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Abstract. Feature-based similarity retrieval has become an important research 
issue in multimedia database systems. The features of multimedia data are 
usually high-dimensional data. The performance of conventional multi-
dimensional data structures tends to deteriorate as the number of dimensions of 
feature vectors increases. In this paper, we propose a SOM-based R*-tree(SBR-
Tree) as a new indexing method for high-dimensional feature vectors. The 
SBR-Ttree combines SOM and R*-tree to achieve search performance more 
scalable to high dimensionalities. When we build an R*-tree, we use codebook 
vectors of topological feature map which eliminates the empty nodes that cause 
unnecessary disk access and degrade retrieval performance. We experimentally 
compare the retrieval time cost of a SBR - Tree with that of an SOM and an R*-
tree using color feature vectors extracted from 40,000 images. The result show 
that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the 
reduction of the number of nodes required to build R*-tree and retrieval time 
cost. 

1   Introduction 

With the increasing use of new database applications for dealing with highly 
multidimensional data sets, technology to support effective query processing with 
such a data set is considered an important research area. Such applications include 
multimedia databases, medical databases, scientific databases, time-series matching, 
and data analysis/data mining. For example, in the case of image searches, a typical 
query of content-based image retrieval [1] is "find images with similar colors, texture, 
or shapes in a collection of color images". The features used in this query are useful to 
discriminate multimedia objects (e.g., documents, images, video, music score etc.). A 
feature vector is a vector that contains a set of features, and usually hold high-
dimensional data. Many indexing techniques [2][3][4][5] have been proposed to 
access such high-dimensional feature vectors effectively. These index trees wok 
effectively in low to medium dimensionality space (up to 20-30 dimensions). 
However, even a simple sequential scan performs better at higher dimensionalities[5]. 

This paper is organized as follows : In section 2, we provide an overview of related 
work. In Section 3, we present the algorithm of the SOM and R*-tree, and describe 
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the SOM-based R*-tree proposed in this research. We experiment in order to compare 
the SOM-based R*-tree with the SOM and -tree alone in terms of retrieval time cost 
using color feature vectors extracted from 40,000 image. The experimental results are 
discussed in Section 4, and Section 5 presents the concluding remarks. 

2   Related Works 

In this Section, we describe the related work on clustering methods and high-
dimensional index structures. 

Clustering: There are supervised and unsupervised clustering methods for clustering 
similar data. During the training phase in supervised clustering, both the input data 
and the desired output are presented to the neural network. If the output of neural 
network differs from the desired output, the internal weights of the neural network are 
adjusted. In unsupervised clustering, the neural network is given only the input 
vectors and the neural network is used to create abstractions in the input space. 
SOM is an unsupervised self-organizing neural network that is widely used to 
visualize and interpret large high-dimensional data sets. In this study, the reasons for 
using SOM are as follows: (i) No prior assumption is needed for distribution of data, 
(ii) the learning algorithm is simple, (iii) we do not need an external supervised signal 
for input and it learns self-organizationally, and (iv) similarity can be found 
automatically from multidimensional feature vector, and similar feature vectors are 
mapped onto neighboring regions on the topological feature map, in particular, highly 
similar feature vectors are mapped on the same node. 

High-dimensional index structure: Many techniques, including R-tree, R+-tree, SS-
tree, SR-tree, X-tree, TV-tree, and Hybrid tree have been proposed to index feature 
vectors for similarity search. Despite various attempts at accessing high-dimensional 
feature vectors effectively, the current solutions are far from satisfactory. Although 
these index structures can scale to medium dimensionalities, above a certain 
dimensionality they are outperformed by a simple sequential scan through the 
database. This occurs because the data space becomes sparse at high dimensionalities, 
causing the bounding regions to become large[7]. We selected the R*-tree among 
other index techniques for the following reasons: (i) This index structure is the most 
successful variant of the R-tree, (ii) it can be applied to spatial data such as geography 
and CAD data, and (iii) it can be used as an index structure for feature space such as 
image retrieval currently. 

