
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 2–9, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Multiparadigm Model Oriented to
Development of Grid Systems

Jorge Luis Victória Barbosa1, Cristiano André da Costa1,
Adenauer Corrêa Yamin2, and Cláudio Fernando Resin Geyer3

1 Informatics Department, University of Vale do Rio dos Sinos
São Leopoldo, RS, Brazil

{barbosa,cac}@exatas.unisinos.br
2 Informatics Department, Catholic University of Pelotas (UCPel)

Pelotas, RS, Brazil
adenauer@ucpel.tche.br

3 Informatics Institute, Federal University of Rio Grande do Sul (UFRGS)
Porto Alegre, RS, Brazil
geyer@inf.ufrgs.br

Abstract. Multiparadigm approach integrates programming language
paradigms. We propose Holoparadigm (Holo) as a multiparadigm model
oriented to development of grid systems. Holo uses a logic blackboard (called
history) to implement a coordination mechanism. The programs are organized
in levels using abstract entities called beings. First, we describe the principal
concepts of the Holoparadigm. After, the principles of a language based on the
Holoparadigm are presented. Besides, we propose the Grid Holo (GHolo), a
platform to support the multi-domain heterogeneous distributed computing of
programs developed in Holo. GHolo is based on object mobility and
blackboards. This distributed model can be fully implemented on Java platform.

Keywords: Multiparadigm, Mobility, Blackboard and Grid Systems.

1 Introduction

Several programming language paradigms were developed to make computer
programming more effective. There is no ideal solution since each one has advantages
and disadvantages. Multiparadigm approaches mix two or more basic paradigms
trying to get a more powerful and general solution and to overcome the specific
limitations of each paradigm taking advantage of its most useful characteristics.
Several multiparadigm languages and environments have been proposed as for
example [3, 12, 18, 20, 23]. Each paradigm has sources of implicit parallelism, for
example, AND parallelism and OR parallelism in logic programming [4, 27]. Another
example is object-oriented paradigm that allows the exploitation of inter-object
parallelism and intra-object parallelism [9, 21]. The multiparadigm approach
integrates paradigms. So, it also integrates their parallelism sources. In this context,
interest in automatic exploitation of parallelism in multiparadigm software has
emerged. The development of distributed software using multiparadigm models has

Multiparadigm Model Oriented to Development of Grid Systems 3

received attention of the scientific community [9, 13, 14, 21, 25] with some systems
considering mobility, heterogeneous hardware and cluster architectures.

In this paper we propose Holoparadigm (Holo) as a multiparadigm model oriented
to development of grid systems. A logic blackboard (called history) implements the
coordination mechanism and a new programming entity (called being) organizes the
several encapsulated levels of beings and histories (multi-domains). A new
multiparadigm language (Hololanguage) implements the main ideas introduced by
Holoparadigm. Besides, we propose a platform to support the distributed execution of
programs developed in Holo. This platform is called Grid Holo (GHolo). GHolo has a
heterogeneous network as physical execution environment and is based on object
mobility, blackboards and multi-domain organization (tree of beings). A prototype
was implemented using Java [17] and special libraries to support mobility (Voyager
[28]) and blackboards (Jada [10]).

The paper is organized in five sections. Section two presents the Holoparadigm and
the Hololanguage. In section three is proposed the Grid Holo. Section four describes
related works. Finally, section five draws some conclusions and presents directions
for future works.

2 Holoparadigm and Hololanguage

Being is the main Holoparadigm abstraction. There are two kinds of beings:
elementary being (atomic being without composition levels) and composed being
(being composed by other beings). An elementary being (figure 1a) is organized in
three parts: interface, behavior and history. The interface describes the possible
interactions between beings. The behavior contains actions, which implement
functionalities. The history is a shared storage space in a being. A composed being
(figure 1b) has the same organization, but may be composed by others beings
(component beings).

Each being has its history. The history is encapsulated in the being. In composed
being, the history is shared by component beings. Several levels of encapsulated
history can possibly exist. A being uses the history in a specific composition level.
For example, figure 1c shows two levels of encapsulated history in a being with three
composition levels. Behavior and interface parts are omitted for simplicity.

