
An Adaptive, 3-Dimensional, Hexahedral Finite
Element Implementation for Distributed

Memory

Judith Hippold1�, Arnd Meyer2, and Gudula Rünger1

1 Chemnitz University of Technology, Department of Computer Science,
09107 Chemnitz, Germany

{juh,ruenger}@informatik.tu-chemnitz.de
2 Chemnitz University of Technology, Department of Mathematics

09107 Chemnitz, Germany
a.meyer@mathematik.tu-chemnitz.de

Abstract. Finite elements are an effective method to solve partial dif-
ferential equations. However, the high computation time and memory
needs, especially for 3-dimensional finite elements, restrict the usage of
sequential realizations and require efficient parallel algorithms and im-
plementations to compute real-life problems in reasonable time. Adap-
tivity together with parallelism can reduce execution time significantly,
however may introduce additional difficulties like hanging nodes and re-
finement level hierarchies. This paper presents a parallel adaptive, 3-
dimensional, hexahedral finite element method on distributed memory
machines. It reduces communication and encapsulates communication
details like actual data exchange and communication optimizations by a
modular structure.

1 Introduction

Finite element methods (FEM) are popular numerical solution methods to solve
partial differential equations. The fundamentals are a discretization of the physi-
cal domain into a mesh of finite elements and the approximation of the unknown
solution function by a set of shape functions on those elements. The numeri-
cal simulation of real-life problems with finite elements has high computation
time and high memory needs. Adaptive mesh refinement has been developed
to provide solutions in reasonable time. However, there is still need for paral-
lel implementations, especially for 3-dimensional problems as considered in this
paper.

The basis of an efficient parallel implementation is a sophisticated algorith-
mic design offering a trade-off between minimized data exchange, computation
overhead due to parallel realization, and memory needs. The actual parallel
implementation furthermore requires optimized communication mechanisms to
� Supported by DFG, SFB393 Numerical Simulation on Massively Parallel Computers

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3037, pp. 146–154, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Adaptive, 3-Dimensional, Hexahedral Finite Element Implementation 147

achieve good performance. The main problems to address for adaptive, hexa-
hedral FEM are irregular structured meshes and hanging nodes: An adaptively
refined mesh spread out across the address spaces of several processes requires
to keep information about the different refinement levels of neighboring volumes
owned by different processes. Furthermore, hanging nodes caused by hexahe-
dral finite elements require several projections during the solution process. Both
characteristics lead to high communication needs with irregular behavior. The
parallelization approach presented in this paper reduces the number of sent mes-
sages by a special numerical design for solving the system of equation which we
adopt from [1], [2], and [3] and by a specific communication mechanism. The
advantages of the proposed parallel realization are: (a) a reduced number of mes-
sages due to the separation of communication and computation and duplicated
data storage and (b) the possibility for internal optimizations without modifying
the original FEM implementation which is reached by a modular structure. An
interface for using the communication mechanism is provided.

The paper is organized as follows: Section 2 gives a brief overview of the
FEM implementation. The parallel numerical and implementation approaches
are introduced in Section 3. Section 4 presents our parallel realization in detail.
Experimental results are given in Section 5 and Section 6 concludes.

2 Adaptive, 3-Dimensional Finite Element Method

The software package SPC-PM3AdH [4] implements the adaptive, 3-dimensional
finite element method with hexahedral elements and solves 2nd order elliptic
partial differential problems like the Poisson equation (1) or the Lamé system of
linear elasticity (2).