3   SOM-Based R*-Tree 

The construction of a SOM-based R*-tree consists of two processes; clustering 
similar images and construction of R*-tree, as following. 
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Clustering similar images: We first generate the topological feature map using the 
SOM. We generate the BMIL by computing the distances between the feature vectors 
and codebook vectors from the topological feature map. The Best-Match 
Nodes(BMN) and its topological neighbors are moved closer to the input feature 
vector. As a result of learning ;  the vector, which is generated on each node of the 
map, is called a codebook vector, and is represent by 
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T
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where i(1≤i≤k) is the node number of the map, m is the number of input nodes, i. e., 
the dimensionality of the feature vector, and k is the number of map nodes. 

 

(a) Feature vectors extracted from images (b) Codebook vectors generated by SOM 

Fig. 1. Relationship between feature vector and codebook vector 

Using the topological feature map, we classify similar image to the nearest node, 
which has the minimum distance between a given feature vector and all codebook 
vectors. This classified similar image of each node is called the best-matching-image-
list (BMIL). Similarity between feature vectors and codebook vectors is calculated by 

the Euclidean distance.  Best-match-node iBMN  is 

||}{||min i
i
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where FV is a feature vector. The relationship between feature vectors and codebook 
vectors is shown in Figure 1. Between these two kinds of vectors, there are many-to-
one relationships based on the similarity between each feature vector. This means that 
empty nodes occur in a topological feature map when the BMIL is generated. Empty 
nodes refer to the portion of the node (vector) spaces that contains no matching 
feature vectors. Empty mode indexing causes unnecessary disk access, thus degrading 
search performance. The space requirement can be reduced by indexing only live 
nodes (in contrast to empty nodes). 

Construction of R*-tree: In the construction of a SBR-Tree, we use the R*-tree 
algorithm[5]. Here, let one point on the n-dimensional space correspond to each 
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codebook vector of the topological feature map and the space covering all codebook 
vectors corresponds to the root node. In order to construct the R*-tree, we select a 
codebook vector from the topological feature map an entry. If it is an empty node, we 
select the next codebook vector. Otherwise, we determine the leaf node which insert 
codebook vector. The insertion algorithm of the R*-tree determines the most suitable 
subtree to accommodate the new entry(i. e., codebook vector) by choosing a subtree 
whose centroid is the nearest to the new entry. When a node or a leaf is full, the R*-
tree reinsets or splits its entries. Otherwise, the new entry is add in the node or leaf. A 
leaf of the SOM-based R*-tree has the following structure: 

),...,,...,(: 1 pi EEEL   )( Mpm ≤≤  
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A leaf L consists of entries pi EEE ,...,,...,1 (m≤p≤M), where m and M are the 

minimum and the maximum number of entries in a leaf. Each entry contains an OID 
and its MBR µ. The node structure of the SBR-Tree is same as that of the R*-tree as 
shown in Fig. 2. 

  

(a) example of topological feature map (b) SOM-based R*-tree structure using topological 
feature map eliminated empty nodes 

Fig. 2. SOM-based R*-tree structure 

4   Experiments 

We performed experiments to compare the SOM-based R*-tree with a normal SOM 
and R*-tree. Our image database contains still color images. The experimental image 
database currently consists of 40,000 artificial/natural images, including landscapes, 
animals, buildings, people, plants, CG, etc., from H2soft and Stanford University. We 
fixed the image size at 128×128 pixels. All experiments were performed on a 
COMPAQ DESKPRO(OS:FreeBSD 3.4-STABLE) with 128 Mbytes of memory and 
all data was stored on its local disk. 
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4.1   Experimental Methodology 

Feature Extraction: In this study, we extract practice[1]. One disadvantage of using 
Haar wavelets is that the computation tends to produce blocky image artifacts in the 
most important subbands. However, this drawback does not noticeably affect 
similarity retrieval[13]. The color space used in this paper for feature vectors is the 
TIQ-space (NTSC transmission primaries)[14] with luminance and color features 
from the image data, and use it in the experiments. To computer feature vectors, we 
use Haar wavelets[12], which are a kind of wavelet transform. Haar wavelets provide 
the fastest computations and have been found to perform well in practice[1]. One 
disadvantage of using Haar wavelets is that the computation tends to produce blocky 
image artifacts in the most important subbands. However, this drawback does not 
noticeably affect similarity retrieval[13]. The color space used in this paper for feature 
vectors is the TIQ-space (NTSC transmission primaries)[14] with luminance and 
chrominance information. We computed 5 level two-dimensional wavelet transforms 
for each of the three color spaces using Haar wavelets. Extracting the lowest 
submatrix for the color feature, we generated this submatrix as part of the feature 
vector. Each element of this feature vector represents an average of 32×32pixels of 
the original image. The color feature vector has 48 dimensions (=4×4×3,where 3 is 
the three channels of YIQ space). 

