
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 234–241, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Similarity Retrieval Based on SOM-Based R*-Tree

K.H. Choi1, M.H. Shin1, S.H. Bae1, C.H. Kwon2, and I.H. Ra3

1
 375, Seosuk-Dong, Dong-Gu Kwangju , Computer Science & Statistics, Chosun University,

Korea, 501-759
ckhplc@hanmir.com, minandjih@hanmail.net, shbae@chosun.ac.kr

2
 604-5, Dangjung-Dong,Gunpo-si,Kyunggi-do, Division of IT, Computer Engineering , Hansei

University, Korea, 435-742
kwmch@hotmail.com

3
 Depts. Electronic and Information Engineering, Kunsan National, Korea, 573-701

Abstract. Feature-based similarity retrieval has become an important research
issue in multimedia database systems. The features of multimedia data are
usually high-dimensional data. The performance of conventional multi-
dimensional data structures tends to deteriorate as the number of dimensions of
feature vectors increases. In this paper, we propose a SOM-based R*-tree(SBR-
Tree) as a new indexing method for high-dimensional feature vectors. The
SBR-Ttree combines SOM and R*-tree to achieve search performance more
scalable to high dimensionalities. When we build an R*-tree, we use codebook
vectors of topological feature map which eliminates the empty nodes that cause
unnecessary disk access and degrade retrieval performance. We experimentally
compare the retrieval time cost of a SBR - Tree with that of an SOM and an R*-
tree using color feature vectors extracted from 40,000 images. The result show
that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the
reduction of the number of nodes required to build R*-tree and retrieval time
cost.

1 Introduction

With the increasing use of new database applications for dealing with highly
multidimensional data sets, technology to support effective query processing with
such a data set is considered an important research area. Such applications include
multimedia databases, medical databases, scientific databases, time-series matching,
and data analysis/data mining. For example, in the case of image searches, a typical
query of content-based image retrieval [1] is "find images with similar colors, texture,
or shapes in a collection of color images". The features used in this query are useful to
discriminate multimedia objects (e.g., documents, images, video, music score etc.). A
feature vector is a vector that contains a set of features, and usually hold high-
dimensional data. Many indexing techniques [2][3][4][5] have been proposed to
access such high-dimensional feature vectors effectively. These index trees wok
effectively in low to medium dimensionality space (up to 20-30 dimensions).
However, even a simple sequential scan performs better at higher dimensionalities[5].

This paper is organized as follows : In section 2, we provide an overview of related
work. In Section 3, we present the algorithm of the SOM and R*-tree, and describe

Similarity Retrieval Based on SOM-Based R*-Tree 235

the SOM-based R*-tree proposed in this research. We experiment in order to compare
the SOM-based R*-tree with the SOM and -tree alone in terms of retrieval time cost
using color feature vectors extracted from 40,000 image. The experimental results are
discussed in Section 4, and Section 5 presents the concluding remarks.

2 Related Works

In this Section, we describe the related work on clustering methods and high-
dimensional index structures.

Clustering: There are supervised and unsupervised clustering methods for clustering
similar data. During the training phase in supervised clustering, both the input data
and the desired output are presented to the neural network. If the output of neural
network differs from the desired output, the internal weights of the neural network are
adjusted. In unsupervised clustering, the neural network is given only the input
vectors and the neural network is used to create abstractions in the input space.
SOM is an unsupervised self-organizing neural network that is widely used to
visualize and interpret large high-dimensional data sets. In this study, the reasons for
using SOM are as follows: (i) No prior assumption is needed for distribution of data,
(ii) the learning algorithm is simple, (iii) we do not need an external supervised signal
for input and it learns self-organizationally, and (iv) similarity can be found
automatically from multidimensional feature vector, and similar feature vectors are
mapped onto neighboring regions on the topological feature map, in particular, highly
similar feature vectors are mapped on the same node.

