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Abstract. Balanced fairness is a new resource sharing concept recently 
introduced by Bonald and Proutiere. We extend the use of this notion 
to wireless networks where the link capacities at the fiow Ievel are not 
fixed but depend on the scheduling of transmission rights to interfer­
ing nodes on a faster time scale. The balance requirement together with 
the requirement of maximal use of the network's resources jointly deter­
mine both a unique state-dependent scheduling and bandwidth sharing 
between the contending fiows. The fiow Ievel performance under the re­
sulting scheme is irrsensitive to detailed traffic characteristics, e.g., fiow 
size distribution. The theoretical and computational framework is formu­
lated and illustrated by two examples for which the performance in terms 
of average fiow throughputs in a dynamic system is explicitly worked out. 

1 Introduction 

As in fixed networks, also in wireless ad hoc networks the performance perceived 
by the users sending elastic traffic mainly manifests itself on the flow level. A 
flow of elastic traffic typically comprises a transfer of a document , file or message 
such that the transmission can use all the bandwidth that is available but can 
also adapt the transmission speed to the congestion and share the bandwidth 
with other concurrent ftows. The performance, such as the average duration of 
transfer of a document of a given size, clearly depends on dynamic behavior of 
the system and on how the bandwidth is shared between different flows. Thus 
it is necessary to study the system in a dynamic setting where new flows arrive 
at the network, are transferred across the network, and upon completion depart 
from the system. As far as we are aware, no analysis of this type has been clone 
for ad hoc networks previously. 

In order to facilitate the analysis, a certain degree of abstraction is necessary. 
In particular, we ignore the detailed packet level behavior although the actual 
communication in an ad hoc network consists of a sequence of packet level Op­
erations of channel access and data forwarding over a multihop route. From a 
conceptual point of view we distinguish two layers of operations. On the low­
est level, which we call scheduling, one basically determines which transmitters 
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are allowed to send data at any given time (because of the interference not all 
transmitters are allowed to operate simultaneously). As the set of permissions 
is switched on a fast time scale, the resulting network appears at flow Ievel as a 
virtual network with links with capacities that depend on the schedule. So the 
schedule determines the capacity to send data on different links. On the upper 
Ievel of operation, which is referred to as bandwidth sharing or bandwidth allo­
cation one determines how the capacity of the virtual network is shared between 
the flows, i.e. viewed from a lower Ievel, what data is sent when a sender has a 
permission to send. 

The main difference of the analysis of flow Ievel performance of ad hoc net­
works from that in fixed networks stems indeed from the fact that byscheduling 
one can, in certain Iimits, shift capacity of the network from one link to another, 
and that this degree of freedom can be used to improve the performance. 

In the flow Ievel abstraction we assume that the flow durations are long 
compared with the time scale of the operation of a schedule as well as with the 
time it takes for whatever protocol or flow control mechanism is used for the 
bandwidth sharing to find a steady state. Thus we assume that as soon as a 
flow arrives or departs, a new steady state, with a new virtual network and its 
resource sharing, is reached instantaneously. 

Fairness of the bandwidth sharing has been recognized an important consid­
eration for fixed networks and different fairness concepts have been introduced, 
cf. [1]. In ad hoc networks this issue has received attention only recently. In 
particular the application of the notion of max-min fairness in a static setting 
has been studied in [2,3,4]. The problern is again more complex than in fixed 
networks because it is entangled with the lower layer scheduling. Using closely 
related network models and scheduling constraints to those in the present paper, 
the authors of the mentioned papers have presented centralized and distributed 
methods that achieve max-min fair rates for given set of flows. However, the fact 
that an allocation is optimal in the sense of an utility function does not nec­
essarily guarantee that the system converges to a steady state that is optimal 
[5]. Also, an analysis of the performance of max-min fair resource sharing in a 
dynamic setting would be prohibitively difficult. 

A new concept of balanced fairness (BF) has recently been introduced by 
Bonald and Proutiere [6,7]. This is a very interesting notion on two accounts. 
First and foremost, it Ieads to a network performance which does not depend 
on the traffic characteristics except the traffic intensity on the different paths, in 
other words, the performance under BF is insensitive. Secondly, BF often allows 
an explicit analysis of the performance of simple systems in the dynamic setting. 

