Defining Synthesizable OpenMP Directives and Clauses

P. Dziurzanski and V. Beletskyy

Faculty of Computer Science and Information Systems,
Technical University of Szczecin, Zolnierska 49, 71-210 Szczecin, POLAND
{pdziurzanski,vbeletskyy}@ui.ps.pl

Abstract. Possibilities of synthesizing parallel C/C++ codes into hardware are
presented provided that the code parallelism is represented by means of the di-
rectives of OpenMP, a de-facto standard that specifies portable implementation of
shared memory parallel programs. The limitations of the hardware realizations of
OpenMP directives are described and implementation details are stressed.

1 Introduction

Sources in different hardware description languages (HDLs) are used as input to behav-
ioral synthesis. The most commonly used languages are VHDL and Verilog, but since
designers often write system level models using programming languages, using software
languages are of mounting importance. Applying software languages makes easier, per-
forming SW/HW cosynthesis, which accelerates the design process and improves the
flexibility of the software/hardware migration. Moreover, the system performance esti-
mation and verification of the functional correctness is easier and software languages
offer fast simulation and a sufficient amount of legacy code and libraries which facilitate
the task of system modelling.

To implement parts of the design modelled in C/C++ in hardware using synthesis
tools, designers must present these parts into a synthesizable subset of HDL, which then
is synthesized into a logic netlist.

C/C++ defines sequential processes (procedures), whereas HDLs processes are run
in parallel. Consequently, in order to synthesize hardware of high performance, there is
the need of establishing groups of C/C++ functions which can be executed in parallel.
To achieve the expected efficiency, each C/C++ function has to be treated as a separate
process. This allows all functions to be executed concurrently taking into account that
there exist no data dependences between functions. Otherwise, data synchronization
techniques have to be utilized. Blocking actions before accessing to a shared variable
can be implemented as a wait statement, which can be left when a synchronization signal
from other module is set.

In order to control the calculations executed by the entities synthesized from C/C++
functions, distributed or centralized control schemes can be applied. They require that
each entity includes both functional logic and a local controller. In the distributed scheme,
this controller is connected with other blocks in a form of additional input and output
ports. The input port determines whether all the preceding entities in a control flow have
finished their tasks. After execution, the controller informs all the following entities

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 398-407, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



Defining Synthesizable OpenMP Directives and Clauses 399

in the control flow about finishing its task. In the centralized scheme, one controller
determines which entities are executed at any given time.

More details on communication schemes are given in [7].

In this paper, we consider the following two-stage approach: (i) parallelizing an
C/C++ code and presenting parallelism by means of OpenMP directives, (ii) transforming
the C/C++ code with OpenMP pragmas into an HDL code.

We focus on the second stage, i.e., on transforming a parallelized C/C++ code into
an HDL code and assume that an input code includes OpenMP directives representing
C/C++ code parallelism.

2 Related Works

Recently, there has been a lot of work in the use of the C programming language to gen-
erate hardware implementations. However, as the C and C++ languages do not allow us
to describe parallelism directly, the aspect of treating concurrency is of great importance
in high-level synthesis approaches.

For example, in Transmogrifier C compiler [3], there exists only one thread of control.
In order to compile multiple threads, one have to compile each thread separately into a
netlist and then use the I/O ports for communication.

The PACT HDL compiler does not perform data dependency analysis and thus does
not support function replication and parallel execution [4].

Despite the systems, described in [5,6], perform their own analysis of data depen-
dency, they do not allow the designer to indicate parallel regions. Consequently, the
information about parallelism known before compilation is ignored.

To our knowledge, there is no publications which describe hardware implementations
of C/C++ code with standard OpenMP directives permitting us to present algorithm
parallelism.

3 Principles of OpenMP

OpenMP [1] is a de-facto standard that specifies portable implementation of shared mem-
ory parallel programs. It includes a set of compiler directives, runtime library functions
supporting shared memory parallelism in the C/C++ and Fortran languages.

OpenMP is based on the fork-and-join execution model in which a program is ini-
tialized as a single process (master thread). This thread is executed sequentially until the
first parallel construct is encountered. Then, the master thread creates a team of threads
that executes the statements concurrently. There is an implicit synchronization at the end
of the parallel region, after which only the main thread continues its execution.

4 Influence of OpenMP Pragmas on Behavioral Synthesis

Similarly to C/C++ clauses, directives from the OpenMP standard [1] can be split into
synthesizable and nonsynthesizable subsets. Certain OpenMP constructs have no equiv-
alence in hardware realizations, whereas others can lead to hardware utilizing the enor-
mous amount of resources.