High-dimensional index structure: Many techniques, including R-tree, R+-tree, SS-
tree, SR-tree, X-tree, TV-tree, and Hybrid tree have been proposed to index feature
vectors for similarity search. Despite various attempts at accessing high-dimensional
feature vectors effectively, the current solutions are far from satisfactory. Although
these index structures can scale to medium dimensionalities, above a certain
dimensionality they are outperformed by a simple sequential scan through the
database. This occurs because the data space becomes sparse at high dimensionalities,
causing the bounding regions to become large[7]. We selected the R*-tree among
other index techniques for the following reasons: (i) This index structure is the most
successful variant of the R-tree, (ii) it can be applied to spatial data such as geography
and CAD data, and (iii) it can be used as an index structure for feature space such as
image retrieval currently.

3 SOM-Based R*-Tree

The construction of a SOM-based R*-tree consists of two processes; clustering
similar images and construction of R*-tree, as following.

236 K.H. Choi et al.

Clustering similar images: We first generate the topological feature map using the
SOM. We generate the BMIL by computing the distances between the feature vectors
and codebook vectors from the topological feature map. The Best-Match
Nodes(BMN) and its topological neighbors are moved closer to the input feature
vector. As a result of learning ; the vector, which is generated on each node of the
map, is called a codebook vector, and is represent by

,],...,,...,,[21
T

imijiii cvcvcvcvCBV =

where i(1≤i≤k) is the node number of the map, m is the number of input nodes, i. e.,
the dimensionality of the feature vector, and k is the number of map nodes.

(a) Feature vectors extracted from images (b) Codebook vectors generated by SOM

Fig. 1. Relationship between feature vector and codebook vector

Using the topological feature map, we classify similar image to the nearest node,
which has the minimum distance between a given feature vector and all codebook
vectors. This classified similar image of each node is called the best-matching-image-
list (BMIL). Similarity between feature vectors and codebook vectors is calculated by

the Euclidean distance. Best-match-node iBMN is

||}{||min i
i

i CBVFVBMN −=

where FV is a feature vector. The relationship between feature vectors and codebook
vectors is shown in Figure 1. Between these two kinds of vectors, there are many-to-
one relationships based on the similarity between each feature vector. This means that
empty nodes occur in a topological feature map when the BMIL is generated. Empty
nodes refer to the portion of the node (vector) spaces that contains no matching
feature vectors. Empty mode indexing causes unnecessary disk access, thus degrading
search performance. The space requirement can be reduced by indexing only live
nodes (in contrast to empty nodes).

Construction of R*-tree: In the construction of a SBR-Tree, we use the R*-tree
algorithm[5]. Here, let one point on the n-dimensional space correspond to each

Similarity Retrieval Based on SOM-Based R*-Tree 237

codebook vector of the topological feature map and the space covering all codebook
vectors corresponds to the root node. In order to construct the R*-tree, we select a
codebook vector from the topological feature map an entry. If it is an empty node, we
select the next codebook vector. Otherwise, we determine the leaf node which insert
codebook vector. The insertion algorithm of the R*-tree determines the most suitable
subtree to accommodate the new entry(i. e., codebook vector) by choosing a subtree
whose centroid is the nearest to the new entry. When a node or a leaf is full, the R*-
tree reinsets or splits its entries. Otherwise, the new entry is add in the node or leaf. A
leaf of the SOM-based R*-tree has the following structure:

),...,,...,(: 1 pi EEEL)(Mpm ≤≤

),(: µOIDEi

A leaf L consists of entries pi EEE ,...,,...,1 (m≤p≤M), where m and M are the

minimum and the maximum number of entries in a leaf. Each entry contains an OID
and its MBR µ. The node structure of the SBR-Tree is same as that of the R*-tree as
shown in Fig. 2.

(a) example of topological feature map (b) SOM-based R*-tree structure using topological
feature map eliminated empty nodes

Fig. 2. SOM-based R*-tree structure

4 Experiments

We performed experiments to compare the SOM-based R*-tree with a normal SOM
and R*-tree. Our image database contains still color images. The experimental image
database currently consists of 40,000 artificial/natural images, including landscapes,
animals, buildings, people, plants, CG, etc., from H2soft and Stanford University. We
fixed the image size at 128×128 pixels. All experiments were performed on a
COMPAQ DESKPRO(OS:FreeBSD 3.4-STABLE) with 128 Mbytes of memory and
all data was stored on its local disk.

