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Abstract. matcont is a matlab continuation package for the inter-
active numerical study of a range of parameterized nonlinear problems.
We discuss a recent addition to the package, namely the continuation of
branch points of limit cycles in three parameters which is not available
in any other package. This includes the exact location of the BPC points
and branch switching. The algorithm is important in the numerical study
of symmetry and we illustrate it in the case of the famous Lorenz model
for the atmospheric circulation.

1 Introduction

Numerical continuation is a technique to compute a sequence of points which
approximate a branch of solutions to F (x) = 0 where F : IRN+1 → IRN .

In particular, we consider a dynamical system of the form

dx

dt
= f(x, α) (1)

with x ∈ IRn, f(x, α) ∈ IRn, and α a vector of parameters. In this setting
equilibria, limit points, limit cycles etcetera can be computed.

matcont provides a continuation toolbox for (1) which is compatible with
the standard matlab representation of ODEs. The package is freely available
at: http://allserv.UGent.be/˜ajdhooge/research.html. It requires mat-
lab 6.*. In [4] we describe the implementation in matcont of the continuation
of the Fold bifurcation of limit cycles, using a minimal extended system, i.e.
we only append a scalar equation to the definition of limit cycles [6]. Here we
discuss the continuation in three parameters of branch points of limit cycles, an
algorithm which is not available in any other package. For general background
on dynamical systems we refer to [8,9]; for the algorithms that involve BPC we
refer to [7].
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2 Mathematical Background on Limit Cycles and Their
Branch Points

2.1 Limit Cycles and Their Branch Points

A limit cycle is an isolated closed orbit that corresponds to a periodic solution
of (1) with period T , i.e. x(0) = x(T ). Since T is not known in advance, it is
customary (cf auto [5], content [10]) to use an equivalent system defined on
the unit interval [0, 1] by rescaling time:{

dx

dt
− Tf(x, α) = 0,

x(0) = x(1).
(2)

To obtain a unique solution the following integral constraint is often used [5,10]:∫ 1

0
〈x(t), ẋold(t)〉dt = 0, (3)

where ẋold(t) is the derivative vector of a previously calculated limit cycle and
is therefore known, 〈x, v〉 is just a different notation for xTv. The left-hand side
of (3) will be sometimes denoted by Intẋold

(x).
If, say, α1 is the control parameter in (1) then a branch point of limit cycles

(BPC) is a solution to (2)–(3) in (x(t), T, α1)-space where the null space of the
derivative operator of (2)–(3) with respect to x(t), T, α1 has dimension greater
than one. Generically, it then has a two-dimensional null space and the solution
to (2)–(3) has two intersecting branches in (x(t), T, α1)-space. The complete
BVP defining a BPC point using the minimal extended system is


dx
dt − Tf(x, α) = 0
x(0) − x(1) = 0∫ 1
0 〈x(t), ẋold(t)〉dt = 0

G[x, T, α] = 0

(4)

where G = (G1T G2T )T is defined by requiring

L




v11 v21

v12 v22

v13 v23

G1 G2


 =




0 0
0 0
0 0
1 0
0 1


 . (5)

Here v1k and v2k are vector functions, G1 and G2 are scalars and

L =




D − Tfx(x(·), α) − f(x(·), α) − Tfα1(x(·), α) w1
0

δ1 − δ0 0 0 w2
0

Intẋold(·) 0 0 w3
0

v11
0 v12

0 v13
0 0

v21
0 v22

0 v23
0 0


 (6)
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where the bordering operators v11
0 , v21

0 , function w1
0, vector w2

0 and scalars
v12
0 , v22

0 , v13
0 , v23

0 and w3
0 are chosen so that L is nonsingular [6,7]. To inter-

pret (6) correctly, note that δav = v(a). The defining system composed of (5)
and (6) can be used to continue the BPC in three control parameters.

3 Numerical Continuation of Limit Cycles

For the numerical continuation of a limit cycle with respect to a control pa-
rameter we discretize the system consisting of (2) and (3); to use a Newton-like
method the Jacobi matrix of the discretized system is also needed. We exploit
the sparsity by using the matlab routines for sparse matrices.

Using the orthogonal collocation described, for example, in [4] we obtain the
discretized BVP (2)–(3) in the form:




(∑m
j=0 xi,j l′i,j(ζi,k)

)
− Tf(

∑m
j=0 xi,j li,j(ζi,k), α) = 0

x0,0 − xN−1,m = 0∑N−1
i=0

∑m−1
j=0 σi,j〈xi,j , ẋi,j

old〉 + σN,0〈xN,0, ẋN,0
old 〉 = 0

The first equation in fact consists of Nm equations, one for each combination of
i = 0, 1, 2, ..., N − 1 and k = 1, 2, ..., m.