400 P. Dziurzanski and V. Beletskyy

if omp_get_dynamic() is equal to false {
if num_thread clause is present
return the parameter of the clause
else if omp_set_num_threads function has been called
return omp_get_num_threads()
else if OMP_NUM_THREADS is defined
return OMP_NUM_THREADS}
return omp_get_max_threads()

Fig. 1. Algorithm for determining the number of instances, NoOflInstances

In order to follow our results, the reader should be familiar with OpenMP attributes
and environment variables (this knowledge is comprised in [1].)

4.1 Parallel Constructs

A parallel region is a region which can be executed by multiple threads concurrently.

The thread number, which corresponds to the number of multiple instances of ele-
ments in hardware implementations, can be determined statically or dynamically.

In the case of the statical thread number, to determine the number of requested
threads, the num_threads clause, or the omp_set_num_threads OpenMP run-time func-
tion, or the OMP_NUM_THREADS environment variable can be used. In order to
achieve an expected efficiency in hardware realizations, multiple threads should be im-
plemented as multiple instances of the hardware realizing the same functionality. Conse-
quently, it is requested that the number of threads is evaluated to a constant value during
synthesis.

If a dynamic adjustment of the thread number is chosen, the number of threads is
set to the maximum possible value, returned by the omp_get_max_threads OpenMP
run-time function (described in section 4.5), unless the synthesizer determines that the
maximum number of iterations is less than this value or a synthesized circuit does not
fit into the destined chip.

The algorithm for determining the number of instances of parallel constructs is given
in Fig. 1.

Although synthesis from nested parallel regions can lead to hardware with a very
large area, an implementation of nested parallelism may improve the performance greatly
[2]. Thus, nested parallelism should not be prohibited in hardware realizations.

The parallel clause can be modified with the following clauses if, private, firstpri-
vate, default, shared, copyin, reduction, and num_threads. The majority of them are
considered in corresponding sections below. In this subsection, only the clauses that are
not used with work-sharing constructs are described.

In OpenMP, parallel execution can be conditional when an if clause is present. This
clause usually defines a breaking condition. If this condition is not satisfied, a data
dependency appears and the section cannot be run concurrently. If the condition can be
evaluated during synthesis, then a synthesizer creates either single or multiple instances
of hardware realizing the corresponding section body, according to the value of the
condition. Otherwise, the decision on sequential or parallel execution is postponed up
to runtime by the transformation which moves the condition from an OpenMP directive



Defining Synthesizable OpenMP Directives and Clauses 401

if(condition) {

#pragma omp parallel #pragma omp parallel
if(condition) // parallel section body}
// parallel section body else
// sequential section body
(@) (b)

Fig. 2. Replacing the OpenMP if clause (a) with the C code condition (b)

if if(condition) clause is present in an OpenMP parallel directive {
if the condition is evaluated to the zero value {
remove the corresponding OpenMP parallel directive}
else if the condition is evaluated to a nonzero value {
remove the if(condition) clause from the corresponding OpenMP parallel directive }
else if the condition cannot be evaluated during synthesis {
move the condition from an OpenMP directive to a regular C/C++ code
provide parallel and serial versions of the parallel section body (Fig. 2) } }

Fig. 3. Algorithm for the transformation of a conditional parallel construct

to a regular C/C++ code, as shown in Fig. 2. The algorithm for the conditional parallel
construct transformation is given in Fig. 3.

The data sharing of variables is specified at the beginning of a parallel block using
the shared or private clauses.

The shared clause indicates that the following variables which this clause defines
are shared by each thread in a team. In the hardware realization, this may cause problems
with global routing, as a number of hardware elements are to be connected to registers
keeping one variable. On the other hand, this can decrease the number of cells in the
hardware.

The copyin clause provides a mechanism for assigning the same value to multiple
instances of one variable, each in one thread executing a parallel region. Each instance
of the private variables are to be connected (by routing channels) with the hardware
implementing the value of the variable instance from the instance which corresponds to
the main thread.

The default clause informs whether the default data-sharing attributes of variables
are shared. It is treated as a preprocessor command, which determines either shared or
private variables and hence can be used in synthesis.

4.2 Work-Sharing Construct Clauses

OpenMP defines three work-sharing directives: for, sections, and single.

The for directive indicates that the iterations of the associated loop should be executed
in parallel. In order to execute the loop iterations in parallel, the number of iterations
has to be evaluated at the synthesis stage. The algorithm for the synthesizing of the for
loops is presented in Fig. 4.