238 K.H. Choi et al.

4.1 Experimental Methodology

Feature Extraction: In this study, we extract practice[1]. One disadvantage of using
Haar wavelets is that the computation tends to produce blocky image artifacts in the
most important subbands. However, this drawback does not noticeably affect
similarity retrieval[13]. The color space used in this paper for feature vectors is the
TIQ-space (NTSC transmission primaries)[14] with luminance and color features
from the image data, and use it in the experiments. To computer feature vectors, we
use Haar wavelets[12], which are a kind of wavelet transform. Haar wavelets provide
the fastest computations and have been found to perform well in practice[1]. One
disadvantage of using Haar wavelets is that the computation tends to produce blocky
image artifacts in the most important subbands. However, this drawback does not
noticeably affect similarity retrieval[13]. The color space used in this paper for feature
vectors is the TIQ-space (NTSC transmission primaries)[14] with luminance and
chrominance information. We computed 5 level two-dimensional wavelet transforms
for each of the three color spaces using Haar wavelets. Extracting the lowest
submatrix for the color feature, we generated this submatrix as part of the feature
vector. Each element of this feature vector represents an average of 32×32pixels of
the original image. The color feature vector has 48 dimensions (=4×4×3,where 3 is
the three channels of YIQ space).

Construction of SOM-based R*-tree. As shown in Table 1, we determine that the
map size is almost the same as the number of images in the image databases. We
generated the topological feature map using color feature vectors via the learning of
the SOM, and the BMIL is generated using this feature map. The empty nodes
occupied 53% to 60% of the original map size. As the map size becomes larger, the
number of empty nodes increases. This means that images of high similarity are
classified in the same node mutually regardless of map size.

Table 1. Tree Structure

Data Set (×1000)

 1 5 10 20 30 40

R*-tree 119 499 972 2089 3042 3980
Total No.
of nodes

SOM-based R*-tree 51 241 483 928 1300 1705

R*-tree 3 4 4 5 5 5
Heights
of nodes

SOM-based R*-tree 3 4 4 4 4 5

R*-tree 7.55 50.44 111.89 233.89 350.66 476.49
Time
cost(sec)

SOM-based R*-tree 3.27 19.12 40.76 81.95 115.49 153.92

Similarity Retrieval Based on SOM-Based R*-Tree 239

Fig. 3. Retrieval time cost

Fig. 4. Comparison of retrieval time cost between SOM-based R*-Tree and R*-Tree

Therefore, reducing the number of nodes and speeding up search time can be
realized by eliminating empty nodes; an R*-tree built with this pruned set of nodes
will have a smaller overall index size. The height of the tree is not that different,
however both the total number nodes and the time cost of building the index decrease.
These observations reduce memory usage and retrieval access time. The larger the
data set, the more efficient the index.

240 K.H. Choi et al.

4.2 Experimental Results

In order to measure search time, we experimented with four types of searches ; search
for (i) normal SOM including empty nodes, (ii) normal SOM with eliminated empty
nodes, (iii) normal R*-tree, and (iv) SOM-based R*-tree with eliminated empty
nodes. The data set size was from 1,000 to 40,000 images. The search method used
was the κ-Nearest Neighbor(NN)[15] method, which searches for κ (κ>1) objects
nearest to the given query. In SOM, an exhaustive search of the topological feature
map is performed, and finding κ (κ=10) nodes nearest to the given query. In the same
manner, the normal R*-tree and SOM-based R*-tree are applied using the κ-NN
(κ=10) search.

