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Abstract. Motivated by the increasing importance of multifiber WDM 
networks we study two routing and wavelength assignment problems in 
such networks: 

Fiber Cast Minimization: the number of wavelengths per fiber is 
given and we want to minimize the cost of fiber links that need 
to be reserved in order to satisfy a set of communication requests; 
we introduce a generalized setting where network pricing is non­
uniform, that is the cost of hiring a fiber may differ from link to 
link. 
W avelength Minimization: the number of available parallel fibers on 
each link is given and we want to minimize the wavelengths per fiber 
that are needed in order to satisfy a set of communication requests. 

For each problern we consider two variations: undirected, which corre­
sponds to full-duplex communication, and directed, which corresponds to 
one-way communication. Moreover, for rings we also study the problern 
in the case of pre-determined routing. We present exact or constant-ratio 
approximation algorithms for all the above variations in chain, ring, star 
and spider networks. 

1 lntroduction 

All-optical networks make it possible to transmit data at very high speed. The 
technology that enables transmitting more than one signal along a single optical 
fiber is called Wavelength Division Multiplexing (WDM); many signals can be 
simultaneously carried over the same physical link by light beams of different 
wavelengths. Recent developments make it possible to use multiple fibers on each 
link, allowing any signal to switch fiber at any node; however, it is preferred for 
each signal to remain on the same wavelength from t ransmitter to receiver, in 
order to avoid wavelength conversion. 

A multifiber network can be described by a graph G = (V, E) and a function 
fJ- : E ---+ lN that defines the multiplicity of fibers on each link. The set of requests 
R is a set of pair of nodes. A routing and path multicoloring1 for n ( w .r. t. fJ-( e)) 
1 Color collisions between paths that use the same edge are allowed, so we use the 

term "path multicoloring", as opposed to classical "path coloring" where paths that 
share an edge must receive different colors. 
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is valid w.r.t. J.L (or simply valid) if all requests of R are satisfied, i.e. there is 
a colored path for each request, and for each edge e any color is used at most 
J.L( e) times among paths that pass through e. The function J.L may be given in 
advance, representing the number of available fibers on each link, or may be 
sought, representing the number of fibers that should be reserved on each link 
in order to satisfy a set of connection requests. 

In the first part ofthis paper, we deal with the case where J.L(e) is sought. Here 
we follow a more general setting where fiber costs are not the same everywhere; 
we call such a situation non-uniform pricing, as opposed to uniform pricing 
where the cost of a fiber on any link is the same. We consider networks where 
each fiber has a limited bandwidth (number of wavelengths) w and each link 
has a cost, representing the cost of using a fiber on this link for a certain time 
period T. For a given set of communication requests with duration at most T, 
we want to satisfy all requests minimizing the total cost of active fibers in the 
network. The number of fibers needed between two adjacent nodes of the network 
is the maximum number of connections that use the same wavelength and pass 
through the link between the two nodes. An example with two different solutions 
is shown in Figure 1 (left and right). 

Fig. 1. An instance of Fiber Cast Minimizatian Path Multi-Colaring with 2 colors per 
fiber, a solution with cost 11 (left) and a solution with cost 13 (right) . 

We formalize this problern as the MINIMUM FIBER CasT ROUTING AND 
PATH MULTI-COLORING (MINFIBCOST-RPMC) problem: Given an undirected 
graph G = (V, E), a cost function c : E --+ IN, a set of requests R and w 
wavelengths (colors), assign paths to requests and colors to paths, so that the 
objective function LeEE c( e) · J.L( e) is minimized, where J.L( e) is the maximum 
multiplicity of any color on edge e . 

In the second part of this paper we study the MINIMUM WAVELENGTHS 
ROUTING AND PATH MULTI-COLORING (MINWAV-RPMC) problem. This 
problern describes the situation where the number of available fibers is given 
and the goal is to minimize the number of wavelengths needed to satisfy all 
requests. Two examples are shown in Figure 2. 