Automatic distribution is one of the main Holoparadigm goals. Figure 2
exemplifies a possible distribution of the being presented in the figure 1b. Besides
that, the figure presents the mobility in Holo. The being is distributed in two nodes of
the distributed architecture. The history of a distributed being is called distributed
history. This kind of history can be implemented using DSM techniques [24] or
distributed shared spaces [2, 10, 11].

Mobility [16] is the dislocation capacity of a being. In Holo, there are two kinds of
mobility: logical mobility (being is moved when crosses one or more borders of
beings) and physical mobility (dislocation between nodes of distributed architectures).
Figure 2 exemplifies two possible mobilities in the being initially presented in the
figure 1b. After the dislocation, the moveable being is unable to contact the history of
the source being (figure 2, mobility A). However, now the being is able to use the
history of the destiny being. Here, physical mobility only occurs if the source and
destiny beings are in different nodes of the distributed architecture (it is the case in

4 J.L.V. Barbosa et al.

History

BehaviorI
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Being 1 Being 2 Being n...

Being

History

Being

History

Being Being

Being

History

Being Being

Level 0

Level 1

Level 2 Level 2

(a) Elementary being (b) Composed being (c) Example of composition (3 levels)

History

Behavior

Fig. 1. Being organization

BeingHistory

Being Being

Being

History

Being Being

Mobility A

Ente
Mobility B

History

Node 1 Node 2

Network

Fig. 2. Distributed being and mobility

our example). Logical and physical mobilities are independent. Occurrence of one
does not imply in the occurrence of the other. For example, the mobility B in the
figure 2 is a physical mobility without logical mobility. In this example, the moved
being does not change its history view (supported by the blackboard). This kind of
situation could happen if the execution environment aims to speedup execution
through locality exploitation.

The coordination model used in Holo is based on the blackboard architecture [22]
(figure 3a). A blackboard is composed by a common data area (blackboard) shared by
a collection of programming entities called knowledge sources (KSs). Control is
implicit in the blackboard access operations. The read and write operations in the
blackboard are used to communication and synchronization between KSs. This kind
of control is called implicit invocation. A composed being architecture is similar to
the blackboard architecture, since several components share a common data area. In
Holo, KSs are beings and the blackboard is the history. Since blackboard implicit

Multiparadigm Model Oriented to Development of Grid Systems 5

Blackboard

KS1 KS2 KSn. . .

History

Being 1 . . .Being 2 Being n

Explicit
invocation

Blackboard

(a) Blackboard architecture (b) Holo coordination model

Implicit
invocation

Fig. 3. Holo coordination model

invocation has several limitations, explicit invocation was introduced in the
coordination model. Explicit invocation is any direct call between entities. So, the
beings influence the others using the history, but can change information directly too.

Figure 3b shows the Holo coordination model. History is a logic blackboard, i.e.,
the information stored is a group of logic terms. Interaction with the history uses two
kinds of Linda-like [8] operations: affirmation and question. An affirmation puts
terms in the history, like asserts in Prolog databases. Moreover, a question permits to
consult terms from the history. A consult does a search in the database using
unification of terms. A question is blocking or non-blocking. A blocking question
only returns when a unifying term is found. Therefore, blocking questions
synchronize beings using the implicit invocation. In a non-blocking question, if a
unifying term is not found, the question immediately fails. Besides that, a question is
destructive or non-destructive. A destructive question retracts the unifying term. The
non-destructive one does not remove it.

Hololanguage (so-called Holo) is a programming language that implements the
concepts of Holoparadigm. A program is composed by descriptions of beings. The
language supports logical mobility and concurrency between actions of a being.
Besides that, the Hololanguage permits both kinds of blackboard interaction proposed
by the Holoparadigm. Five kinds of actions are supported: (1) logic action (LA) is a
logic predicate; (2) imperative action (IA) is a group of imperative commands; (3)
modular logic action (MLA) contains several logic actions encapsulated in a module;
(4) modular imperative action (MIA) encapsulates several imperative actions; (5)
multiparadigm action (MA) integrates logic and imperative actions.

Actions are composed using an Action Composition Graph (ACG). Following the
Peter Wegner’s opinion [29] about the impossibility of mixing logic and imperative
behaviors, we have created the Action Invocation Graph (AIG). This graph
determines the possible order of action calls during a program execution. MAs, IAs
and MIAs call any action. LAs and MLAs only call LAs and MLAs. Therefore, there
are two regions of actions during an execution, namely, imperative and logic regions.

