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Abstract. The dynamic mathematical models were greatly developed to
describe the motion of the sucker-rod pumping system since 1960s and various
mathematic models based on different assumptions were presented. This paper
does a study in three sides. First, a mathematical model is presented to describe
the sucker-rod string with longitudinal and transverse vibrations, and coupled
with longitudinal vibration of the tubing and fluid columns in a deviated well.
Second, the relations of several kinds of mathematical models in sucker-rod
pumping systems are discussed, and the model made in this paper, when based
on different assumptions, can become different models made by people these
years, which are presented in important references. Third, a method of
characteristics is used to transform the set of partial differential equations which
describe the vibration of the sucker-rod string, and coupled with vibrations of
tubing and liquid columns in the sucker-rod pumping system. Through the
transformation, a diagonal partial differential equations set is obtained. Hence a
relatively complex model is transformed into a reduced model which is easy to
solve. This model has basic meaning for using the technique of pattern
recognition to make automatic diagnosis of sucker rod pumping system.

1   Introduction

Rod pumping is still the most widely used means for artificial lift in oil wells, so ever
since 1960s, people lay great emphasis on the mathematical methods of predicting,
designing and diagnosis of the sucker-rod pumping systems.

Gibbs(1963)[1] made a 1D mathematical model for the vibration of the sucker
rod, which is comprised with a second-order partial differential equation including
boundary conditions. Doty and Schmidt(1983)[2] presented a composite model in
which both rod string dynamics and fluid dynamics are coupled to account for viscous
damping, which was comprised of four first-order equations with four unknown
variables, boundary conditions and initial conditions. In the paper of Wang et al.
(1992)[3], a set of six equations governing the vibration of the sucker-rod string,
tubing and liquid columns in the sucker-rod pumping system are presented.

All these three models stated above are for vertical wells. At present many wells
are designed as deviated wells. Lukasiewicz(1991)[4] presented a model of sucker-
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rod string with longitudinal and transverse displacements in a inclined well. Gibbs
(1992)[5] studied the situation that sucker rod is crooked, but he assumed the
transverse displacement was ignored, for the transverse displacement of the rod was
constrained by the tubing. The wave equation about the rod with longitudinal
displacement that Gibbs presented took the crooked wells into consideration. Xu and
Mo(1993, 1995)[6,7] made a 3D model of vibrations of sucker-rod string. Li et al.
(1999)[8] made a set of equations describing the 3D vibration of the sucker rod beam
pumping system.

The models stated above didn’t take the movement of the fluid column into
consideration. On the basis of the work stated above, this paper presents a set of first-
order partial differential equations and the concerning boundary and initial conditions.
The equations describe the 2D vibration of rod string, the longitudinal vibration of
tubing column and coupled with the displacement of the fluid column in the
directional and horizontal wells. In these equations, three of them are geometry
equations can be solved through the method dealing with non-dynamic problems, the
other six first-order partial differential equations are a set of quasi-linear hyperbolic
equations, they are dynamic equations, but can be reduced to diagonal equations, that
is to make each equation be a partial deviation equation containing only one unknown
variable.

2 Analysis of the Geometry Relations and Forces Acting on the
Spatially Curved Rod

2.1   Geometry Equations of Spatial Curve

We build a spatial rectangular coordinates END (see Fig.1 )for the spatial crooked
sucker-rod at the well bore, take a rod element of length Δs and build a natural
coordinates t1 t2 t3 at the center ofΔs. t1 is the tangent unit vectors of the elementΔs ,
t2 is the principal unit normal vectors
and t3 is the subnormal unit normal
vectors. The Frenet equations is:
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where k ,τ are the curvature and
buckling of the well axis curve and
r the position vector of the point on
the curve .

