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Abstract. The paper addresses the problem of using contextual infor-
mation by neural nets solving problems of contextual nature. The model
of a context-dependent neuron is unique in the fact that allows weights
to change according to some contextual variables even after the learning
process has been completed. The structures of context-dependent neu-
ral nets are outlined, the Vapnik-Chervonenkis dimension of the single
context-dependent neuron and multilayer net shortly discussed, decision
boundaries are analyzed and compared with the traditional nets. The
main goal of the article is to present highly effective contextual training
algorithms for the considered models of neural nets.

1 Introduction

The phenomena and objects in real world can rarely be considered in isolation.
The parameters describing them often change according to some environmental
conditions, called the context. A learning machine, dealing with such systems
should take the information about the context into consideration in order to
improve its performance obtained using only the primary features of the ana-
lyzed object. The paper presents a novel way of context-sensitive learning for the
neural network approach. A brief discussion will be presented on how context-
dependent neural nets (CD-nets) use contextual data (analysis of various con-
textual approaches towards machine learning may be found in [I], the definitions
of contextual variables and methods of managing contextual information may
be found in [2[3]).

Many algorithms have been developed for improving the training process of
neural nets, their generalization abilities or optimizing the nets’ architecture.
However, few of them intrude the neuron’s model itself in order to enrich its
processing abilities. Although neural nets are proved to be able to perform any
input-output mapping with the desired accuracy, provided they are complex
enough and given enough training data, the need is clear for designing less com-
plex networks and more appropriate for the problems to be solved.
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The model of a context-dependent neural net, introduced in [45], developed
in [I], and presented in this paper proves to be useful for applications of neural
nets in problems showing contextual dependencies among data. It is based on
the ideas of contextual learning of nonlinear mappings, presented in [6], [7], [8]
and [9], and applied for tasks of robot arm control and classification of ECG
signals. It is a generalization of the traditional neuron’s model, however, as
shown in the paper:

1. more appropriate for contextual learning,

2. of higher Vapnik-Chervonenkis dimension (better processing abilities),

3. using its abilities more efficiently than just considering the growth with the
number of parameters,

4. using the Kronecker product of the vectors of primary inputs and contextual
basis functions, what simplifies the standard training algorithms and allows
developing highly effective contextual learning algorithms.

Generally speaking we define the context as all the factors that should in-
fluence (improve) the decision making (or other kind of information processing)
performed by the learning algorithm, but other from the data on which the de-
cision is taken (or which are directly processed). Contrary to the traditional
models of neural nets, the contextual approach makes distinction between these
two groups of features and takes contextual dependencies between them into
consideration in order to improve the process of machine learning. The division
of features into these two groups is a separate problem and subject of research,
not covered in this paper.

2 Models of Context-Dependent Nets

2.1 Model of a Context Dependent Neuron

Unlike the traditional neural net, the CD-net does not transform the primary
and contextual features equally. It groups primary and context-sensitive inputs
in the primary input vector X, operates on them similarly as the traditional net,
although making the weights to the primary inputs functionally dependent on
the vector of contextual inputs Z. Consider a neuron model of the form

S
y==2 |w (Z) + Y ws(Z)z, (1)

where x, denotes the s-th primary input, ¥ is the neuron’s output, Z denotes the
vector of contextual variables, while @ is the activation function. The neuron’s
weights to the primary inputs, and the offset, depend on the vector of contextual
variables as follows:

M
we =wy (Z) = Y aymvm (Z) = A, V (Z) 2)
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s=0,1,...,S, where V (2) is the vector of independent basis functions, com-
mon for all the net, spanning the weights’ dependence on the context, and A
is the vector of coefficients for weight w, (2) The model is presented in fig. [T]
where also the Kronecker product of primary input vector and the vector of basis
functions of contextual inputs is shown.

Fig. 1. Context-dependent neuron

2.2 Architectures of Context-Dependent Nets

A neural net may be used to solve a problem characterized both by primary and
context-sensitive features. The former are useful for solving the task even when
considered in isolation, regardless of their context. The latter require adapting
the way of processing them to the contextual data. Therefore one may think
of a hybrid net, in which some weights (for connections to context-sensitive
inputs) are context-dependent and others (for connections to primary inputs)
are traditional (constant after training, that is the same in all the contexts).
If some additional knowledge of the problem being solved suggests using tradi-
tional weights, the net’s designer may simply set some of the basis functions or
coefficients for these weights to zero. It is also advisable to analyze the weights’
change throughout the contexts when the learning process is completed in order
to recognize the weights which should be constant. Different structures of hybrid
nets are presented in [I].