If an execution flow goes in the logic region, the only way to return to the
imperative region is finishing the flow (returning the results asked from the
imperative region). This methodology eliminates many problems, which emerge when
logic and imperative commands are mixed (for example, distributed backtracking
[5]). We believe AIG is an important contribution to the discussion presented by
Wegner [29, 30].

6 J.L.V. Barbosa et al.

3 Grid Holo

Holo to grid systems is called Grid Holo (GHolo). The being multi-level organization
(see figure 1c) is adequate to modelling heterogeneous multi-domain distributed
systems. Holo was created to support implicit distribution, i.e., automatic exploitation
of distribution using mechanisms provided by basic software (compiler and execution
environment). Holoparadigm abstractions are hardware independent. However, the
model is dedicated to distributed architectures. When the hardware is distributed,
there are two main characteristics to be considered: (1) mobility support: it is
necessary to implement the physical mobility treatment when there is a move to a
being located in another node; (2) dynamic and hierarchical history support:
distribution involves data sharing between beings in different nodes (distributed
history). There are several levels of history (hierarchical history). Besides that, access
history is adapted during the execution to support the mobility (dynamic history).

GHolo is the software layer that supports the grid distributed computing of
programs in Holo. It creates support to physical mobility and dynamic/hierarchical
history in a grid. GHolo project is based on a structure called Tree of Beings
(HoloTree, see figure 4). This structure is used to organize a being during its
execution. The tree organizes the beings in levels. A being only can access the history
of the composed being to which it belongs. This is equivalent to access the history of
being localized in the superior level. A logical mobility is implemented moving a leaf
(elementary being) or a tree branch (composed being) from the source being to the
destiny being. The Jada spaces [10] are used to support the change of context. After
the mobility, the being moved has direct access to the destiny being’s space.

JVM
VOYAGER

JVM
VOYAGER

JVM
VOYAGER

JVM
VOYAGER

Jada Space

Jada Space

Being Being Being

Jada SpaceJada Space

Being BeingBeing

Being

Mobility
B

Mobility
A

Network

Node 1 Node 2

Fig. 4. Grid Holo (distributed HoloTree)

The figure 4 presents the GHolo architecture to the being initially shown in the
figure 2. The figure shows the HoloTree distributed in two nodes. The changes to
both mobilities of figure 2 are demonstrated. Each being is implemented using an
object and a Jada space (history). GHolo initialization involves the creation of a
Voyager-enabled program [28] (Voyager environment) in each node that will be
used. Since Voyager executes on the Java Virtual Machine each node will also have a
running JVM. During the initialization, a Table Environment (TE) indicates the nodes

Multiparadigm Model Oriented to Development of Grid Systems 7

that will be used by GHolo. During a program execution, if a logical mobility results
in a physical mobility, it executes a moveTo operation in Voyager (mobility A, figures
2 and 4). When a physical mobility is realized without logical mobility (mobility B,
figures 2 and 4), the tree of beings does not change, but a moveTo operation is
realized. This kind of mobility does not have any kind of relation with the program. It
is a decision of the environment to support a specific functionality (load balancing,
tolerance fault, etc). GHolo does not support this kind of decision yet, but there is on
going work in this subject [31].

4 Related Works

There are other multiparadigm implementations over distributed environment. I+
model [21] supports the distribution of objects, which implement methods using
functions (functional classes) and predicates (logic classes). The implementation is
based on the translation of functional classes into Lazy ML (LML) modules and
translation of logic classes into Prolog modules. The distributed architecture is a
network of Unix workstations using 4.3 BSD sockets to implement message passing.
The runtime environment was initially implemented using C language, Quintus
Prolog and LML. In a second phase, programs were only translated into C language.
I+ does not focus mobility. In addition, none kind of shared space is supported
between objects.