Fig. 1. Forces on rod element
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2.2   The Analysis of Forces Acting on the Element of Curved Rod

Let the internal forces, force moments and external forces acting on element of the
curved rod and the displacement of the centroid of the element in the natural
coordinates respectively be presented as follows:
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We can obtain the following force equilibrium equations and moment equilibrium
equations:
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where m is the mass of unit length rod (kg) , and ρAm = , where A  is the rod cross-

sectional area (m2) , ρ is the rod material density (kg/m3) .Let AE be dragging

stiffness of the rod ( 2mN⋅ ), IE be bending stiffness of the rod (N). If the effects of

twisting moment are ignored, the constitutive equations describing the relations
between the internal forces acting on the rod element of length and deformation are
obtained:
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3 Partial Differential Equations Describing the Movement of
Suck-Rod String and Tubing and Fluid Columns in the
Directional and Horizontal Wells

3.1   Fundamental Assumptions

(1) The well bore is considered as planar curve.
(2) The sucker-rod only has longitudinal and transverse vibrations in a plane, i.e.u3=0.
(3) The cross-section of the sucker rod is round.
(4) The sucker rod string is concentric with the well bore.

According to these assumptions, from Eq. (4), we get M2 =0, from the second

equation of (3), we get 01 =
∂

∂
s

M
.
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3.2  Partial Differential Equations Describing Motions of Rod String and
Tubing Column

Based on fundamental assumptions, we expand Eq.(3) and take the derivative of the
second equation of Eq.(3) with respect to s, then apply the principal of vector
derivation and Eq.(4), we obtain:
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where rk  is the plane curvature of the rod ( /m1 ), rm is mass of the unit length of the

sucker rod ( kg ), ArE the dragging stiffness (N), IrE the bending stiffness ( 2mN⋅ ).

The curvature causes the lateral displacements of the rods between the two guides,
so the relations between the transverse displacement and internal force of the sucker
rod can be described by the last two equations of Eq.(5). As for the tubing, it has the
same expressions as Eq.(5).
Considering the computing precision of the moment of the tubing, we ignore the
transverse displacement of the tubing, the last two equations of Eq.(5) can become a
geometry equation. In the following discussion the subscribe t  refer to tubing
property, then we can obtain the differential equations describing vibrations of the
tubing:
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3.3  1D Flow Equation of the Fluid

As for the flowing fluid of the tubing, we assume fluid column contains no gas,
though the well bore is a curve, the movement of the fluid is still 1D flow. Let fρ be

the density of the fluid (kg/m3) at the point of s and at the time of t ; and the functions
of velocity (m/s) and pressure (N/m2) of the fluid are respectively represented by the
variables of fv and fp . So the equation of continuity of the fluid, Euler motion

equation and the state equation are presented as follows:
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where fq is the external forces acting on the fluid column of per unit length

(including forces by the sucker rod string , rod coupling and tubing ), rA  is the cross-

sectional area of the sucker rod and tA  the inner cross-sectional area of the tubing

(m2). The equation of fluid state shows that the pressure fp is only related with

density fρ , and according to the physical meaning, 0
d

d >
ρ
p , so define
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fρ has the representation:
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or the approximate expression of Eq. (9):

           )](1[ 00 ppC ff −+= ρρρ                                (10)

where 0ρ , 0p are respectively the density and pressure of the fluid in the standard

state, ρC is the relative increment of the density when the pressure increases one unit,

i.e. elastic condensation coefficient of the density of the fluid. Let

         )(/ rtfff AAqQ −= ρ                                                     (11)

Using Eqs. (8) and (11) , Eq. (7) becomes the following equations:
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4 Analysis of External Forces Acting on the Rod String and
Tubing and Fluid Columns

Through the effects of the fluid viscosity resistance, lateral extrusion stress, coulomb
friction and gravity caused by the periodic motion of the sucker rod, the sucker rod
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string, tubing column and fluid column comprises a system of motion. These forces
are expressed as follows:

αλη cos)( 111 mgvsignqvq rNrr +−−=                                (13)