Formally, the problern MINWAv-RPMC is defined as follows: Given a graph 
G = (V, E), a function J.L : E --+IN and a set of requests R, find a valid routing 
and path multicolaring such that the number of colors used is minimized. 
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Fig. 2. Two instances of Minimum Wavelengths Path Multi-Coloring, the minimum 
number of colors needed is w = 2 for the left one and the minimum number of colors 
needed is w = 3 for the right one. 

We also consider, for both problems, the variation in which the routing 
is pre-determined, i.e. a set of paths is given instead of a set of requests. 
The variations are called MINIMUM FIBER CosT PATH MULTI-COLORING 
(MINFIBCOST-PMC) and MINIMUM WAVELENGTHS PATH MULTI-COLORING 
(MINWAv-PMC) respectively. Since any optimal routing must use simple paths 
these version make sense only in topologies where it is possible to route requests 
in more than one ways, e.g. ring, mesh, etc. In acyclic topologies there is a 
unique path between any two nodes, hence the problems MINFIBCOST-RPMC 
and MINFIBCOST-PMC coincide (as well as MINWAv-RPMC and MINWAV­
PMC). 

MINFIBCOST-RPMC in rings is NP-hard, since the problern with uniform 
costs, which is a special case, is NP-hard [9]; the same holds for MINFIBCOST­
PMC in rings. MINWAv-RPMC in rings, stars and spiders is also NP-hard 
(since it is a generalization of the classical routing and path colaring problern 
which is NP-hard for such topologies [11]); this is also true for MINWAv-PMC 
in rings as well as for the directed version of both problems in rings. 

We distinguish between two types of models: undirected and directed. The 
undirected model corresponds to the case where the communication for every 
request is two-way and signals in both directions must use the same set of links 
and the same wavelength (full-duplex communication). One-way communication 
can be modeled by using directed requests and paths; the corresponding problern 
variations have the same names, preceded by the word "DIRECTED". Note that 
in the directed case, color collisions may occur only between paths that pass 
through the same edge in the same direction. 

In this paper we present constant-ratio approximation or exact algorithms 
for MINFIBCOST-RPMC in rings with or without pre-routed requests and for 
MINWAv-RPMC in chains, rings, stars and spiders. We also present appropriate 
adaptation of our algorithms for the directed versions of the problems. All the 
proposed algorithms run in polynomial time. A comprehensive table of the results 
is given in section 4. 

1.1 Related Work 

The problern of minimizing the number of active fibers in multifiber networks 
with uniform fiber costs was introduced in [9], where polynomial-time solvabil­
ity was shown for chains and 2-approximation algorithms were given for the 
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undirected problern in ring and star networks. Their results for chains and stars 
extend to MINFIBCOST-RPMC. Moreover an exact algorithm for DIRECTED 
MINFIBCOST-RPMC in chains and stars is implicit . In [13] they also study 
the undirected problern with uniform fiber costs for chains and give a new 
polynomial-time algorithm for this class of graphs; they also define other varia­
tions and show them NP-hard. A 2-approximation algorithm for MINFIBCOST­
RPMC in spiders is given in [8]; this algorithm yields an exact algorithm for the 
directed case. 

The problern MINWAv-RPMC was introduced in [6,7] for the special case 
where J.L(e) is the same for all edges of the network; the more general definition 
that we use here was first given in [5]. 

Multifiber tree networks have been studied only recently. For the problern 
MINFIBCOST-RPMC with uniform fiber costs two approximation algorithms, 
with ratios 1 + 4jEjlog jVjjOPT and 4, are presented in [5]; these results can 
be immediately extended to the case of non-uniform fiber costs. For MINWAV­
RPMC a 4-approximation algorithm is presented in [1]. 

A lot of work has been done on minimization and maximization routing and 
path coloring problems for single-fiber networks (see e.g. [11], [10] and references 
therein). 

Other related work includes traffi.c grooming. In this approach we can com­
bine low speed traffi.c components onto high speed channels in order to minimize 
the network cost. Traffi.c grooming for path, star and tree networks is studied 
in [4]; in [2] they consider the problern for ring networks. 

1.2 Technical Preliminaries 

A chain is a graph that consists of a single path, while a ring is a graph that 
consists of a single cycle. A star is a tree with one internal node. A spider is a 
star of chains, i.e. a star whose edges have been replaced by chains (also called 
legs). 