It should be noted that BF does not represent a solution to an utility op­
timization problern or guarantee Pareto efficient use of the resources. However, 
studies of fixed networks have shown that in many cases the performance of 
a network under BF is similar to that under max-min fairness. BF provides 
therefore a useful approximation tool for evaluating network performance. 

In this paper we introduce a natural extension of the notion of balanced 
fairness to take into account the fact that the capacities of the virtual network 
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can be changed by the schedule. The resulting BF resource sharing problern is a 
joint problern of determining both the state-dependent schedule and bandwidth 
allocation to maximize the use of the network resources while at the same time 
retaining the balance and the related insensitivity properties. We demonstrate 
the analysis of the performance under BF by two examples illuminating different 
computational approaches. Furthermore, the paper contributes to general wire­
less network optimization problems by establishing a condition under which so 
called clique constraints provide sufficient conditions for the feasibility of a given 
set of link capacities of the virtual network. 

The paper is organized as follows. Section 2 gives a formal description of the 
balanced fairness concept with an extension to variable link capacities. It also 
illustrates the main principles involved in this paper by carefully examining a 
simple example. These principles are then extended to general ad hoc networks in 
Sect. 3, while Sect. 4 brings forward an alternative approach to allow performance 
analysis without the need to explicitly solve the scheduling. Section 5 concludes 
the paper. 

2 Extension of Balanced Fairness 

Consider a network consisting of J unidirectional links and carrying N classes 
of fiows using pre-defined routes. Let Fj denote the set of fiows using link j. 
The network state is represented by a vector x = ( x1, ... , x N) in which Xi is 
the number of class-i fiows in progress. Let <Pi(x) be the bandwidth allocation 
to class i in state x. This bandwidth is equally shared by all fiows of dass i. An 
allocation is said to be balanced if it holds that 

<Pi(x- ej) 

<Pi (x) 
</Yj(x- ei) 

</Jj (X) 
Vi,j, Xi > 0, Xj > 0 , 

where ei is an N-vector with 1 in the ith component and 0 elsewhere. It can 
be shown [6] that an allocation is balanced if and only if the allocations can be 
expressed in terms of a so-called balance function <!>( x) as 

(I) 

where the proportionality constant is k = 1/if>(x). Conversely, any positive func­
tion <!>( x) defines a balanced allocation by ( 1). 

Balanced fairness as defined by Bonald and Proutiere [6,7] refers to the most 
efficient balanced allocation in a fixed network in the sense that in each state of 
the system at least one of the links is saturated. This leads to a unique allocation: 
the balance function is uniquely defined by the recursion, 

(2) 

The seed of the recursion can be arbitrarily set, e.g. <P(O) = 1. The extended 
balanced fairness principle just says that, in each state x, the proportionality 
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constant k = 1/c.P(x) is chosen as large as allowed by whatever constraints the 
system is subject to. In the case of fixed routes and fixed link capacities this 
leads to (2). 

Now assume that we have fixed routes but the link capacities C1(p) depend 
on the schedule p, i.e. the capacities are related to a virtual network defined by 
schedule p. Then the constraints are 

L tPi(x) :::; CJ(p), Vj , 
iE:Fj 

and the maximizing k is 

k = maxmin CJ(P) , 
P J L:iEFi c.P(x- ei) 

that is, one finds the most constraining link for any schedule p and then makes 
this constraint as loose as possible by changing p. Accordingly, the balance func­
tion c.P( x) = 1/ k of the balanced fairness is now uniquely determined by the 
recursion 

. 1 "' c.P(x) = mmmax C·( ) L...t c.P(x- ei) . 
p 1 J p iEF· 

J 

(3) 

Foreach state x, this recursion defines both the balance function c.P(x) and the 
schedule p = p(x). Recursion (2) is, of course, a special case of this, when the 
capacities are fixed and no scheduling alternatives are available. 

Assurne that the flows are generated by sessions, each session being composed 
of a random number of flows separated by think times. Flow sizes and think 
time durations can be arbitrarily distributed and need not to be independent. If 
balanced resource allocation is used and the sessions arrive as a Poisson process 
then, as shown in [7,5], the steady state distribution of the network state is given 
by 

(4) 

and depends on the traffic characteristics only through the traffic loads Pi of 
different routes. Load Pi is the product of the flow arrival rate and mean flow 
size on route i . 

