
and d(t) is the mean delay in an M/G/1/K buffer with arrivalrate >.(t). The 
mean window size of the TCP population is denoted by W(t), and thus, the 
mean sending rate is given by >.(t) = W(t)j R(t) . Correspondingly, the mean 
sendingrate of a single TCP flow, that we give index i, is >.i(t) = wi(t)jR(t), 
where wi(t) is the mean window size of flow i. 

Flow-level equation: Consider a small time interval .dt. At the flow level, 
during .dt either a flow arrives or a flow departs. As flows arrive at rate v, 
a flow arrival occurs with probability v.dt. Given t hat there are flows present 
in the system, a single flow in the system sends at mean rate >.i(t), but the 
goodput is .Ai(t)(1 - P(t)), where P(t) is the packet loss probability. Thus, the 
probability of flow i completing its transfer during .dt equals J.l,Ai(t)(1- P(t)).dt. 
Assuming that the flows are independent, the probability that any flow finishes 
is J.lA(t)(1- P(t)).dt, where >.(t) = l:i .Ai(t). The change in the mean number of 
flows, N(t), during .dt can be expressed as 

.dN(t) = v.dt- J.l.A(t)(1- P(t))(l - 7ra(t)).dt, 

where (1- 7ra(t)) is the probability that there are flows present in the system. 
Letting .dt ~ 0 we obtain 

dN(t) 
----;]t = v- J.lA(t)(l- P(t))(1- 1r0(t)) . (1) 

The dynamics of 7ra(t) are unknown, but at the flow level, we assume that 
N ( t), the process of the number of flows present in t he system at time t , behaves 
as in an ordinary PS queue. Even then we do not have an exact expression for 
the dynamics of N(t), but we can use a similar quasi stationarity approximation 
as is clone at the queue level in [6] . In equilibrium, 1ra is a function of the load 
p, 1fa = 1- p and N is also a function of p, N = p/ (1 - p). Eliminating p from 
these gives 1 - 1ra = N /(1 + N). Thus, the differential equation (1) becomes 

dN(t) = V - .A(t)(1 - P(t)) N(t) 
dt J.l 1 + N(t) 

(2) 
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Note that in the above .A(t)(1 - P(t)) represents the aggregate goodput of the 
fiows, conditional on the event that there is a positive number of fiows in the 
system. In an ordinary PS system this goodput is equal to C, the bandwidth 
of the bottleneck, implying that the fiows can utilize the capacity fully without 
packet losses. In reality, TCP only approximates this ideal behavior, and packet 
Iosses and RTTs affect the goodput of the fiows. To capture this effect, we next 
derive the equation describing the change in the expected value of the conditional 
mean sendingrate .A(t). In effect, the idea here is to compensate for the non-ideal 
performance of TCP compared to PS by assuming the system to behave as a PS 
system only with a smaller goodput than in the ideal PS system. 

Window-level equation: In [6], for a fixed number, say n, of TCP fiows, 
the change in L1t in .A(t) has been shownunder some approximations to be 

L1W(t) n ( 1 wi(t)) 
L1.A(t) = R(t) = R(t) (1- P(t)) wi(t) - P(t)-2- .Ai(t)L1t, (3) 

where .Ai(t)L1t is the probability of a packet arrival from fiow i and the term 
in brackets represents the change to the aggregate window size if a packet is 
accepted (1/wi term) or lost (wi/2 term). In the setting of the present paper, 
n is a random variable which evolves according to a stochastic process N(t). 
However, assuming that (3) holds approximately for any n, averaging it over the 
distribution of N(t) gives 

N(t) ( 1 wi(t)) 
L1.A(t) = R(t) (1- P(t)) wi(t) - P(t)-2- .Ai(t)L1t. 

Doing so means that the arrival and departure of fiows are not modelled at the 
window level. Instead, we assume the time scale of changes in N(t) tobe much 
slower than that ofthe changes to the window sizes, i.e., that the file transmission 
times are long ( cf. the separation of time scales principle). Thus, upon a change 
in N(t), the window of a new fiow quickly reaches the new stationary value and 
the other fiows also adapt to the situation quickly (similarly for fiow departures) . 
Then, by noting that .Ai(t) = wi(t) / R(t) and that >.i(t) = >.(t)/ N(t), and letting 
L1t ---+ 0, we obtain 

d.A(t) = (1- P(t)) N(t) - P(t) >.~t)z . 
dt R(t) 2 2N(t) 

(4) 

At the packet level in the queue, it is assumed that the window level always 
observes packet losses and queuing delays resulting from a stationary M/ G/1/K 
system with arrivalrate .A(t) . 