Given a network G = (V, E) and a set of requests R we denote by n the 
number of nodes, and by m the number of requests. A routing of the requests 
R is a set of paths P, each connecting the endpoints of a request. For a set of 
paths Pandan edge e we denote by L(e, P) the load of edge e w.r.t . P , i.e. the 
number of paths in P that pass t hrough e. 

Let a ring G consist of n nodes labeled clockwise from v0 to Vn- l . We denote 
the path from u to v in clockwise direction by (u, v) and we say that it begins at 
u and it ends at v. 

An algorithm A for a minimization problern II is a p-approximation algorithm 
if for every instance I of II , A runs in time polynomial in III and delivers a 
solut ion with value SOL :S p·OPT, where OPT denotes the value of an optimal 
solut ion for I. 
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2 Minimizing Fiber Cost 

In this section we deal with the problern of minimizing the cost of active fibers 
needed in order to satisfy all requests with a given number of wavelengths. We 
present approximation algorithms for ring networks. Recall that in rings we 
may consider two versions, depending on whether the routing is pre-determined 
(MINFIBCOST-PMC) or not (MINFIBCOST-RPMC). 

Our algorithms make use of an algorithm for MINFIBCOST-RPMC in chains 
that gives optimal solutions in polynomial time. Such an algorithm was described 
in [9] for uniform fiber costs. That algorithm works for non-uniform costs too, 
as observed in [8]. 

Once a routing Pis determined (or unique, or given in advance), each edge 
contributes at least cost I L(ei, P)/w l · c(ei), because at least IL(ei, P)/w l fiber 
units are needed for this edge. Summarizing over all edges in E we get 0 PT 2: 
:Z:::::eEEIL(ei, P)/wl· c(ei)· Note also that for the directed version the sum must 
be taken over both directions. 

2.1 MinFibCost-PMC in Rings (Pre-routed Requests) 

Without loss of generality we assume that all edges of G are used by some path 
( otherwise we would eliminate an unused edge and obtain a chain instance, which 
can be solved optimally using the algorithm for chains). Therefore, at least one 
fiber per edge is needed, thus the total cost of an optimal solution is at least 
OPT 2: C = :Z:::::eEE c(e). 

We denote by Pv the set of paths in P that contain v as an internal node. Let 
P~ be the set of paths that results from splitting paths in Pv at node v. Paths in 
P~ are called v-clockwise ifthey contain edge (v, u), where u is the neighbor of v 
in clockwise direction; the remaining paths in P~ are called v-counterclockwise. 
Consider the Iongest v-clockwise path and the Iongest v-counterclockwise path 
in P~; let p(v) be the one of the two using edges with minimum sum of costs. 
We define the tare t( v) of v to be the sum of edge-costs of p( v) and the span 
s(v) of v tobe the length of p(v) (the number of its edges). If Pv is empty, then 
t(v) = 0 and s(v) = 0. Let v0 be the node with minimum tare; letalso t = t(v0 ) 

and s = s(v0 ). W.l.o.g. we may assume that p(v0 ) is v0-clockwise (if not we may 
consider a 'mirror' instance instead). Our algorithm for MINFIBCOST-PMC in 
rings first selects node vo as above. The complete algorithm follows. 

Algorithm for MINFIBCOST-PMC in rings 
Input: I= (G, c, P, w); G =(V, E) is a ring network, c is the edge-cost function , 

P is a set of paths and w is the number of colors. 
Output: A multicolaring of paths in P . 
1. Find node v0 with minimum tare and reindex nodes accordingly. 
2. Transform the given ring instance to a chain instance ( G', c, P', w) as follows: 

a . The chain graph G' consists of n + s + 1 nodes, namely vb, ... , v~+s · 

Set c(e;) = c(e;+n) = c(e;). 
b. Foreach path (v;,vj) E P, add a path toP': 

if i < j add (vi,vj) toP', otherwise add (v~,vf+n) toP' . 
3. Ca II Algorithm for MINFIBCOST-PMC in chains (9] an instance (G', c, P', w) . 
4. Color each path in P with the color of the corresponding path in P'. 
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Theorem 1. The algorithm for MINFIBCOST-PMC in rings computes a mul­
ticolaring with cost at most OPT + t. 