If the number of the loop iterations is not greater than the value NumberO f-
Instances, returned by the NoOflnstances algorithm (Fig. 1), then all the loop iter-
ations are executed in parallel. Otherwise, the loop either can be unrolled so as the



402 P. Dziurzanski and V. Beletskyy

if a number of iterations can be evaluated during synthesis {
NumberOfinstances = return value of the NoOfInstances algorithm
if NumberOfinstances is greater than the number of iterations
NumberOfinstances=number of iterations;
if private clause is present
create one instance of each private variable for each occurrence
of parallel realization
if firstprivate clause is present
create one instance of each private variable for each occurrence
of parallel realization which initialize their values
with the value of the variable original object
if master and synchronization directive is present
create appropriate synchronization links between hardware
modules (algorithm MasterSynchr)
Compute IterPerlnst, the number of iterations which should be executed
by one instance by rounding up the number of iteration
divided by NumberOfinstances and Synthesize the loop body
with NumberOfinstances instances each executing IterPerlInst iterations;
if ordered clause is present
create synchronization links between hardware modules
to execute bodies in the appropriate order
if lastprivate clause is present
create hardware elements for coping the value of private variable in the last
instance to the value of the variable original object
if nowait clause is not present
create hardware elements for waiting on finishing execution
of each instance }
else synthesize the loop body with a single instance;

Fig. 4. Algorithm for synthesis of the for clause, MasterSynchr

number of the loop iterations is equal to NumberO f Instances or the loop can be split
into NumberO f Instances independent loops.

According to the OpenMP specification, the execution of each iteration must not be
terminated by a break statement and the value of the loop control expressions must be
the same for all iterations.

With the for directive, the following clauses can be used:

— private indicates that the variables which this clause defines are private to each
thread in a team. In the hardware realization, it usually results in multiple instances
of hardware holding the variable.

— firstprivate (lastprivate) provides a superset of the private clause functionality,
which causes that the initial (final) value of the new private variables is copied from
(to) the value of the object existing prior to the section. Their hardware synthesis
conditions are similar to those of the private clause.

- reduction which calculates one scalar value by performing a given operation on
all elements of the vector. It is synthesizeable as the loop with a reduction variable
can be split into NumberO fV ariables independent loops and an additional loop
forming the final value of the reduction variable.



Defining Synthesizable OpenMP Directives and Clauses 403

if private clause is present
create one instance of each private variable for each section
if firstprivate clause is present
create one instance of each private variable for each section
of parallel realization which initialize their values
with the value of the variable original object
Synthesize each section as a separate entity;
if lastprivate clause is present
create hardware elements for coping the value of private variable in the last
instance to the value of the variable original object
if reduction clause is present
create hardware elements for performing the reduction operation and copy its result
to the value of the variable original object
if nowait clause is not present
create hardware elements for waiting on finishing execution
of each instance

Fig. 5. Algorithm for synthesis of the sections clause

if private clause is present
create an instance of each private variable for the single region
if firstprivate clause is present
create an instance of each private variable for the single region
which initialize their values with the value of the variable original object
Synthesize a body as a single instance;
if nowait clause is not present
create hardware elements for waiting on finishing execution of each occurence
of parallel realization
if copyprivate clause is present
copy the value of the private variables to corresponding private
variables of other instances of the parallel region

Fig. 6. Algorithm for synthesis of the single clause

— ordered which causes the following region that it defines to be executed in the order
in which iterations are executed in a sequential loop. It is considered in Section 4.4.

— schedule specifies dividing threads into teams. According to the OpenMP spec-
ification, the correctness of a program must not depend on scheduling, so it can
be ignored in hardware realizations because it defines schedules for executing the
loop iterations on a numbers of sequential processors and is not useful for hardware
synthesis.

— nowait which causes that there is no barrier at the end of the parallel section. It is
synthesizable by eliminating the need of adding the hardware for synchronization
at the end of the parallel region.

The sections directive indicates that the corresponding region includes separate sec-
tions (declared with the section pragma) which can be executed in parallel. In hardware
realization, for each section, separate instances should be synthesized. With this direc-
tive, the clauses private, firstprivate, lastprivate, reduction, and nowait can be used



404 P. Dziurzanski and V. Beletskyy

with the same limitations as in the case of the for directive. The algorithm of the sections
synthesis is presented in Fig. 5.