A comparison of retrieval time cost is shown in Figures 3 and 4. In both figures,
the horizontal axis is the dataset size. As shown in Figure 3, the retrieval time of SOM
with empty nodes, as compared to the SOM without empty nodes, grows drastically
as the dataset size increases, over 5 times the retrieval time cost at 40,000 images.
Thus, eliminating empty nodes significantly reduces retrieval time by removing
unnecessary distance computations. We also compared the performance of the SOM-
based R*-tree with that of the R*-tree based on 10-NN retrieval time cost, as shown
in Figure 4. In this comparison the nearest OID was obtained for a given query. The
retrieval time of the SOM-based R*-tree is far shorter compared to the R*-tree, by 3
to 15 times. The results show that building the R*-tree with overall original feature
vectors improves retrieval performance.

Furthermore, the SOM-based R*-tree performs much better than SOM alone,
which sequentially searches feature vectors. These experimental results clearly show
that a SOM-based R*-tree is more efficient for similarity retrieval.

5 Conclusions

In this study, we proposed SOM-based R*-tree for dealing with similarity retrieval
from high-dimensional data sets. Using a topological feature map and a best-
matching-image-list (BMIL) obtained via the learning of a SOM, we constructed an
R*-tree. The major finding of this study is that building an R*-tree in which the
empty nodes in the topological feature map are removed yields an R*-tree with fewer
nodes, thus enhancing performance by decreasing unnecessary access, node visits,
and overall search times.

In an experiment, we performed a similarity search using real image data and
compared the performance of the SOM based R*-tree with a normal SOM and R*-
tree, based on retrieval time cost. The R*-tree with fewer nodes experimentally
verified to shorter search tome, and search efficiency was improved due to the use of
a k-NN search, compared to SOM.

References

1. A.F.C.E. Jacobs and D.H Salesin. Fast Multiresolution Image Querying. In Proc.
SIGGRAPH95 , pages 6-11, New York, August 1995. ACM SIGGRAPH.

Similarity Retrieval Based on SOM-Based R*-Tree 241

2. C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber. Efficient
and Effective Query by Image Content. J. of Intell. inform. Syst., 3:231-262,1994.

3. V. N. Gudivada and V. V. Raghavan. Content-based Image Retrieval system. IEEE
Computer, 28(9): 18-22, September 1995.

4. Guttman. R-tree: a dynamic index structure for spatial searching. In Proc. of ACM
SIGMOD Int. Conf. on Management of Data, pages 45-57,1984.

5. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. R*-tree: an efficient and robust
access method for points and agement of Data, pages 322-331, Atlantic City,NJ, May
1990.

6. S. Berchtold, C. Bohm, and H.-P. Kriegal. The pyramid technique: towards breaking the
curse of dimensionality. In Proc. of ACM SIGMOD int. conf. on Management of data,
pages 142-153, Seattle, WA USA, June 1998.

7. K. Chakrabarti and S. Mehrotra. High dimensional feature indexing using hybrid trees. In
Proc. of ICDE1999, March 1999.

8. T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1997.
9. T. Kohonen. Self-organizing maps. Proc.of The IEEE, 78(9):1464-1480,1990.
10. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J.

Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by Image and Video
Content: The QBIC System. IEEE Computer, 28(9):23-32, September 1995.

11. M. Koskelar. Content-Mased Images Retrieval with Self-Organizing Maps. Master's
thesis, Helsinki University of Technology, Department of Engineering Physics and
Mathematicd, 1999.

12. S.G. Mallat. Multifrequency Channel Decompositions of Images and Wavelet Models.
IEEE. Trans., Acoust., Apeech and Signal Proc., 37(12):2091-2110, December 1989.

13. Natsev, R. Rastogi, and K. Shim. WALRUS: A Similarity Retrieval Algorithm for Image
Databaese. In Proc. ACM SIGMOD International Conference on Management of Data,
pages 396-406, Philadephia, PA, June 1999. ACM SIGMOD.

14. J. C. Russ. The Image Processing Handbook. CRC Press, Boca Raton, 1995.

	Introduction
	Related Works
	SOM-Based R*-Tree
	Experiments
	Experimental Methodology
	Experimental Results
	Conclusions