2.3 Context-Dependent Feedforward Net

As in traditional nets, one can build more complicated structures made of single
context-dependent neurons, particularly the common feedforward net. The pa-
rameters of context-dependent nets are stored in the vectors of coefficients for
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each weight. It is advisable to construct the weight matrix for the whole layer
of neurons in the following way:

51,0 Ez,o EK,O
A Ay Axa
: C (3)
Ais Azs Ax.s 1 sinymxx
where A, is the vector of coefficients for the k-th neuron, built of vectors K;w
of coefficients for the weight wy s (Z) (that is k-th neuron’s weight to the s-th
input). Such an organization ~of the net’s parameters makes it possible to write
the output of the net’s layer Y in a clear form as:

Y(X2) -0{a" XaV (7))} (4)

3 Properties of Context-Dependent Nets

The properties of traditional and context-dependent nets shall be compared
in this section. The Vapnik-Chervonenkis dimension of both types of learning
machines and the discriminating boundaries produced by them in their input
space will be considered.

3.1 The Vapnik-Chervonenkis Dimension of CD-Nets

The Vapnik-Chervonenkis dimension is one of the quantities used in machine
learning theory for estimating their generalization abilities and the effectiveness
of learning. The idea of the growth function and VC-dimension is well presented
in [10]. The parallel theory of the VC-dimension for context-dependent nets is
developed in [I]. Here we shall present the main results and conclusions.

The VC-dimension of a traditional perceptron using S primary inputs is equal
to the number of its adjustable parameters, that is S + 1.

In non-contextual approach the traditional perceptron is supplied with only
primary features of the data (it is common for the donors of many datasets to
exclude contextual information as irrelevant). Then a neuron with S inputs is
able to dichotomize S + 1 points in its S-dimensional input space. If we also
supply the neuron with information about the context of these points (encoded
on P inputs and added to the S primary inputs already being used), then the
neuron is able to dichotomize S + P + 1 points in the joint input space. In both
cases the neuron’s parameter space is of the same dimensionality as its input
space.

The Vapnik-Chervonenkis dimension of a real weight context-dependent per-
ceptron with S € N real primary inputs, using the basis function vector V' (2)
consisting of M independent basis functions v, (2), m=1,2,..., M, is given
by

VCdim (Hcont> = M(S+1) (5)
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This result follows from the fact that for the above context-dependent neuron it
is possible to find M (S +1) (at most S + 1 in the same context, that is with

the same contextual vector Z) points in its input space, for which the neuron is
able to perform all the dichotomies.

3.2 Separating Power of Traditional and CD-Nets

The separating abilities of both traditional and context-dependent neurons are
strictly related to their parameter space. The dimensionality of the traditional
neuron’s parameter space is equal to the number of weights W. Analogically, for
the context-dependent neuron it is equal to the number of coefficients A = MW.

The context-dependent neuron produces a discriminating hyperplane in its
A-dimensional, that is M (S + 1)-dimensional parameter space. This hyperplane
is in fact a hypersurface in the S 4+ P + 1-dimensional input space. This leads
to much more adjustable decision boundaries which context-dependent multi-
layer nets are able to produce in the joint input space. Therefore they are more
powerful in classification tasks of contextual nature. Examples of discriminating
hypersurfaces in a joint input space (including two primary and one contextual
features) are presented in fig. @l The hypersurfaces are lines for a fixed value
of the contextual variable, as context-dependent neuron is a generalization of
the traditional one and in the fixed context has the same properties. These dis-
criminating lines may however much more flexibly change from one context to
another.
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Fig. 2. Examples of discriminating hypersurfaces of context-dependent nets

The discriminating boundaries of traditional neurons are only hyperplanes in
the joint input space. Nonlinear boundaries, more complicated in the contextual
domain, must be modeled by a mixture of hyperplanes, that is by more neurons
in the hidden layer of multilayer traditional net. Therefore both the decision
boundaries, as well as their change through the contexts, have to be modeled
by hidden layer’s neurons of a traditional net. In context-dependent multilayer
nets these two tasks are divided between the primary structure of the net (the
weights) and the contextual structure (dependence of weights on the context).
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Another advantage of context-dependent nets is the fact that contextual infor-
mation modifies the weights of all the layers, modifying the behavior of the whole
net according to the context. In traditional ones contextual data is supplied only
to the first layer.

The Vapnik-Chervonenkis dimension of multilayer CD-nets grows similarly
to traditional nets, that is with the number of net’s parameters. However, the
separating abilities of context-dependent nets are more evenly distributed be-
tween different contexts than for a traditional net of the same VC-dimension.
The net’s designer may also increase the VC-dimension by adding more basis
functions. Not the growth of the VC-dimension should however be emphasized,
but the effective use of the parameters space in order to obtain good generaliza-
tion abilities of context-dependent nets in all the contexts.