In (4), G(p) is the normalization constant 

<Xl <Xl 

G(p) = L · · · L c.P(x1, ... , XN )pf1 . .• p';f , (5) 
Xl=O XN=O 

which depends on the traffic load vector p = (p1 .. . PN ) . The normalization con­
stant G(p) is an important quantity as the performance measures can be derived 
from it. Under a specific condition detailed in [8] the constant can be calculated 
recursively directly without even solving c.P(x). In t he examples presented in t his 
paper the condition is satisfied and the normalization constant can indeed be 
obtained in a simple way. 
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Fig. 1. Example 1 

A key performance measure for class-i fiows is the throughput /i, defined as 
the ratio of the mean flow size to the mean flow duration. By Little's result this 
is equal to Pi/E[xi]. The denominator can be obtained by derivation yielding 

G(p) 
ri = 8 · 

opi G(p) 
(6) 

Balanced fairness has the very desirable property that the performance of 
the network is irrsensitive to traffic details. Moreover, it allows us to evaluate 
the performance by (3), (5) and (6). Next weillustrate the concept of extended 
balanced fairness by a very simple example. 

2.1 Example 1 

The system consists of three nodes (A,B,C) and two radio links (1,2) , each of 
nominal capacity 1. Node A cannot reach node C directly. There are two fiow 
classes: class-1 fiows from B to C utilize link 1 only while class-2 flows from A 
to C use both link 1 and link 2. Figure 1 illustrates the system. 

Assurne that the two links interfere and cannot be used at the same time. 
The schedule is now defined by a single parameter p defining which portion of 
time is scheduled for link 1. The effective link capacities are thus, 

and the recursion (3) reads 

"""() . {iP(x-e1)+iP(x- e2) iP(x-e2)} '*' x = m1nmax , 1 p p -p 

The minimum with respect to p is obtained when the two expressions are equal, 

(7) 

leading to the recursion for iP( x) and its solution 

<P(x) = el ~ X2) 2x2 (8) 

The normalization constant can be easily calculated, 

1 
G(p) = -l-- -P-1 --2P-2 
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This is recognized to be the same as the normalization constant of a single fixed 
link of unit capacity shared by three fiow classes with loads p1, p2 and p2 ( or two 
fiow classes with loads p1 and 2p2). Indeed, we have a single resource, the time 
slot, contended by three transmissions (a class--1 transmission from B to C and 
class-2 transmissions from A to B and from B to C) . From the normalization 
constant one readily obtains the throughputs using (6), 

"Yl = 1 - Pl - 2p2 , 
1 

"Y2 = 2(1- Pl- 2p2) . (9) 

The throughputs are greater than those resulting from the basic BF using any 
fixed scheduling. Note that for negligible loads the throughputs are 1 and -k, as 
they should, and also that for any loads the class-2 throughput is always half of 
that of class 1. 

Finally, note that from the balance function (8) the explicit expressions for 
the state-dependent allocations and schedules can be obtained by (1) and (7), 
respectively, yielding 

{ 
ri>1(x) = x+1 , 

x1 x2 
lx2 

r/>2(x) = ---"-2 -
x1 +x2 

These equations can be interpreted at the scheduling level as follows. The time 
slots are equally shared by all active fiows, e.g. on a rotational basis. A class 2 
fiow needs two time slots for an end-to-end transmission; every second time slot 
assigned to it is used for transmission from A to B and every second time slot 
for transmission from B to C. 

We reiterate that when the network is operated under this scheme, the perfor­
mance (9) is insensitive to any detailed traffic characteristics. In this example, 
the scheme is also Pareto efficient in the sense that no resources are wasted; 
p(x) = rPl(x) + r/>2(x) and 1 - p(x) = r/>2(x). 