Complete modeland steady-state solution: Combining (2) and (4), the 
complete model is given by 

{ 
dN(t) N (t) 
~ = v - JL.A(t)(1 - P(t)) 1 + N(t) , 

d.A(t) = (1 - P(t)) N(t) - P (t ) >.~t)z 
dt R(t) 2 2N(t) ' 

(5) 
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where R(t) = Ro + d(t), d(t) is the mean delay in an M/G/1/K system with 
arrival rate >..(t) and P(t) equals the loss probability in an M/G/1/ K system 
with arrivalrate A.(t). 

The steady-state solution of (5) is obtained by setting its right hand side 
equal to zero. From the second equation for A.(t), we get N = cxR>.., where 
cx = y'P/(2(1- P)). Inserting this in the first equation results in a second order 
equation, for which the only positive solution equals 

V ( V 4f.L(1 - P)) 
).. = 2f.L(1 - P) 1 + 1 + vcxR · (6) 

Note that to solve the above one needs to solve a fixed point equation since by 
(5) both P and R depend on the value of >... Although confirmed by extensive 
numerical experiments, we have not succeeded in formally proving uniqueness of 
the fixed point. 

The mean-delay model: The above model would already enable us to 
model the mean delay by simply using Little, i.e., the mean delay equals N jv. 
However, this is not a very accurate model of reality as it assumes that the mean 
goodput rate of a single flow ).. ( 1 - P) / N is available instantly, whereas in reality 
there is a certain time how long it takes for the TCP's sending rate (window 
size) to grow up to the estimated steady-state rate. 

Our basic idea is to approximate the total mean delay of a file transfer, Dtot, 
by taking into account how much of the file is sent during the time it takes 
to reach the estimated steady-state goodput rate (initial slow start), Dss, and 
the remaining file size is then sent at the steady-state goodput rate, Deq, i.e., 
Dtot = Dss + Deq· Observe that often it can also happen that the file size is so 
small and/or the bandwidth-delay product is solarge that the predicted goodput 
rate is never reached, and the whole file is transmitted during the initial slow 
start. From our above model, the following performance measures are obtained: 
packet loss probability P, total goodput rate .A(1-P) , and mean RTT including 
the queuing delay R. The mean goodput rate equals approximately .A(1- P)/ N, 
except for cases where the mean number of flows in the system is so low (i.e., 
load is low) that .A(1- P)/N > C, in which case we simply approximate that 
the goodput rate per flow equals C. Thus, the goodput rate of the TCP flows, f, 

equals f = min(C, .A(1- P)/ N), which corresponds to a window size w = f · R. 
On the other hand, the mean time m ( expressed in the number of RTTs) to 

send out a file of size 1/ f.L assuming that the entire file is sent during slow start, 
is obtained from "2::7:0 2i = 1/f.L yielding m = flog2 (1/f.L - 1)1-L Note that 
the numbering of rounds starts from index 0 ( actual number of rounds equals 
m + 1). If 2m ::; w the file is sent d uring the slow start before the system reaches 
equilibrium, i.e., Dss = (n + 1)R. If 2m > w, the flow reaches equilibrium in 
a = llog2 w J rounds (indexing starts from 0 again) during which (1- 2a+l )/(1-
2) = 2a+l - 1 packets are sent. The time to transmit the file equals the sum of 
the mean delay from slow start, Dss = (a +1)R, and the equilibrium delay Deq = 
(1/ f.L-2a+l + 1)/f (time it takestosend the remairring packets at the equilibrium 
goodput rate). Putting the above pieces together gives us the following model 
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for the mean transfer delay of files of size 1/ p., 

_ {Dss=(m+1)R , if2rn::;;w , 
Dtot = 

Dss + Deq = (a + 1)R + (1/ fJ.- 2a+l + 1)/f , otherwise , 
(7) 

where m = flog2 (1/ fJ.- 1)l - 1 and a = llog2 w J. 

2.2 Heterogeneaus TCP Usersand Limited Access Rates 

Here we present heuristics to extend the model to the case. of M heterogeneaus 
user groups, each with their own fiow arrival rate vk and constant link delays 
Ro,k, for k = 1, . . . , M. Each TCP user group may also have a limitation in their 
sending rate, >.;;,ax> caused, e.g., by an access link. The GPS model [9] does not 
apply under user heterogeneity and hence the approach in [8] can not be used. An 
idealized model for unequal bandwidth sharing is the so-called DPS model [11] 
(and applied in [10]). However, in its full generality it allows the mean file size 
to be different among the user groups and this model cannot be easily modified 
to take into account the effect of packet lasses on goodput. Here we utilize the 
properties of the DPS model under the natural assumption of a common mean 
file length for all user groups and aim to give a simple approximate model that 
captures both the effect of a limited access rate, packet losses and different RTTs. 