As the interest in improving the learning machines performance by using
contextual information grows, the models of context-dependent neural nets prove
to be effective in solving tasks with contextual dependencies between the input
data. An example of using a context-dependent neural net to modeling a highly
nonlinear magnetorheological damper may be found in [I1].

4 Training Context-Dependent Nets

Two algorithms for training multi-layer feedforward context-dependent nets are
presented in this section: the backpropagation rule and contextual version of
the Levenberg-Marquardt algorithm based on calculation of the error function’s

Hessian. A more thorough analysis of neural nets’ training algorithms may be
found in [IJ.

4.1 Context-Dependent Training with Backpropagation

Due to the appropriate construction of the net’s coefficient matrix, the gradi-
ent based training algorithms are clear and their computational complexity is
comparable to the one of traditional nets. For the net’s output given by (@) the
gradient (with respect to the coefficient matrix) of the following error function

o~ = 2 < T (7112
Exzy) 27 (Y) =W (2) X]" = Egzv) {7 (Y) - AT X2 V(Z)]}

(6)
where F is the expectation with respect to random variables specified below this
operator, is given by

VaExzy)=—{v(Y)-AT- XeV(Z)]} XeV(Z)] O

The backpropagation algorithm of training multi-layer context-dependent nets is
similar to the one for traditional nets. It is derived and analyzed in detail in [I].
Here we shall give the final formula for the standard external error function’s
gradient (actual for the output layer’s neurons and estimated for the hidden
layers’ neurons). The gradient is given as a vector for all neurons in the I-th
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layer of the net (gradient of the error function E with respect to the I-th matrix
coefficient matrix AY), given by (@) for each layer):

= _0E 1 =) —0) < _ = (50
VanB=gam =, D o@ o X eV (27)) (®)
where for the output layer ﬁ(L) = ?&L) — ?(L) and for the hidden layer ﬁ(l) =

w(th (Z”“)) D" oa(lﬂ) L is the number of layers in the net, while Kj is

|nobias

—(L
the number of neurons in the [-th layer and YEI ) is the vector of desired outputs,

— (). . . . . .
@’ ( )1s the vector of [-th layer neurons’ activation functions’ derivative.

4.2 Efficient Training with Hessian-Based Algorithms

The use of the Kronecker product in the above formulas is the key for developing
effective Hessian-based training algorithms for context-dependent nets. One of
them is the contextual version of Levenberg-Marquardt algorithm derived in [I].
Here we shall present the main results. The approximation of the inverse of the
Hessian matrix (with respect to the k-th neuron’s coefficient vector) of the error
function given by () for a sequence of N training examples may be calculated
as

ny - L {Z KoV )]-[Xn®V(Zn>]T} o)

where subscript n denotes a value for the n-th training example, ey, ,, is the k-
the neuron’s error. If all the examples from the sequence come from the same
context group (have the same or similar values of the vector of basis functions,
here denoted as V (ZN)), we may approximate the Hessian’s inverse as

-1
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The algorithm allows to reduce the computational complexity of training
from O (W3M3) to O (W3 + M3). As in most nets M < W, the computational
effort of context-dependent net’s learning is a little higher than for the traditional
net of the same number of weights (thus the M times lower VC-dimension).
The estimations give the possible training improvement of 10 to 1000 times
(compared with traditional nets of the same VC-dimension, that is processing
abilities) depending on the net’s structure in traditional and contextual domain
(the proportion of the number of weights to the number of basis functions).
Let us notice that this computational gain is achievable only by applying the
appropriate training algorithms and does not include the better convergence of
net’s parameters, expected from the better fitting of net’s model to the model
of the problem.

The presented algorithm is simple to apply as it is based just on the proper
organization of training data into contextual groups containing examples of the
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same (or comparable) value of contextual variables. Using samples from the same
group in each training epoch (while mixing the examples from different groups
between epochs) we may substitute the most operation demanding process of
inverting the Hessian matrix with the inversion of two smaller matrices.

5 Conclusions

It has been shown that context-dependent neural nets, being the generalization
of traditional nets, have better transformation abilities and are able to use their
Vapnik-Chervonenkis dimension more efficiently than just with the growth of
the net’s size. The gradient-based training algorithms presented in the paper
are of the comparable computational complexity than the ones for traditional
nets. The original algorithms, using the properties of the Kronecker product for
Hessian inverse calculation, improve the efficiency of training.
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