In the Newton iterations during the continuation process a system consisting
of theJacobi matrix and an extra row (the tangent vector) is solved. For N = 3
test intervals, m = 2 collocation points and dim(x) = 2 this matrix has the
following sparsity structure (•’s are generically non-zero). This is explained in
more detail in [4].




x0,0 x0,1 x1,0 x1,1 x2,0 x2,1 x3,0 T α1
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • •
• • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •




. (7)



Numerical Continuation of Branch Points of Limit Cycles in MATCONT 45

4 Continuation of BPC Cycles

4.1 Discretization of the BPC Equations

The last equation in (4) expresses that the operator
D − Tfx(x(·), α) − f(x(·), α) − Tfα1(x(·), α)

δ1 − δ0 0 0
Intẋold(·) 0 0


 (8)

that appears as a block in (6) is rank deficient. In the numerical implementa-
tion in matcont and cl matcont we replace this by the condition that the
discretized operator of (8) is rank deficient: G1

d = G2
d = 0. To find Gi

d, we solve

Ld




v11
d v21

d

v12
d v22

d

v13
d v23

d

G1
d G2

d


 =




0 0
0 0
0 0
1 0
0 1


 (9)

where Ld =


[ D − Tfx(x(·), α) ]d [−f(x(·), α)]d [−Tfα1(x(·), α)]d w1
0d

Idim(x) 0n×(Nm−1)dim(x) − Idim(x) 0 0 w2
0d

Int[ẋold(·)]d 0 0 w3
0d

v11T
0d v12

0d v13
0d 0

v21T
0d v22

0d v23
0d 0


 ,

(10)

where the bordering vectors v11
0d, v21

0d, w1
0d and w2

0d and scalars v12
0d, v22

0d, v13
0d, v23

0d

and w3
0d are chosen so that Ld is nonsingular. The structure is similar to that of

(7); however, the bordering rows and columns have a different meaning.
To continue a solution branch of the discretized equations (4), the Jacobi

matrix of the system is needed, which means that the derivatives of Gd with
respect to the unknowns of the system, i.e., with respect to xi,j , T , and the
control parameters α, have to be calculated.

The derivative with respect to z (being a component of xi,j , T or α) is ob-
tained from

Ld




v11
dz v21

dz

v12
dz v22

dz

v13
dz v23

dz

G1
dz G2

dz


 + Jz




v11
d v21

d

v12
d v22

d

v13
d v23

d

G1
d G2

d


 =




0 0
0 0
0 0
0 0
0 0


 .

Simplifying gives

Ld




v11
dz v21

dz

v12
dz v22

dz

v13
dz v23

dz

G1
dz G2

dz


 =




J1 J2
0 0
0 0
0 0
0 0


 .
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where Ji = [Tfx(x(t), α]dzv
i1
d + [f(x(t), α)]dzv

i2
d + [Tfα1(x(t), α]dzv

i3
d , i = 1, 2.

Instead of solving this for every z we solve the transposed equations

(w1T
d , w2T

d , w3
d, w4

d, w5
d)Ld = (0, 0, 0, 1) (11)

where w1
d is a dim(x) × Nm vector, w2

d a dim(x) vector and w3
d, w4

d and w5
d are

scalars. Combining (9) and (11) we find

Gi
dz = w1T

d ([Tfx(x(t), α]dzv
i1
d + [f(x(t), α)]dzv

i2
d + Tfα1(x(t), α]dzv

i3
d ). (12)

So in each iteration step we solve three systems with the structure of (7) or
its transpose.

4.2 Initialization and Adaptation of the Borders

The bordering vectors in (10) must be such that the matrix Ld is nonsingular.
We choose them in such a way that Ld is as well conditioned as possible. This
involves an initialization of the borders when the continuation is started and a
subsequent adaptation during the continuation.

During the initialization the borders must be chosen so that the extension
Ld of O =
 [ D − Tfx(x(·), α) ]d [−f(x(·), α)]d [−Tfα1(x(·), α)]d

Idim(x) 0dim(x)×(Nm−1)dim(x) − Idim(x) 0 0
Intf(x(·),α)d

0 0




has full rank. We first perform an QR orthogonal-triangular decomposition with
column pivoting. The matlab command [Q, R, E] = QR(full(O)) produces a
permutation matrix E, an upper triangular matrix R of the same dimension as
O and an unitary matrix Q so that OE = QR. The column pivoting guarantees
that the QR decomposition is rank revealing and in particular that abs(diag(R))
is decreasing. Since O has rank defect 1, the last element on the diagonal and the
bottom right element of R should be zero (up to approximation). The borders
[v11T