Ciampolini et al [9] have proposed DLO, a system to create distributed logic
objects. This proposal is based on previous works (Shared Prolog [7], ESP [11] and
ETA [2]). The implementation is based on the translation of DLO programs into
clauses of a concurrent logic language called Rose [6]. The support to Rose execution
is implemented on a MIMD distributed memory parallel architecture (transputer-
based Meiko Computing Surface). The runtime environment consists of a parallel
abstract machine that is an extension of the WAM [1]. This proposal does not support
mobility and it is not applied on a network of workstations. DLO does not support
levels of spaces.

Oz multiparadigm language [20] is used to create a distributed platform called
Mozart [25]. Oz uses a constraint store similar to a blackboard and supports the use of
several paradigm styles [15, 20]. Besides, Mozart has special support to mobility of
objects [13] and distributed treatment of logic variables [14]. Mozart distributed
architecture is a network of workstations providing standard protocols such as
TCP/IP. The runtime environment is composed by four software layers [25]: Oz
centralized engine (Oz virtual machine [19]), language graph layer (distributed
algorithms to decide when to do a local operation or a network communication),
memory management layer (shared communication space and distributed garbage
collection) and reliable message layer (transfer of byte sequences between nodes).
The physical mobility supported by Mozart is completely transparent, i. e., the system
decides when to move an object. None kind of logical mobility is used. The shared
spaced supported by Mozart is monotonic and stores constraints, while Holo being’s
history is a non-monotonic logic blackboard that stores logic tuples (terms). In
addition, Mozart does not provide levels of encapsulated contexts composed by
objects accessing a shared space.

8 J.L.V. Barbosa et al.

Tarau has proposed Jinni [26], a logic programming language that supports
concurrency, mobility and distributed logic blackboards. Jinni is implemented using
BinProlog [5] a multi-threaded Prolog system with ability to generate C/C++ code.
Besides that, it has special support to Java, such as a translator allowing packaging of
Jinni programs as Java classes. Jinni is not a multiparadigm platform. In addition,
Jinni does not work with logical mobility and with levels of encapsulated
blackboards.

So, Oz and Jinni have a kind of mobility. In addition, they can be executed over
network of workstations. However, we believe that the support to hierarchy of spaces
as proposed by Holo is an innovation.

5 Conclusion

We have proposed the use of Holo to multi-domain heterogeneous systems.
Holoparadigm concepts estimulate the grid programming. Besides, we proposed the
Grid Holo (GHolo), namely, an environment to grid computing that automatically
manages the tree of beings distribution.

One important aspect of Holo is the coordination model, which simplifies the
management of mobility. For this coordination, the Holo model uses a logic
blackboard while GHolo proposes the use of spaces to implement it. Another
important concept is the autonomous management of mobility. Holo model does not
deal with physical distribution so mobility is always at logic level, i.e., between
beings. GHolo execution environment can define what kind of mobility is necessary:
a logical or a physical one. A logical mobility requires changes in history sharing,
while physical also involves objects mobility.

Future works will improve our proposal. One ongoing work [31] aims to propose a
dynamic scheduling of distributed objects, which can be directly used in GHolo.
Optimizations over initial execution kernel are also under development.

References

1. Ait-Kaci, H. Warren’s Abstract Machine – A Tutorial Reconstruction. MIT Press, 1991.
2. Ambriola, V.; Cignoni, G. A.; Semini; L. A Proposal to Merge Multiple Tuple Spaces,

Object Orientation and Logic Programming. Computer Languages, Elmsford, v.22, n.2/3,
p.79-93, July/October 1996.

3. Apt, R. et al. Alma-0: An Imperative Language that Supports Declarative Programming.
ACM Transactions on Programming Languages and Systems, New York, v.20, September
1998.

4. Barbosa, J. L. V.; Vargas, P. K.; Geyer, C. GRANLOG: An Integrated Granularity
Analysis Model for Parallel Logic Programming. Workshop on Parallelism and
Implementation Technology (constraint) Logic Programming, London, 2000.

5. Bosschere, K.; Tarau, P. Blackboard-based Extensions in Prolog. Software – Practice and
Experience, v.26, n.1, p.49-69, January 1996.

6. Brogi, A. AND-parallelism without shared variables. Seventh International Conference on
Logic Programming. MIT Press, p.306-324, 1990.

Multiparadigm Model Oriented to Development of Grid Systems 9

7. Brogi, A.; Ciancarini, P. The Concurrent Language, Shared Prolog. ACM Transaction on
Programming Languages and Systems. New York, v.13, n.1, p.99-123, January 1991.