Proof. Let us abbreviate edges in G by ei = (vi, v(i+1) modn), (0 Si S n-1), and 
edges in G' by e~ = (v~, v~+l), (0 Si S n+s -1). lt is easy to see that if a path in 
P uses edge ei and 0 S i S s - 1, then the corresponding path of P' uses either 
edge e~ or edge e~+n· Thus, for 0 Si S s -1, the load of ei in Gis split into two 
parts in G': L(ei, P) = L(e~, P') + L(e~+n' P'). Notice that L(ei, P) = L(e~, P') 
for s S i S n - 1. Due to the optimality of the chain algorithm, the number of 
repetitions of any color on an edge e~ is at most M( eD = I L( e~, P') / w l 

Hence the cost of the solution computed by our algorithm is: 

n+s-1 n+s-1 L( 1 P') 
SOLS L M(e~) · c(e~) = L I e~ l · c(e~) 

i=O i=O 

= I:uL(e~P')l + IL(e~:' P')l). c(e~) + I:rL(e~P') l · c(eD 
i=O i=s 

D 

The approximation ratio is at most 1 + O~T which is smaller than 2 and gets 
close to 1 for instances with heavy communication traffic. 

The computation of each tare and span and the transformation can be per­
formed in O(m + n) time. The complexity of algorithm for MINFIBCOST-PMC 
in rings is determined by that of the chain algorithm, which is 0( ( m + n · 
w) logw) [9]. 

2.2 MinFibCost-RPMC in Rings 

We now propose an algorithm for MINFIBCOST-RPMC in rings, i.e. the routing 
is also sought. Our algorithm uses lightest-path routing: each request is routed 
along the path with minimum cost (sum of edge costs along path p) between the 
two alternative complementary paths. 

A/gorithm for MINFIBCosT-RPMC in rings 
Input: I = ( G, c, n, w); G(V, E) is a ring network, c is the cost function, 

n is a set of requests and w is the number of colors. 
Output: A routing P for n and a multicoloring of paths in P. 
1. Perform a lightest-path routing obtaining a set of paths P. 

Ca II Algorithm MINFIBCOST-PMC in rings (pre-routed requests) on ( G, c, P , w) 
to multicolor the set of paths P . 

2. Foreach edge e E E: route all requests in n avoiding e obtaining set of paths Pe. 
Ca II Algorithm for MINFIBCOST-PMC in chains on instance (G, c, Pe, w). 

3. Choose the best solution among the one found in step 1 and those found in step 2. 
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The selection of lightest paths minimizes the quantity 2:::~:01 L(ei) ·c(ei), and 

decreases the upper bound forttot::; C/2, where C = I:-;':01 c(ei)· Abound 
for the cost of the solution computed by this algorithm is given by the following 
theorem: 

Theorem 2. The algorithmfor MINFIBCOST-RPMC in rings computes a mul­
ticolaring with cost at most OPT + C + t. 

Proof We prove the claim for the solution returned by step 1 of the algorithm 
(in fact step 2 is only needed for the case in which an optimal solution completely 
avoids an edge). 

Let P be the set of paths selected by our algorithm for MINFIBCOST-RPMC 
in rings and P* be the set of paths in an optimal solution. We denote by ei the 
edge between nodes i and ( i + 1) mod n, 0 ::; i ::; n - 1. Note that 0 PT > 
r L( ei' P*) I w l . c( ei). Since p consists of lightest paths it holds: 

n-1 n-1 

(1) 
i=O i=O 

The following properties of ceilings hold for all n E JN+, ai E IR, 0 ::; i < n: 

n-1 n-1 

I) ai 1 :::: r:L ai 1 + n- 1 and r ai 1 . n- n + 1 :::: r ai . n 1 (2) 
i=O i=O 

From (1) and (2) we get: 

~(fL(ei, P2 · c(ei)l)::; ~~L(ei, P~ · c(ei)l + n =? 

i=O i=O 

~(fL(e~ P)l · c(ei))- C::; OPT 
i=O 

By an inequality used in the proof of Theorem 1 and the above inequality, the 
cost of the approximate solution returned by the algorithm is at most 

0 

If OPT :2: C then the algorithm for MINFIBCOST-RPMC in rings achieves 
approximation ratio 5/2, using the fact that t::; C /2. 