0d v12
0dv13

0d] and [v21T
0d v22

0dv23
0d] in (10) are chosen as an orthogonal base for the

null space of O. If p is a two-column matrix that spans this null space, then from
Op = 0 follows that RETp = 0. Setting the bottom right element and the last
element on the diagonal of R to zero, we obtain



∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗

. . . . . . ∗
0 0 0 . . . ∗ ∗ ∗
0 0 0 . . . 0 0 0




ETp =




0 0

0 0




By imposing some structure on ETp we get
R1 b1 b2

0 0 0







p1 p2

1 0
0 1


 =


0 0

0 0


 .
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or
R1(p1 p2) = −(b1 b2)

where R1 is a nonsingular square upper triangular matrix. So [v11T
0d v12

0dv13
0d] and

[v21T
0d v22

0dv23
0d] in (10) are initially chosen as the normalization and orthogonaliza-

tion of E[(R1\[−b1, −b2]); eye(2)] where eye(2) is the 2-by-2 identity matrix. We
choose this column as the bordering column [w1T

0d w2T
0d w3

0d]
T in (10). This choice

of the borders in (10) makes the bordered matrix nonsingular.
The borders [v11T

0d v12
0dv13

0d] and [v21T
0d v22

0dv23
0d] are adapted by replacing them

by the normalized and orthogonalized [v11T
d v12

d v13
d ] and [v21T

d v22
d v23

d ] in (9). The
borders w1

0d, w
2
0d and w3

0d in (10) are adapted by solving the transposed equations
and replacing them respectively by the normalized and orthogonalized w1

d, w2
d

and w3
d in (11).

5 BPC Cycles on a Curve of Limit Cycles

Generically, i.e. if no symmetry is present, then BPC are not expected on curves
of limit cycles. However, they are common if the system has symmetry. The
location and processing of BPC in that case requires a special treatment.

5.1 Branch Point Locator

Location of BPC points in as zeros of some test functions causes numerical
difficulties because no local quadratic convergence can be guaranteed (see [3] in
the case of equilibria). This difficulty is avoided by introducing an additional
unknown β ∈ IR and considering the minimally extended system:


dx
dt − Tf(x, α) + βp1 = 0
x(0) − x(1) + βp2 = 0∫ 1
0 〈x(t), ẋold(t)〉dt + βp3 = 0

G[x, T, α] = 0

(13)

where G is defined as in (5) and [pT
1 pT

2 p3]T is the bordering vector
[w1T

0d ; w2T
0d ; w3

0d]
T in (10) calculated as in §4.2. We solve this system with re-

spect to x, T, α1 and β by Newton’s method with initial β = 0. A branch point
(x, T, α1) corresponds to a regular solution (x, T, α1, 0) of system (13) (see [1],
p. 165).

5.2 Processing of the BPC

The tangent vector v1st at the BPC singularity is approximated as v1st = v1+v2
2

where v1 is the tangent vector in the continuation point previous to the BPC
and v2 is the one in the next point. To start the continuation of the secondary
cycle branch passing through the BPC point, we need an approximation of the
tangent vector of the secondary branch. We choose the vector which is in the
space spanned by p = [p1p2] obtained in §4.2 as an orthogonal base for the null
space of O and orthogonal to the tangent vector to the primary branch.
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6 An Example

Consider the Lorenz model [11] where x, y and z are state variables and r, σ and
b are parameters: 


ẋ = σ(−x + y)
ẏ = rx − y − xz
ż = −bz + xy.

(14)

This problem satisfies the equivariance relation with respect to a group of
two transformations, i.e. {I3, S}, where S = Diag(−1, −1, 1). As in the Tutorial
to content[10], we compute an orbit starting from the point (0, 50, 600) at
σ = 10, r = 400 and b = 8

3 and start a limit cycle continuation with respect
to the control parameter r from the converged closed orbit. This is clearly a
branch of S-symmetric periodic solutions of (14), see Fig. 1(a). We detect a
BPC at r = 312.9735 . . .. We continue in r the secondary cycle branch passing
through the BPC point. From Fig. 1(b) it is clear that for the secondary cycle
the S-symmetry is broken. To compute the branch of BPC points with respect
to r through the BPC point with control parameters r, σ we need to introduce
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an additional free parameter that breaks the symmetry. We choose to introduce
a parameter ε and extend the system (14) by simply adding the term ε to the
right-hand side of the first equation in (14). For ε = 0 this reduces to (14)
while for ε �= 0 the symmetry is broken. Using the code for the continuation of
generic BPC points with three free parameters r, σ, ε we continue the curve of
non-generic BPC points, where ε remains close to zero (1e − 8). The picture in
Fig. 2 clearly shows that the symmetry is preserved.
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