3 Scheduling under Interference Constraints 

In the previous example, the two links interfered with each other and could not 
be used at the same time, resulting in effective capacities of the links that depend 
on scheduling. The same principle extends to general wireless networks as follows. 
One can define a set of permissible simultaneaus transmissions, a transmission 
mode, consisting of the directed links that can be used at the same time. It 
suffices to consider only the links used by some fiow class and the maximal 
transmission modes, i.e. those which are not contained in another mode. Denote 
the set of directed links in a maximal transmission mode by T and the set of all 
maximal transmission modes by T. 

In this general setting, we define a schedule as the vector p = {Pn T E T}, 
with the meaning that in each time slot one of the r's is used in some order such 
that, on average, transmission mode T is used the portion of time Pr · 
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As in Example 1, the effective capacities of links can be defined. We assume 
that the flow and scheduling time scales are well separated, i.e. the duration of 
a typical flow is much Ionger than the time slot. Then, given the schedule p, we 
have on the flow level a virtual network with 'fixed pipes'. Link j of this fixed 
network has the effective capacity 

CJ(P) =Cj L PT' (10) 
TET:jET 

where Cj is the nominal Capacity (bandwidth) of the radio channel on link 
j. With these capacities one can solve the recursion (3) numerically or, as in 
Example 1, analytically. In general, we call a set of link capacities dj, j = 
1, ... , J, feasible if a schedule p exists such that dJ :::; CJ (p) for all j. 

3.1 Modeling the Interference 

Interference determines which links can transmit simultaneously. Here we go 
briefly through different alternatives for modeling interference in ad hoc networks 
and define the concept of link graph. 

Elementary interference models set the following constraints to the links in 
the network. A node may not transmit and receive simultaneously and it cannot 
transmit or receive more than one packet at a time. In other words, all the links 
connected to a given node belong to different transmission modes. Such models 
are often justified by the assumption that other transmissions in the vicinity of 
the node can operate without conflict using locally distinct frequencies [9,2]. 

A more detailed model would entail that no two links can be simultaneously 
active if either of the receiving ends is interfered by the other transmission. In 
the model presented in [10] a transmission can prevent reception everywhere 
within the transmission range, whereas in the widely applied protocol model 
[11 J the interference depends on the locations of the transmitting node so that 
the closest (with a selected margin) transmission can be successfully received. 

Note that the above models define interference as a pairwise property of the 
links. Generally, the successful reception depends on the signal to interference 
ratio calculated at each receiver, where the interference depends on all other 
links in use. This, however, complicates the search of transmission modes andin 
this paper we restriet ourselves to the pairwise models. No further restrictions 
are made on model selection. 

Pairwise interference can be described using a link graph. Given a network 
and a set of flows with their routes, the corresponding link graph is constructed 
as follows: each active directed link in the network is mapped to a vertex and an 
edge connects two link graph vertices if the corresponding links interfere with 
each other. By definition, each T corresponds to a maximal independent set in 
the link graph, i.e. a maximal subset of the vertices such that no two vertices in 
the subset represent an edge of the link graph. Therefore, in principle, one can 
find T by enumerating all independent sets of the link graph. 
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3.2 LP-Formulation for the Recursion Step 

In some simple cases, such as the one in Example 1, one can find the optimal 
schedule p and bandwidth allocation analytically. In general, however, one has 
to resort to numerical analysis. In this case it is useful to formulate the recursion 
step and the corresponding schedule optimization as an LP-problem. We outline 
the approach, though it is not utilized in this paper. 

Let y = (p, kf be the decision vector and let a = (0, ... , 0, 1). If the «P(x- ei) 
are known for all i, we obtain «P(x) = 1/k and the corresponding schedule p(x) 
from y by finding the maximum in the LP-problem: 

subject to 

max ay 

- T My::; (0, 1) , y?.O, 

where Ö is a J-vector of zeros. M is the constraint matrix given by 

M = (-~ B(x)) 
1 0 , 

where 1 is a !T!-vector of ones, Ais the J x !Tl matrix Aj,T = 1jET and B(x) 
is the column vector Bj(x) = cj-l I:;jEFi «P(x- ei) · Note that only the element 
B(x) in the matrix M needs tobe updated in the recursion. 

4 Maximal Clique Constraints 

In Example 1, the bandwidth shares after schedule optimization could be inter­
preted to be limited solely by the fact that the three transmissions contend for 
the same time slot. 