αϕη sincos22 mgqvq Nrr −+−=                                         (14)

where η is viscous damping coefficient of the fluid, rm is the mass of the unit length

rod, ϕ is the angle between lateral extrusion stress and the principal normal vector,

λ is friction factor, Nq is lateral extrusion stress between the rod and the tubing[7],

α is the angle between the tangent of the element of the curved rod and vertical. Here
the viscosity resistance is comprised of two parts, one is the viscosity resistance
between fluid and the sucker rod, the other between the fluid and the coupling of the
rod, and also:

             αλη cos)(1 mgvsignqvq tNtt +−−=                                (15)

             αϕ sincos2 gmqq tNt −=                                         (16)

where η , λ , Nq  is the same as which is stated above, but the difference is there is no

term of viscous resistance in Eq. (16), and tm is the mass of the unit length rod.

The force fq in Eq. (7) has the representation as follows:

             trrtff vvgAAq ηηρ ++−−= 1)(                                    (17)

1rvη , tvη of Eq. (17) has the contrary sign with the corresponding term of Eqs. (13)

and (15), this shows that the viscous resistance acting on the rod string and tubing
column has the reaction to the fluid.

5 Boundary and Initial Conditions

The boundary and initial conditions are very important, the former determines if the
solution can correctly describe the motion stated, and the correct choice of the latter
can make the computing program converges to its periodic numeric solution of
stationary state as fast as possible. Papers [1], [2], [3] and [7] made deep study about
the boundary and initial conditions and presented useful conclusions. This paper
applies those results.
As for the diagnosis, the surface boundary conditions are
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where )(1 tf is the measured loading function of the polished rod, )(1 tv is the velocity

of the polished rod , is ( Ni ,,2,1= ) represents placing a rod guide where iss = , and
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0p  represents tubing head pressure and is constant in most of the cases. As for the

predicted model, we should consider the boundary conditions in the place of oil-well
pump, see paper [3].

The correct choice of the initial conditions can make the computing program
converges to its periodic numeric solution of stationary state as fast as possible, so
refer to papers [2] and [3], we make discrete transform along the axes of the well for
the initial conditions given in the papers, and obtain the initial conditions for this
model.

6 Characteristic Transform of the Partial Differential Equations
Set

The first two equations of Eq. (5), Eq. (6) and Eq.(12) comprise a equations set about
the unknown variables of 1rv , 1rf , tv , tf , fv and fρ . We apply the theory of

characteristic for the quasi-linear hyperbolic partial differential equations set to
transform the six equations into a diagonal equations set about the variables of

1w , 2w , 3w , 4w , 5w and 6w .
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where 0fρ is the density of the fluid when 0pp = and 0p is the tubing head pressure.

The Eq. (19) is easy to solve applying the difference method.

7 Conclusions

The model presented in this paper is the basic model for the directional and horizontal
wells, it takes the longitudinal and transverse vibrations of the sucker rod into
consideration, and also considers the coupled motions of rod string and tubing and
fluid columns. So it is a relatively accurate model simulating the dynamic behavior of
the sucker-rod system.
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This is a basic model and concentrates the characters of some principal
mathematical models of the sucker-rod system. When the curvature of the well bore

0=k , the mathematical model becomes the model for the coupled vibrations of the
rod string and tubing and fluid column in the vertical well[3]. If we further consider
the tubing is anchored, and assume the tubing is rigid, the model describing the
coupled vibrations of the rod string and fluid column in the vertical well is
obtained[2]. If the fluid is assumed as non-condensable, the wave equation of the
vibration of the sucker-rod in the vertical well is obtained[1].

As for the mathematical model about the directional and horizontal well, if we
assume the fluid is non-condensable, and assume the tubing is anchored and rigid, we
can obtain the mathematical model about the 2D vibration of the sucker rod in the
directional and horizontal well[4,5].

Finally, according to the characteristic deformation we have done, as the Eq. (19)
shows, it is also easily-solving model.
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