The single directive indicates that the following structured block should be executed
by only one thread in the team. Consequently, it is realized by the single instantiation
of hardware realizing the functionality of the block. The clauses private, firstprivate,
and nowait can be used with the same limitations as in the case of the for directive.
The copyprivate clause provides a mechanism for broadcasting values between threads
of one team with their private variables. The single directive can be synthesized by
implementing the hardware realizing the corresponding structured block in only one
(arbitrary) instance of the hardware realizing the corresponding parallel region and syn-
chronizing its execution with finishing the execution of functionality given prior to the
single directive.

4.3 Data Environment Directives

In OpenMP, there are the following clauses for controlling the data environment in
parallel regions

— the threadprivate directive for making file-scope, namespace-scope, or static-block
scope enumerated variables local to a thread, so that each thread obtains its own copy
of the common block. In the hardware realization, the common region is synthesized
in multiple units.

— the private, firstprivate, lastprivate, shared, default, reduction, copyin, and
copyprivate; their synthesis is described in the previous section.

4.4 Master and Synchronization Directives

Within the parallel section, the master and synchronization directives can be used. They
change the standard execution flow and are as below:

— master specifies a block that is executed by the master thread of the team. In hard-
ware, the functionality of this block is implemented in the only instance of the
hardware, which corresponds to the master thread. Its implementation resembles
the single construct one, synchronization is required only in the instance of the
hardware which corresponds to the master thread.

— critical specifies a block that can be executed only by one process at a time. It is
synthesizable by means of the hardware which allows only one entity to execute a
given code at once.

— barrier synchronizes all the threads in a team. It is synthesizable by means of
hardware which allows execution only when each instantiation of the parallel region
terminates the functionality given prior to this clause.

— atomic specifies that a memory location is updated atomically. It can be synthesized
by being treated as the critical construct.

— flush specifies a sequence point at which all the threads in a time are required to have
a consistent view of specified objects in memory. In software realization, it results in
copying the values from registers into memory or flushing write buffers. In hardware,
this directive should be ignored, as such an incoherence is not permitted.



Defining Synthesizable OpenMP Directives and Clauses 405

if master clause is present

create hardware implementation only in the first

occurrence of parallel realization
if critical or atomic clause is present

create hardware implementation of the mutual exclusion

and connect it with all the occurrences of parallel realization
if barrier clause is present

create hardware implementation of the barrier

and connect it with all the occurrences of parallel realization
if ordered clause is present

create synchronization links between hardware modules

to execute bodies in the appropriate order

Fig. 7. Algorithm for synthesis of the master and synchronization directives

— ordered causes that iterations in the parallel block are executed in the same order as
in a sequential loop. The functionality is synthesized in each instance implementing
the parallel region, but only execution in the first instance is not blocked. In each other
instance, the execution is blocked until the previous instance finishes the execution
of the corresponding block. This construct adds one synchronization wire between
adjacent implementation and the synchronizing hardware.

The algorithm for parallelizing the mentioned above directives is presented in Fig. 7.

4.5 Run-Time Library Functions
In OpenMP, there exist the following execution environment functions:

— omp_set_num_threads sets the number of threads used during execution. In hard-
ware realization, its value determines the maximal number of the hardware instances
realizing parallel regions. This function is synthesizable as long as its parameter can
be computed during the compilation process.

— omp_get_num_threads sets the number of threads used during execution. The value
set by this function is used in the NoOfInstances algorithm.

— omp_get_max_threads returns an integer that is at least as large as the number
of threads executing the parallel region. In hardware realization, it is equal to the
maximal possible number of the instances realizing the parallel region. The return
value of this function is substituted during the synthesis stage.

— omp_get_thread _num. This function is substituted during the synthesis stage with
the value equal to the index of the instance realizing the parallel region.

— omp_get_num_procs. This function is substituted during the synthesis stage with
the value equal to omp_get_max_threads.

— omp_in_parallel returns a nonzero value if it is called within the parallel region and
0 otherwise. This value is substituted during the synthesis stage.

— omp_set_dynamic enables or disables a dynamic adjustment of the number of
threads executing a parallel region. In hardware realizations, this function should be
treated as a preprocessor command which switches between the permission and the
prohibition of the dynamic adjustment of the thread number.



406 P. Dziurzanski and V. Beletskyy

— omp_get_dynamic returns a nonzero value if dynamic adjustment of threads is
enabled and 0 otherwise. The return value of this function is substituted during the
synthesis stage.

— omp_set_nested enables or disables the nested parallelism. In hardware realizations,
this function should be treated a a preprocessor command, which switches between
the permission and the prohibition of the nested parallelism during the synthesis
state.