To model the above, observe that when the load of the system is low enough 
such that the number of fiows in the system rarely exceeds the limit at which the 
bottleneck fills up, the system behaves as an M/G/ oo system where the fiow is 
only constrained by its access link rate and the behavior of TCP slow start. When 
the load is high enough to fill the bottleneck link, the system becomes a processor 
sharing system where the fiows share the bandwidth. In this case, the total arrival 
rate of fiows equals I:k Vk and the aggregate goodput is I:k Ak(t)(1- P(t)), 
where Ak(t) is the mean sending rate of population k at time t. Now it is easy 
to see that for any work conserving service discipline (such as DPS), assuming 
exponential file lengths with a common mean 1/ p. for all classes, the total number 
of fiows in the system is a Markov process with the same properties as the number 
of users in an ordinary PS system. Hence, we can use the same model for the 
time evolution of the mean total number of flOows in the system N(t) as earlier, 

dN(t) N(t) 
~ = ~ vk - p. ~ >.k(t)(l - P(t)) 1 + N(t) . (8) 

Foreach TCP user group, thesendingrate >.k(t) is determined by 

d:>--k(t) = (1 _ P(t)) Nk(t) _ P(t ) >-~(t) 2 
dt Rk(t)2 2Nk(t) ' 

(9) 

where Rk(t) = Ro,k + d(t) and Nk (t) is the mean number of population k flows. 
Given (8) and (9), we need a model for Nk(t) that captures the unequal shar­

ing of the bottleneck bandwidth among heterogeneaus users. In our system, the 
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load caused by population k equals vk/(C · p,). However, according to our model, 
each population obtains a goodput equalling >.k(t)(1- P(t)), which includes the 
effects of packet loss and RTT. Thus, the effective load caused by population k 
is given by vk / (p,· Ak(t)(l- P(t))), and we approximate Nk(t) by dividing N(t) 
in proportion to the effective load of each d ass, 

Complete model and steady-state solution: Combining (8) and (9), the 
complete model is given by 

-----;[t = L:k vk- /lk ~k >.k(t)(1- P(t)) 1 + N(t) , { 
dN(t) N(t) 

d>.k(t) Nk (t) Ak(t)2 ( 11) 
~ = (1- P(t)) Rk(t)2 - P(t) 2Nk(t ) , k = 1, ... , M , 

where Nk(t) is given by (10). 
The st eady-state values are again obtained by setting the right hand sides 

of (11) equal to zero. By solving N from the first equation as a function of Ak, 
and solving from the rate equation for Ak, the steady-state solution for Ak can 
be expressed in the form 

2(1- P(l:::k >.k )) 
P(l:::k >.k) 

1 

i.e., in the form of a fixed point equation. To prove the uniqueness of the fixed 
point is not easy but numerical experiments indicate a unique solution exists. 

The mean-delay model: The model for the mean delay developed in the 
previous section can be used in this case wit h a simple modificat ion. T he model 
above provides estimates of the following performance measures: packet loss 
probability P, total goodput rate Ak(1 - P ) of each population, and mean RTT 
including the queuing delay Rk. At t he equilibrium, the goodput rate of a single 
fl.ow is limited either by its access link rate, >-k'ax, or, if the mean number of flows 
in the system is high enough, by t he sharing of the bottlerreck link. Thus, the 
goodput rate of t he TCP fl.ows of population k, fk, equals fk = min(>.k'ax, Ak(1-
P) / Nk). With this modification t he rest of the model for the file t ransfer delay 
is t he same as given by (7) . 

The mean number of flows in the system: Here we can use similar ideas 
as in [4]. In the case, where the bottleneck load is high enough, the model above 
provides an estimate ofthe mean number offl.ows, Nk. However, when theload is 
below the threshold for sharing, the system operates as an M/ G/oo system with 
arrival rate equal to Vk and mean service time equal to Dtot,k, as given by (7). 
In an M/G/oo system, the distribution of the number of flows obeys a Poisson 
dist ribution with parameter vkDtot,k , and the mean also equals vkDtot,k · Thus, 
the mean number of flows is obt ained from Nk,final = max(Nk. vkDtot,k)· 
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3 Numerical Results 

Here we present numerical results obtained from our models, and compare them 
against simulation results, which have been produced using the ns2 simulator 
version 2.1b9a. We experiment with different TCP variants (TCP Reno and 
TCP SACK), buffer sizes, RTTs and flow size distributions. In the simulations, 
the packet size for all TCP sources is 500 bytes, and the mean file size is 500 
packets. We also experiment with different queuing models, namely M/M/1/ K 
and M/D/1/K, which are used as part of our packet-level model. 