Construction of SOM-based R*-tree. As shown in Table 1, we determine that the 
map size is almost the same as the number of images in the image databases. We 
generated the topological feature map using color feature vectors via the learning of 
the SOM, and the BMIL is generated using this feature map. The empty nodes 
occupied 53% to 60% of the original map size. As the map size becomes larger, the 
number of empty nodes increases. This means that images of high similarity are 
classified in the same node mutually regardless of map size. 

Table 1. Tree Structure 

  
Data Set (×1000) 

 
 1 5 10 20 30 40 

R*-tree 119 499 972 2089 3042 3980 
Total No. 
of nodes 

SOM-based R*-tree 51 241 483 928 1300 1705 

R*-tree 3 4 4 5 5 5 
Heights 
of nodes 

SOM-based R*-tree 3 4 4 4 4 5 

R*-tree 7.55 50.44 111.89 233.89 350.66 476.49 
Time 
cost(sec) 

SOM-based R*-tree 3.27 19.12 40.76 81.95 115.49 153.92 



Similarity Retrieval Based on SOM-Based R*-Tree         239 

 

 

Fig. 3. Retrieval time cost 

 

Fig. 4. Comparison of retrieval time cost between SOM-based R*-Tree and R*-Tree 

Therefore, reducing the number of nodes and speeding up search time can be 
realized by eliminating empty nodes; an R*-tree built with this pruned set of nodes 
will have a smaller overall index size. The height of the tree is not that different, 
however both the total number nodes and the time cost of building the index decrease. 
These observations reduce memory usage and retrieval access time. The larger the 
data set, the more efficient the index. 
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4.2   Experimental Results 

In order to measure search time, we experimented with four types of searches ; search 
for (i) normal SOM including empty nodes, (ii) normal SOM with eliminated empty 
nodes, (iii) normal R*-tree, and (iv) SOM-based R*-tree with eliminated empty 
nodes. The data set size was from 1,000 to 40,000 images. The search method used 
was the κ-Nearest Neighbor(NN)[15] method, which searches for κ (κ>1) objects 
nearest to the given query. In SOM, an exhaustive search of the topological feature 
map is performed, and finding κ (κ=10) nodes nearest to the given query. In the same 
manner, the normal R*-tree and SOM-based R*-tree are applied using the κ-NN 
(κ=10) search. 

A comparison of retrieval time cost is shown in Figures 3 and 4. In both figures, 
the horizontal axis is the dataset size. As shown in Figure 3, the retrieval time of SOM 
with empty nodes, as compared to the SOM without empty nodes, grows drastically 
as the dataset size increases, over 5 times the retrieval time cost at 40,000 images. 
Thus, eliminating empty nodes significantly reduces retrieval time by removing 
unnecessary distance computations. We also compared the performance of the SOM-
based R*-tree with that of the R*-tree based on 10-NN retrieval time cost, as shown 
in Figure 4. In this comparison the nearest OID was obtained for a given query. The 
retrieval time of the SOM-based R*-tree is far shorter compared to the R*-tree, by 3 
to 15 times. The results show that building the R*-tree with overall original feature 
vectors improves retrieval performance. 

Furthermore, the SOM-based R*-tree performs much better than SOM alone, 
which sequentially searches feature vectors. These experimental results clearly show 
that a SOM-based R*-tree is more efficient for similarity retrieval. 

5   Conclusions 

In this study, we proposed SOM-based R*-tree for dealing with similarity retrieval 
from high-dimensional data sets. Using a topological feature map and a best-
matching-image-list (BMIL) obtained via the learning of a SOM, we constructed an 
R*-tree. The major finding of this study is that building an R*-tree in which the 
empty nodes in the topological feature map are removed yields an R*-tree with fewer 
nodes, thus enhancing performance by decreasing unnecessary access, node visits, 
and overall search times. 

In an experiment, we performed a similarity search using real image data and 
compared the performance of the SOM based R*-tree with a normal SOM and R*-
tree, based on retrieval time cost. The R*-tree with fewer nodes experimentally 
verified to shorter search tome, and search efficiency was improved due to the use of 
a k-NN search, compared to SOM. 
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