In a general scheduling and bandwidth sharing problern we can similarly 
identify one or several sets of transmissions such that transmissions in a given 
set contend for a common time slot. Such transmissions constitute a clique in 
the corresponding link graph. Each clique q imposes a necessary condition on the 
bandwidth allocation. The most stringent set of conditions is set by the maximal 
cliques, i.e. cliques that are not a subset of another clique. Thus, we have the 
necessary conditions for a feasible bandwidth allocation 

1 I: c I: cPi(x) :::: 1 , 
j Eq J iEFi 

Vq E Q, (11) 

where Q denotes the set of all maximal cliques. The maximal cliques can be 
enumerated, e.g. by an algorithm from [12]. 

An interesting question is whether the maximal clique constraints (11) also 
give sufficient conditions for a feasible bandwidth allocation, i.e. whether there 
exists a schedule that allows attaining the link capacities required by an allo­
cation. By counter examples one can easily see that this is not generally true. 
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Fig. 2. Flows, link graph, maximal independent sets and cliques of Example 3. 

In Appendix A, however, we prove a lemma stating that the maximal clique 
constraints do provide necessary and sufficient conditions for the feasibility of 
an allocation if the link graph is a perfect graph1. 

When this is the case the bandwidth allocation is only limited by conditions 
(11) which are of the sametype as the link capacity constraints in a fixed net­
work. Note, however, that now there is one constraint for each clique as opposed 
to one constraint for each link in a fixed network, and also that a bandwidth 
allocation rPi can appear in a condition several times as the flows in dass i 
can traverse several links in the same clique. The balance function can then be 
calculated using the recursion 

1 
tJ>(x) = max"""' -0 """'tJ>(x- ei) . 

qEQ~ . ~ 
jEq 1 iE:FJ 

(12) 

While this greatly simplifies the task of evaluating the flow level performance 
as there is no need to explicitly consider the scheduling, it indeed leaves the 
schedule indetermined. Therefore, when needed, the scheduling must be worked 
out separately. 

4.1 Example 2 

Consider now a slightly more complicated example consisting of six nodes, three 
flow classes and five active unidirectional links of unit capacity, as shown in 
Fig. 2. The interferences shown in the link graph result from the protocol model 
(see Sect. 3.1) and the link graph has four maximal independent sets and two 
maximal cliques. Note that the link graph is triangulated (i.e. it contains no 
induced cycles other than triangles) and thus a perfect graph ( cf. [13]) and the 
maximal clique constraints apply. These can be written as 

{ 
3cpl(x) + 2c/J2(x) S 1 , 

2cpl(x) + c/J2 (x) + rP3(x) S 1 

which results in the recursion 

tJ>(x) = max{3tJ>(x- e1) + 2tJ>(x- e2), 2tJ>(x- e1) + tJ>(x- e2) + tJ>(x- e3)} 

--,----=_2tJ>_(x- e1) + tP(x- e2) + max{tJ>(x- el) + tJ>(x- e2 ),tJ>(x- e3)} . 
1 A graph G is called perfect if the chromatic nurober x(H) every induced subgraph 

H <;;; G equals the maximum clique size w(H) of the subgraph. A conjecture by 
Berge says that a graph G is perfect if and only if neither G nor its complement G 
contains an odd cycle of length at least 5 as an induced subgraph [13]. 
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Fig. 3. Throughputs of the fl.ow classes in Example 3. Left; pz = 0.2, P3 = 0.2. Right; 
PI = 0.1, P2 = 0.2 

It can be shown by induction that when x 3 > 0 the latter expression realizes the 
maximum. Thus, 

{ 
3<P(x- e1 ) + 2<P(x- e2 ) , 

<P(x) = 
2<P(x- el) + <P(x- e2) + <P(x- e3) , 

X3 = 0, 

X3 > 0 

As the recursion has a given form throughout a coordinate plane as weil as 
in a positive part of the state space, the method of [8] can be applied to the 
calculation of the normalization constant in parts. For brevity we omit the details 
and only give the result 

G(p)= 1-2pl-P2 
(1 - 3pl - 2p2)(1 - 2pl - P2 - P3) 

In the same way as in the first example, throughputs of different classes can be 
calculated by (6). The results are shown in Fig. 3 for two different scenarios. In 
the first, P2 and P3 are kept fixed while p1 is varied. In the second, p3 is varied 
while the two others are fixed. 