3.1 Examples with Homogeneous TCP Users 

We first consider tests with TCPs having identical RTTs and illustrate the im­
pact of the access rate limitation and the scaling of bottleneck capacity on the 
performance. By introducing an access rate limit on the fl.ows the packet arrivals 
can be made less bursty, hence making our Poisson assumption more plausible. 
By scaling the bottleneck capacity our system becomes more like an M/G/oo 
system with constant mean delays and linearly increasing mean number of flows. 
This is illustrated in Figure 1 for the mean delays and in Figure 2 for the mean 
number of fl.ows. In all figures, results are shown as a function of the load of the 
bottleneck link. Each figure has two sets of curves corresponding to results for 
two different RTTs ( R0 = 20 ms and Ro = 200 ms) to assess the effect of the 
bandwidth delay product. In each set of curves, solid lines represent solutions to 
our analytical models and dashed lines are simulation results. 

In Figure 1 (left), the bottleneck capacity C = 10 Mbps, the access links of 
the fl.ows have the same capacity, >.max = 10 Mbps, and the buffer size K = 10. 
To evaluate the effect of the TCP variant, results for TCP Reno and TCP SACK 
sources are shown. The system is, in a sense, a processor sharing system where 
any flow can utilize the full link capacity. This produces rather bursty packet 

arrivals and to compensate for this we have used the M/M/1/ K model as our 
packet level model (as opposed to M/D/1/ K, which would be the more 'realistic' 
model). As seen from the results, TCP SACK is able to avoid time outs more 
effectively than TCP Reno (and thus has lower delays), especially at low loads. 
Thus, in the following we only use TCP SACK sources. Results for R0 = 200 ms 
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Fig. 1. Mean file transfer delays for three different scenarios. 
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Fig. 2. Mean number of flows for three different scenarios. 

are acceptable but for R0 = 20 ms the model underestimates the delays. One 
reason for the inaccuracy is the very bursty nature of the packet arrivals. 

Next we introduce an access rate limitation to smoothen the packet arrival 
process, and hence our Poisson assumption at the packet level should be more 
appropriate. As TCP actually sends constant size packets, the queue model is 
M/D/1/ K (using M/M/1/ K overestimates the packet losses). The result can 
be seen in Figure 1 (center), where C = 10 Mbps, access rate >,max = 1 Mbps 
and K = 10. In the figure it can be seen how the results become more accurate. 
Finally, we scale the bottleneck capacity to C = 100 Mbps and also increase the 
buffer size to K = 100 in an attempt to have the system behave as an M/ G/oo 
system with constant mean delays. The result is shown in Figure 1 (right) . It can 
be seen that our model, indeed, predicts that the mean delays stay constant but 
in the high load region the delays in the simulated system are not quite constant 
and our model underestimates the simulation results somewhat. 

Figure 2 contains the results for the mean nurober of flows in the system for 
the three cases described above. The accuracy of the results is similar to those 
of the mean delays. The right figure nicely shows how the system approximates 
the MjGjoo system with linearly increasing mean number of flows. 

In general the accuracy depends on the numerous parameters of the system, 
but due to lack of space a systematic evaluation . of the accuracy of the model 
can not be presented. Shortly, the dependencies are such that smaller buffer 
sizes give more accurate results; for larger buffers the model underestimates the 
loss probabilities. For smaller file sizes, our model does not estimate the available 
goodput for flows accurately, as our assumptions on the time scale decomposition 
between the rate adaptation time and flow interarrival times does not hold. 
Moreover, our TCP model does not take into account timeouts, which are more 
important the smaller the file sizes are. 

System dynamics and effect of different file size distributions: Here 
we explore the insensitivity of the steady-state solution and the effect of the 
distribution on the dynamics. The main emphasis here is on the results con­
cerning system dynamics under different distributions. Similar results on the 
insensitivity of the steady state have appeared elsewhere in the literature, see, 
e.g., [8], and they are shown here mainly for the sake of completeness. We study 
first the effect of different file size distributions on the mean file transfer delays. 
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Fig. 3. Mean steady-state file transfer delays for Ro = {20, 200} ms (left) and the 
length of the transient period for different distributions (right). 