If OPT < C, then it must be the case that paths in the optimal solution do 
not pass through some edge, say e. In step 2, the algorithm considers, among oth­
ers, the (unique) routing in which all requests avoid e. Algorithm MINFIBCOST­
RPMC in rings then uses the Algorithm for MINFIBCOST-RPMC in chains, 
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which returns an optimal solution for the corresponding chain instance. Hence, 
the solution returned is optimal. 

As about the complexity, the most costly step is step 2, which employs n 
calls to algorithm for MINFIBCOST-PMC in chains. The overall cost is thus 
O(n(m + nw) logw) . 

2.3 Directed Fiber Cost Minimization 

In the directed version the requests are directed, while the underlying graph is 
considered bidirected. We assume that the cost of an edge is the same in both 
directions. 

- For DIRECTED MINFIBCOST-PMC in rings (pre-routed requests) we obtain 
the same approximation as for the undirected case, because we can split the 
instance into one instance of clockwise direction and one of counterclockwise 
direction and solve the two instances separately as undirected ones. 

- For DIRECTED MINFIBCOST-RPMC in rings we obtain a 4-approximation 
algorithm by first performing lightest path routing and then applying the 
above algorithm for the problern with pre-routed requests. 

3 Minimizing the Number of Wavelengths 

In this section we present exact and approximate algorithms for the wavelength 
minimization problern in chains, rings, stars and spiders. In this problem, the 
multiplicity of fibers on each edge is given and the goal is to find a valid routing 
and path multicolaring using a minimum number of colors. This number is de­
noted by Wopt· Note that, once a routing Pis determined (or unique, or given in 

advance), Wopt :2: Wlb = maxeEElL~(~)l In the directed version this maximum 
is taken over all edges in both directions. 

We can solve MINWAv-PMC in chains using exactly w1b colors, which 
is optimal. This can be clone as follows: Call algorithm MINFIBCOST-PMC 
in chains for the same requests, unit edge cost everywhere, and w1b avail­
able colors. As shown in [9] this call returns a multicolaring that uses exactly 
p,'(e) = [L(e, P) / wlbl ::; p,(e) fibers on each edge e. Hence, this isavalid path 
multicoloring. 

3.1 MinWav-PMC in Rings (Pre-routed Requests) 

For solving MINWAv-PMC in rings we observe that every instance of the prob­
lern falls in exactly one of the following three categories: 

1. Ve E E: p,(e) :2: 2. 
2. There exists at least one edge ei E E with p,( ei) = 1 and no edges of 

multiplicity 0 exist. 
3. There exists at least one edge ei E E with p,(ei) = 0. 
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Instauces that fall in category 3 are actually chain instances and can be solved 
optimally. An algorithm that copes with instances in categories 1 and 2 is pre­
sented below. 

A/gorithm for MINWAV-PMC in rings 
Input: I= ( G, P, J.L); G(V, E) is a ring network, P is a set of paths 

and J.L : E -t IN is the edge multiplicity function 
Output: A valid multicolaring of paths in P. 
if\le E E : J.L(e) 2:2 then (*category 1*) 

S r L(e,P) l et w = maxeEE 1 J-L(e)-l 

Call Algorithm MINFmCosT-PMC in rings on (G, 1, P, w) 
eise (*category 2*) 

Choose an edge e; with J.L(e;) = 1. Set of paths P;: paths in P passing through e;. 
Set P' = P \ P;. Remove edge e; from G, Iet this graph be G'. 
Call Algorithm for MINWAv-PMC in chains on instance (G', P', J.L). 
Color paths in P; using IPd new colors. 

Theorem 3. Algorithm MINWAv-PMC in rings is a 2-approximation algo­
rithm. 