5 Conclusions 

This paper studied fl.ow-level dynamics of ad hoc networks and illustrated how 
the concept of balanced fairness can be extended to allow the derivation of 
performance measures of a wireless multihop network. The resource allocation 
is defined by a balance function which can be computed recursively using, e.g. 
one of the three methods presented in this paper: One can either explicitly write 
down the capacities of the links as a function of schedule or solve the integrat ed 
recursion step and scheduling as an LP-problem. The third approach, applicable 
under special circumstances, is to use the maximal clique constraints that often 
yield a simple recursion for the balance function. When the link graph is perfect 
this approach is feasible and especially suitable for performance analysis since 
the actual schedule need not be worked out. 

A noteworthy feature of the scheme is that the performance is insensitive to 
traffic details. This potentially allows one to develop simple and robust provi­
sioning rules that depend only on traffic intensities. 
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A Necessity and Sufficiency of Maximal Clique 
Constraints 

Denote the set of maximal cliques of a link graph G by Q. Let dj denote the 
capacity of link j in the virtual network. As discussed in Sect. 3, the capacities 
{ dj} are feasible if there exists a confiict-free schedule such that each link j is 
scheduled for transmission the fraction of time di i Ci. 

Lemma 1. lf the link graph G of an ad hoc network is perfect then both a 
necessary and a sufficient condition for the feasibility of capacities { dj} is 

L d 
_J < 1 
C · - ' 

jEq J 

\:/q E Q ' (13) 

Proof. The condition is necessary since diiCi is the fraction of the time that 
has tobe scheduled for transmission on link j and for all j E q the transmissions 
must be non-simultaneous. 

To prove sufficiency, we assume that the di I Ci can be written in the form 

dj nj 
cj N' 

\:/j ) 

where the nj and N are integers (by choosing N large enough these relations 
can be satisfied to any desired accuracy) . Our task now is to show that if 

\:/q E Q' (14) 

then there exists a confiict-free schedule in which each link j is given the fraction 
of time n1 IN. To this end, consider a frame of arbitrary duration and divide it 
into N time slots. Now, in order to realize the capacities { d1 }, one should be 
able to assign n 1 time slots in the frame to each link j so that no confiicts occur. 

If n1 = 1 for all j then finding a confiict free schedule is equivalent to the 
graph colaring problern on G in the following way. Let each vertex j represent 
a one-slot transmission on link j, which has to be scheduled to one of the N 
time slots in the frame, the position of which we refer to as the "color" of the 
one-slot transmission. That no two interfering transmissions can use the same 
time slot translates to that two vertices of G cannot have the same color if they 
are connected with an edge. As we assumed G to be perfect, the number of colors 
required equals the maximum clique size, which by (14), with n1 = 1 for all j, 
is no greater than N the number of available colors. So a confiict-free schedule 
for the case where each link has one one-slot transmission does exist. 

We can extend this consideration to any numbers nj satisfying (14). Make nj 
copies of each vertex j E G, each representing one of the nj one-slot transmissions 
on link j. All replicas of vertex j have to be connected by an edge to each other 
and to all other nodes and their replicas in the same clique, as the corresponding 
transmissions interfere with each other. Such a graph can be constructed by 
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expanding vertices one-by-one until each link j is represented by n1 vertices. 
A result of graph theory (Lemma 5.5.4 in [13]) states that a graph obtained 
from a perfect graph by expanding a vertex is again perfect. Thus, the final 
graph G*, resulting from the (n1 - 1)-fold expansion of each link j, is perfect. 
Consequently, the number of colors needed for coloring G* equals its maximum 
clique size, maxqEQ LjEq nj, which again by (14) is no greater than the number 
of available colors N. 

Corollary 1. A fiow allocation {<Pi ( x)} satisfying 

1 2::.: C 2::.: <,i>i(x) :::; 1 , 
jEq J iE:Fi 

Vq E Q, (15) 

is feasible if the corresponding link graph G is perfect. 

Proof Setting dj = LiE:Fi <l>i(x) the result follows directly from the lemma. 
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