The distributions that are used are: exponential, Pareto with shape parameter 
o: = 2.0 and o: = 1.8. In the simulation, the constant parameters are: K = 10 
and C = >"max = 10 Mbps. The varied parameters are the bottlerreck link load 
and Ro = {20, 200} ms. As can be seen in Figure 3 (left), the steady-state mean 
file transfer delays are hardly affected by the distribution. In Figure 3 (right) 
the accuracy of our dynamical model is illustrated for exponential file lengths. 
Additionally, we show the impact of the type of the distribution on the time 
to reach stationarity. In the figure, the transient evolution for mean number of 
fl.ows in the system is plotted in a system where Ro = 200 ms, K = 10 and 
bottleneck load p = 0.9. Three file size distributions are considered: exponential 
and Pareto with shape parameters 1.8 and 1.6. The averages have been obtained 
by averaging over 50 sample paths for each case. As can be seen, the dynam­
ics of the simulation with exponential file sizes nicely match the results of our 
analytical model. Regarding the effect of the distribution on the dynamics, for 
Pareto with shape parameter 1.8 the transient time is still manageable, though 
Ionger than for exponential. However, for Pareto with shape parameter 1.6 the 
transient to reach stationarity is much Ionger than for exponential. 

3.2 Experiments with Heterogeneous RTTs 

Next we experiment with four TCP populations with different RTTs that 
share a single bottleneck. Only results for the mean delays are presented due 
to lack of space (results for the mean number of fl.ows are similar in accu­
racy). The bottleneck link bandwidth C = 10 Mbps and each TCP source 
has an access rate >"max = 1 Mbps, and the link delays were chosen such that 
Ro,i = {30, 70, 150, 230} ms. The bottleneck buffer size is either K = 10 or 
K = 100 and for the analytical results the queue model is M/ D/ 1/ K. To ex­
plore the impact ofthe distribution, the file length distributions were exponential 
and Pareto with shape parameter 2.0. The results for the mean delays are given 
in Figure 4. We can observe a rather good match between the simulation and 
analytical results, especially for the small buffer cases. For larger buffers the an­
alytical model gives results that somewhat underestimate the simulated results. 
Note that the distribution type does not greatly affect the mean delays. 
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Fig. 4. Mean transfer delays with different RTTs for p = 0.8 (left) and p = 0.9 (right). 
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Fig. 5. Mean transfer delays with random RTTs for K = 10 (left) and K = 100 (right). 

Tests with random RTTs: Herewe present results from experiments where 
the delay on access link of each fl.ow is drawn from a distribution separately for 
each new fl.ow. We consider the same scenario as earlier with access rates being 
equal to 1 Mbps and the bottleneck link rate 10 Mbps. The bottleneck link is 
set to have a constant two-way delay of 10 ms. The two-way delay of the access 
link is drawn independently for each file transfer from a uniform distribution in 
the range [0, 390] ms. Hence, the mean RTT without queuing delay equals 200 
ms and the variation in t he RTTs of fl.ows is significant. Two different buffer 
sizes are studied, K = 10 and K = 100 packets, respectively. We compare the 
results against simulation results with a constant two-way delay of 200 ms and 
the results from our model with the M/D /1/ K queuing model. The results are 
shown as a function of the bottleneck load in Figure 5 for the mean delays. As 
can be seen, perhaps even slightly surprisingly, the means are not really affected 
by the randomness of the access link delays (variability did increase, though). 
This suggests that from the point of view of just modeling overall mean delays, 
a model accounting just for the mean RTT seems enough. 

4 Conclusions 

This paper studies TCP performance, with a specific focus on the mean fl.ow 
transfer delay and the average number of concurrent fl.ows in the system. This 
is clone for a dynamic population of users, rather than the situation of a static 
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nurober of permanent flows. The modeling approach relies on using idealized PS 
models as a starting point and modifying their properties accordingly to take into 
account some of TCP's non-ideal behavior. A model has been derived that can 
incorporatethe effect of packet losses and RTTs on the obtained goodput, as well 
as limited sending rates. Also, the unequal sharing of bandwidth between flows 
with different RTTs can be treated. The delay estimates additionally consider 
the impact of the initial slow start. Ns2 simulations have been used to verify 
the accuracy of the models. In general, the accuracy is better for systems where 
the ratio of the access link rate to the bottlerreck link rate is relatively small, 
which corresponds to a higher degree of multiplexing on the bottleneck. It is 
also und er such circumstances that the assumption of Poisson arrivals ( at the 
packet level) may be assumed to be more applicable. However, the accuracy is 
in general dependent on the parameters; small buffer sizes usually give more 
accurate results. Future research topics include the derivation of more accurate 
packet-level models, modeling the effect of Web mice that share the capacity 
with Ionger flows, and extending the models to a multi-hop context. 
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