Proof. Instance in Category 1: Ve E E : J-L(e);::: 2 ==> J-L(e) -1 =f 0 and J-L(e) -1 ;::: 
fk(e) C 'd d *"' h ' h rL(e*,P)l _ rL(e,P)l 
- 2-. ons1 er an e ge e 10r w lC 1 fk(e•) - l - maxeEE 1 fk(e)-l . 

The number of colors ( w) used by the algorithm is: 

rL(e,P)l rL(e*,P)l f2·L(e*,P)l fL(e*,P)l 
w = maxeEE 1 = 1 < < 2 · 

J-L(e) - 1 J-L(e*)- 1 - J-L(e*) ,..- J-L(e*) 
L(e, P) 

:'S: 2·maxeEEf J-L(e) l :<S:2 ·Wapt 

Instance in Category 2: The algorithm uses /Pi/ colors for the paths passing 
through ei. It is /Pi/ ::; Wapt, because any optimal solution would need at least 
/Pi/ colors for paths passing through edge ei. 
The algorithm multicolors the remaining paths in P' (P' = P \Pi)· All paths 
in P' avoid edge ei, thus we can remove ei from G and get G', which is a chain 
network. Algorithm MINWAv-PMC in chains returns a solution using a number 

of colors w = maxeEEfL~(~')l :'S: Wapt· Hence, we use w +/Pi/ :'S: 2 · Wapt colors 
~~t~. D 

3.2 Min Wav-RPMC in Rings 

We now turn to the problern in rings where the routing is also sought. Our 
algorithm is based on the idea of routing the requests in such a way that the 
edge with minimum number of available fibers is completely avoided . 

Algorithm for MINWAv-RPMC in rings 
Input: I= (G, R,J.L); G(V,E) isaring network, R is a set of requests 

and J.L: E -t IN is the edge multiplicity function. 
Output: A routing P for Rand a valid multicolaring of paths in P. 
1. Pick an edge e0 with minimum fiber multiplicity J.L(e0). 

2. Route all requests in R so that the corresponding paths avoid edge e0 . 

Let P denote the resulting set of paths. Remove edge e0 from G, call the new graph G'. 
3. Ca II Algorithm for MINWAv-PMC in chains on instance (G' , P, J.L). 
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Theorem 4. Algorithm MINWAv-RPMC in rings is a 2-approximation algo­
rithm. 

Proof. Let Popt denote the set of paths in an optimal solution, that uses Wopt 
colors. Let also Wsol denote the number of colors used by our algorithm for 
MINWAv-RPMC in rings. 

First, we observe that Popt can be seen as a transformation of P in which 
some paths have been replaced by their complementary paths (that necessarily 
use edge e0 ). Therefore, for any edge e ::/= e0 it holds: 

L(e, P)::; L(e, Popt) + L(eo, Popt) 

Dividing by p,(e) and taking into account that p,(e) :2: p,(e0 ) we obtain: 

Since the above holds for any edge e, it also holds for the edge e* with 
maximum load/multiplicity ratio w.r.t. routing P, which is equal to the number 
of colors used by Algorithm MINWAv-PMC in chains when applied to (G', P, p,). 
On the other band, each of the two quantities on the right side of the above 
inequality is a lower bound for the number of colors used by the optimal solution. 
Altogether: 

Wsol = maxfL(e,P)l = IL(e*,P)l < rL(e*,Popt)l + rL(eo ,Popt)l 
eEE p,(e) p,(e*) - p,(e*) p,(eo) 

< 2 . 1L(e, Popt)l < 2 . 
_ max 1 ( ) _ Wopt 

eEE p, e 
0 

3.3 Min Wav-PMC in Stars and Spiders 

We now propose a 3/2-approximation algorithm for MINWAV-PMC in stars, 
which is based on a transformation of the problern to edge colaring of a multi­
graph H. For the sake of brevity, we only point out few details: each node of 
H corresponds to a group of at most Wtb paths that use the same edge in the 
original graph G. There is an edge in H for each path p in P, connecting the 
two groups that contain p. Multigraph H can be edge-colored using at most 
3/2 · W!b ::; 3/2 · Wopt colors [12]; it is not hard to see that assigning to each 
path p in P the color of the corresponding edge in H, we obtain a valid path 
multicoloring. The above idea can be extended to spiders (generalized stars), at 
a cost of at most W!b additional colors (for paths that do not pass through the 
center), giving a valid path multicolaring with at most 5/2 · W!b ::; 5/ 2 · Wopt 
colors. Hence the following is true: 