8. Carriero, N.; Gelernter, D. Linda in context. Communications of the ACM, v.32, n.4,
p.444-458, 1989.

9. Ciampolini, A.; Lamma, E.; Stefanelli, C; Mello, P. Distributed Logic Objects. Computer
Languages, v.22, n.4, p.237-258, December 1996.

10. Ciancarini, P.; Rossi, D. JADA: A Coordination Toolkit for Java.
http://www.cs.unibo.it/~rossi/jada, 2003.

11. Ciancarini, P. Distributed Programming with Logic Tuple Spaces. New Generating
Computing, Berlin, v.12, n.3, p.251-283, 1994.

12. Hanus, M. The Integration of Functions into Logic Programming from Theory to Practice.
Journal of Logic Programming, New York, v.19/20, p.583-628, May/July 1994.

13. Haridi, S. et al. Programming Languages for Distributed Applications. New Generating
Computing, v.16, n.3, p.223-261, 1998.

14. Haridi, S. et al. Efficient Logic Variables for Distributed Computing. ACM Transactions
on Programming Languages and Systems, v. 21, n.3, p.569-626, May 1999.

15. Henz, M. Objects in Oz. Saarbrüchen: Universität des Saarlandes, May 1997. (PhD Thesis)
16. IEEE Transactions on Software Engineering, v.24, n.5, May 1998. (Special Issue on

Mobility)
17. Java. http://www.sun.com/java, 2003
18. Lee, J. H. M.; Pun, P. K. C. Object Logic Integration: A Multiparadigm Design

Methodology and a Programming Language. Computer Languages, v.23, n.1, p.25-42,
April 1997.

19. Meh, M.; Scheidhauer, R.; Schulte, C. An Abstract Machine for OZ. Seventh International
Symposium on Programming Languages, Implementations, Logics and Programs
(PLIP’95), Springer-Verlag, LNCS, September 1995.

20. Muller, M.; Muller, T.; Roy, P. V. Multiparadigm Programming in Oz. Visions for the
Future of Logic Programming: Laying the Foundations for a Modern Successor of Prolog,
1995.

21. Ng, K. W.; Luk, C. K. I+: A Multiparadigm Language for Object-Oriented Declarative
Programming. Computer Languages, v.21, n.2, p. 81-100, July 1995.

22. Nii, H. P. Blackboard systems: the blackboard model of problem solving and the evolution
of blackboard architectures. AI Magazine, v.7, n.2, p.38-53, 1986.

23. Pineda, A.; Hermenegildo, M. O’CIAO: An Object Oriented Programming Model Using
CIAO Prolog. Technical report CLIP 5/99.0 , Facultad de Informática, UMP, July 1999.

24. Proceedings of the IEEE, v.87, n.3, march 1999. (Special Issue on Distributed DSM)
25. Roy, P. V. et al. Mobile Objects in Distributed Oz. ACM Transactions on Programming

Languages and Systems, v.19, n.5, p.804-851, September 1997.
26. Tarau, P. Jinni: Intelligent Mobile Agent Programming at the Intersection of Java and

Prolog. PAAM’9, The Practical Applications Company, 1999.
27. Vargas, P. K.; Barbosa, J. L. V.; Ferrari, D.; Geyer, C. F. R.; Chassin, J. Distributed OR

Scheduling with Granularity Information. XII Symposium on Computer Architecture and
High Performance Computing, Brazil, 2000.

28. Voyager. http://www.recursionsw.com/products/voyager/voyager.asp, 2003
29. Wegner, P. Tradeoffs between Reasoning and Modeling. In: Agha, G.; Wegner, P.;

Yonezawa, A. (eds.). Research Direction in Concurrent Object-Oriented Programming.
Mit Press, p.22-41, 1993.

30. Wegner, P. Why interaction is more powerful than algorithms. Communications of the
ACM, v. 40, n. 5, p.80-91, May 1997.

31. Yamin, A. C. ExEHDA: Execution Environment for High Distriubted Applications.
PPGC/UFRGS, 2001. (PHD proposal)

	Introduction
	Holoparadigm and Hololanguage
	Grid Holo
	Related Works
	Conclusion