— omp_get_nested returns the value according to the actual state of nested parallelism
enabled. The return value of this function is substituted during the synthesis stage.

In OpenMP, there exist the following lock functions: omp_init_lock initializes a
lock, omp_destroy_lock uninitializes a lock, omp_set_lock blocks the thread as long as
the given lock is available and then sets the lock, omp_unset_lock releases a lock, and
omp_test_lock attempts to set a lock without blocking the thread. All of them can be
synthesized in hardware.

Nested versions of the lock functions (omp_init_nest_lock, omp_destroy_nest_lock,
omp_unset_nest_lock, omp_test_nest_lock, and omp_set_nest_lock) are similar to their
plain versions, except that they are used for nested locks.

The usage of the timing routines omp_get_wtime and omp_get_wtick in hardware
realizations are pointless and thus they should not be permitted.

Table 1. Synthesizable (a), ignored (b) and nonsynthesizable (c) OpenMP constructs

atomic construct barrier directive copyin attribute clause
copyprivate attribute clause critical construct default attribute clause
firstprivate attribute clause for construct lastprivate attribute clause
if clause which cannot be if clause evaluating to master construct

evaluated during synthesis a zero value during synthesis nowait clause
omp_destroy_lock function omp_destroy_nested_lock function omp_get_dynamic function
omp_get_nested function omp_get_num_procs function omp_get_num_threads function
omp_get_thread_num function omp_in_parallel function omp_init_lock function
omp_init_nested_lock function omp_set_dynamic function omp_set_lock function
omp_set_max_threads function omp_set_nested function omp_set_nested_lock function
omp_set_num_threads function omp_test_lock function omp_test_nested_lock function
omp_unset_lock function omp_unset_nested_lock function ordered construct
parallel construct parallel for construct parallel sections construct
private attribute clause reduction attribute clause sections construct
shared attribute clause single construct threadprivate directive

@

if clause evaluating to flush directive schedule clause

a nonzero value during synthesis

(b)

|omp,get,wtick function omp_get_wtime function

(©




Defining Synthesizable OpenMP Directives and Clauses 407

5 Conclusion

In this paper, we have presented the possibilities and limitations of the hardware real-
ization of the OpenMP directives.

In Table la-c, we summarize the synthesizabilty of OpenMP directives. The con-
structs which can be synthesized into hardware, are given in Table la. The constructs
enumerated in Table 1b are not relevant to synthesis and identified as ignored. These
constructs result in displaying warnings during synthesis.

Finally, not synthesizable constructs are given in Table 1c. If a not supported construct
is encountered in a program source, its synthesis is not possible.

We plan to build a compiler transforming C/C++ sources with OpenMP pragmas
into synthesizable SystemC sources.

References

1. OpenMP C and C++ Application Program Interface, ver 2.0, OpenMP Architecture Review
Board, 2002, www.openmp.org

2. R. Blikberg, T. Sorevik, Nested Parallelism: Allocation of Processors to Tasks and OpenMP
Implementations, Second European Workshop on OpenMP, Edinburgh, Scotland, UK, 2000

3. D. Galloway, The Transmogrifier C hardware description language and compiler for FPGAs,
Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, 1995

4. A.Jones, D.Bagchi, S. Pal, X. Tang, A. Choudhary, P. Banerjee, PACT HDL: A C Compiler with
Power and Performance Optimizations, International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), Grenoble, France, 2002

5. J.B. Peterson, R. Brendan O’Connor, P. M. Athanas, Scheduling and Partitioning ANSI-C
Programs onto Multi-FPGA CCM Architectures, IEEE Symposium on FPGAs for Custom
Configurable Computing Machines, Napa, California, 1996

6. J. Babb, M. Rinard, C.A. Moritz, W. Lee, M. Frank, R. Barua, S. Amarasinghe, Parallelizing
Applications into Silicon, IEEE Symposium on FPGAs for Custom Computing Machines, Los
Alamitos, CA, USA, 1999, pp. 70-80

7. R. Kastner, M. Sarrafzadeh, Incorporating Hardware Synthesis into a System Compiler, Tech-
nical Report, Department of Electrical and Computer Engineering University of California,
Santa Barbara, CA, USA



	Introduction
	RelatedWorks
	Principles of OpenMP
	Influence of OpenMP Pragmas on Behavioral Synthesis
	Parallel Constructs
	Work-Sharing Construct Clauses
	Data Environment Directives
	Master and Synchronization Directives
	Run-Time Library Functions

	Conclusion