Theorem 5. MINWAv-PMC can be approximated within 3/2 in stars and 5/2 
in spiders. 
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3.4 Directed Wavelength Minimization 

For the directed version of MINWAv-PMC and MINWAv-RPMC we assume 
that fiber multiplicity is symmetric, i.e. the number of fibers in two opposite 
edges (vi,v1) and (v1,vi) is the same. We briefly explain how to adapt the algo­
rithm ofthis section to obtain algorithms for the version ofDIRECTED MINWAV­
RPMC and DIRECTED MINWAv-PMC. 

- For chain networks we can use the minimum possible number of wavelengths, 
by computing an optimal solution for each direction independently; our so­
lution is the maximum of the two solutions. This gives exactly the above 
lower bound. 

- For DIRECTED MINWAv-PMC in rings (pre-routed requests) we can easily 
obtain the same approximation ratio (2 in the worst case) as for the undi­
rected case (subsection 3.1); we can split the instance into one of clockwise 
direction and one of counterclockwise direction and solve them independently 
as undirected ones. Our solution is the maximum of the two solutions. 

- For DIRECTED MINWAv-RPMC in rings we can obtain an algorit hm by 
modifying Algorithm MINWAV-RPMC in rings (subsection 3.2) . This gives 
an approximation algorithm with ratio 2. In t he analysis of the algorithm 
we use the fact that for the clockwise direction and for each edge e -/=- eo : 
L(e, P+) s; L(e, Pf-) + L(e0 , P~). A similar inequality holds for L(e, P_). 
We use P + (P _) to denote the set of paths of our solution that are oriented 
clockwise (counterclockwise respectively); Pf- (P~ ) are defined analogously. 

- For DIRECTED MrNWAV-RPMC in stars our algorithm gives an optimal 
solution, due to the fact that the multigraph H is now bipartite and it is 
known that it can be edge-colored with exactly Wtb (degree of H) colors (see 
e.g. [3]). Similarly we obtain a 2-approximation algorithm for DIRECTED 
MINWAv-RPMC in spiders. 

4 Summary of Results- Conclusions 

We studied two up-to-date optimization problems: fiber cost minimization and 
wavelength minimization in multifiber WDM networks. Both problems deal with 
limited resources: in the former the number of wavelengths is given and the goal 
is to minimize the cost of fiber usage; in the latter it is the number of fibers that 
is given and we aim at minimizing the number of necessary wavelengths. We 
remark that for MINWAv-RPMC we follow a very recently introduced model [5] 
under which t he number of fibers may differ from link to link; previous models 
were based on the rather restrictive assumpt ion that the number of fibers is 
uniform [6,7]. We follow the same assumption for MINFIBCOST-RPMC. 

We summarize our algorithms in the following table, where the approximation 
ratio of each of them is shown ( algorithms giving optimal solutions are referred to 
as "exact" and the term "pre-rings" st ands for "rings with pre-routed requests"). 
Note that our new results are shown in boldface; we also mention algorithms from 
[9] (MINF IBCOST-RPMC in chains and st ars) and [8] (MINFIBCosT-RPMC 
in spiders) in order to obtain a complete picture. 
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MrNFIBCosT-RPMC MINWAv-RPMC 
Network Undirected Directed Undirected Directed 
chains exact exact exact exact 

pre-rings 2-approx. 2-approx. 2-approx. 2-approx. 
rings 5/2-approx. 4-approx. 2-approx. 2-approx. 
stars 2-approx. exact 3 /2-approx. exact 

spiders 2-approx. exact 5/2-approx. 2-approx. 

The proposed algorithms are easy to implement and we have proven for all 
of them a guaranteed approximation ratio. We anticipate that they will prove 
even better in practice. In particular, it can be shown that for heavily loaded 
instances the approximation ratio gets close to 1. This is due to the fact that the 
cost of our solutions differ from the cost of an optimal solution by an additive 
term only, which is usually very small. 
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