Lu := −∇ · (A(x)∇u) + cu = f in Ω ⊂ IR3, A(x) = diag(ai)3i=1 (1)

u = u0 on ∂Ω1, ntA(x)∇u = g on ∂Ω2

− µ∆u − (λ + µ) grad div u = f in Ω ⊂ IR3, u = (u(1), u(2), u(3))t (2)

u(i) = u
(i)
0 on ∂Ω

(i)
1 , t(i) = g(i) on ∂Ω

(i)
2 , i = 1, 2, 3

The program uses h-version finite element analysis where refinement of the el-
ements is done according to the estimated error per hexahedron. Finite elements
with linear, quadratic, and tri-quadratic shape functions are realized. The finite
element method implemented by SPC-PM3AdH is composed of 5 phases:
Phase I: The first phase creates the initial mesh from an input file. A mesh
consists of a hierarchy of structures. The most coarse-grained structure is the
volume which represents a hexahedral finite element. Volumes are geometrically
formed by 6 faces and each face is composed of 4 edges. Edges connect two
vertices and a mid-node. Nodes are the most fine-grained data structure. They
store information about coordinates and the solution vector. To keep track of
the development of the adaptively refined mesh there is an additional hierarchy
implemented for faces and edges to express the parent-child relation.

148 J. Hippold, A. Meyer, and G. Rünger

Phase II: Volumes are subdivided into 8 children according to the estimated
error and geometrical conditions. Adaptive refinement may lead to different sub-
division levels. The difference of those levels for neighboring volumes is restricted
to one which causes additional iterative refinement.
Phase III: To facilitate a parallel implementation the global stiffness matrix
is subdivided and an element stiffness matrix is assigned to each volume. The
element stiffness matrices are assembled for newly created volumes by the third
phase of the program.
Phase IV: The system of equations is solved with the preconditioned conjugate
gradient method (PCGM). For preconditioning a Jacobi, an Yserentant [5], or a
BPX [6] preconditioner can be selected.
Phase V: In the last phase the error is estimated with a residual based error
estimator [7]. If the error for a volume deviates within a predefined threshold
value from the maximum error, it is labeled for refinement.

3 Parallelization Approach

The parallelization approach assigns finite elements to processes. Thus the cor-
responding data for each volume representing a finite element are distributed
among the address spaces of the different processes. For the parallel realization
three main problems have to be solved: the management of shared data struc-
tures, the minimization of communication needs, and the consistency of different
refinement levels.

3.1 Shared Data Structures

Neighboring volumes share faces, edges, and nodes. If two neighboring volumes
are situated in different address spaces, the shared data structures are dupli-
cated and exist within the memory of each owner process, which allows fast
computation with minimal communication. Vector entries for duplicated nodes
exist several times (see Figure 1) and contain only subtotals which have to be
accumulated to yield the total result. [8] presents an approach distributing the
nodes exclusively over the address spaces.

Computations on duplicated data structures require the unique identification
of the different duplicates. For that reason we introduce the tuple Tup(Identifier,
Process). Identifier denotes a local data structure of type face, edge, or node
and Process denotes the number of the process that owns the duplicate. The
tuple Tup is used to implement coherence lists. Each duplicated data structure
is tagged with a coherence list which contains the identification tuples of all
existing duplicates of that structure.

3.2 Minimization of Communication Needs

Numerical approach: The discretization of Formulas (1) or (2) with nodal
shape functions yields the linear system V u = b where the global stiffness

An Adaptive, 3-Dimensional, Hexahedral Finite Element Implementation 149

matrix V and the global right-hand-side vector b contain problem describing
data and the solution vector u has to be calculated. Each process owns only
element stiffness matrices Vs and element right-hand-side vectors bs of its
volumes, parts of the solution vector, and parts of the main diagonal which
is necessary for applying the preconditioners. As introduced in Subsection 3.1
data shared by different processes require global accumulation of partial results.
To keep the communication overhead low especially during solving the system
of equation we distinguish between data requiring accumulation, e. g. the main
diagonal and the solution vector, and data which can be used for independent
calculations performed by the distinct processes as Vs and bs (see also [2]).
Our parallel preconditioned conjugate gradient algorithm working mainly on
unaccumulated data and therefore reducing communication is described in the
following:
Start:

Produce usfrom u,

rs := Vsus − bs,

γold := 0.0

Iterate until convergence:

(1) w := C−1r

(2) γs := rT
s ws, γ :=

p∑

s=1
γs, if γold > 0 : β := γ/γold, γold :=γ

(3) ss := ws + βss

(4) ws := Vsss

(5) αs := wT
s ss α :=

p∑

s=1
αs, α := −γ/α

(6) us := us + αss

(7) rs := rs + αws

Communication mechanism: Due to the special algorithmic design the ex-
change of data within a computational phase can be delayed and performed at
the end of that phase, thus separating computation from communication. The
resulting collect&get communication mechanism is the following: During com-
putation each process collects information about necessary data exchanges with
different collect functions which are adapted to the algorithmic needs. Such a
function examines the coherence list for a given local data structure and in case

Node A Node B1 Node B2

Node C

 *U *U *U

 *U

duplicatesP1 P2

solution vector U2

solution vector U1

solution vector U

Fig. 1. Solution vector u spread over the address spaces of processes P1 and P2. Entries
for the node B shared by P1 and P2 are duplicated and contain only subtotals after a
computational phase.

150 J. Hippold, A. Meyer, and G. Rünger

parent face F

child faces

P2 P2P1

Fig. 2. Illustration of hanging nodes. Projections for grey-shaded hanging nodes access
local data in the address space of process P2. Black hanging nodes require duplicated
storage of face and edge parent-child hierarchies.

of duplicates it stores the remote identifiers and additional values in a send buffer
for later exchange. After the computations the gathered values are sent to the
corresponding processes extracted from the coherence lists. This data exchange
is initialized by the first call of a get function. Further calls return an identifier of
a local data structure and the received values for this structure from the receive
buffer in order to perform specific actions.

3.3 Consistence of Refinement Levels

Adaptivity causes irregularly structured meshes with different refinement levels
for neighboring volumes. Thus hanging nodes arise for hexahedral volumes (see
Figure 2). Hanging nodes need several projections during the solution process
which requires accesses to the parent-child hierarchy of the corresponding faces
and edges. If the parent and child data structures are situated in different ad-
dress spaces, as illustrated in Figure 2 for parent face F, the projections either
require explicit communication for loading the remote data or the duplicated
storage of face and edge hierarchies. Our parallelization approach stores the face
and edge hierarchies in the address space of each owner process because this
reduces communication and improves performance. For this reason the explicit
refinement of duplicated faces and edges within the refinement phase and the
creation of coherence lists for these data structures is necessary to keep data
consistent. (see Section 4, Phase II).

4 Parallel Implementation

This section describes the parallel realization with regard to the necessary data
exchanges within the different algorithmic phases.

Phase I – Creation of the Initial Mesh. In the first phase the initial mesh is
read from an input file. The distribution of data structures is done according to
a computed initial partitioning. First the entire mesh exists on each cluster node
in order to reduce the communication effort necessary to create the coherence
lists. The functions collect dis and get dis are provided to determine the duplicated
structures and their remote identifiers and owner processes.

An Adaptive, 3-Dimensional, Hexahedral Finite Element Implementation 151

Phase II – Iterative Mesh Refinement. The parallel execution of the it-
erative refinement process requires the remote subdivision of duplicated faces
and edges in order to keep data structures und coherence lists consistent. For
that reason the refinement process is split into 2 steps: The first step iteratively
subdivides local volumes and investigates them for duplicated faces and edges.
For these faces and edges the identifiers of the children and the identifiers of the
connected, newly created edges and nodes are collected with the function col-
lect ref. The remotely subdivided faces and edges are received using the function
get ref. In the second step the local refinement of those faces and edges and the
creation of coherence lists is done. To update the coherence lists at the process
initiating the remote refinement the collection and exchange of identifiers is nec-
essary again. Refinement is performed until no further subdivision of volumes is
done by any process. A synchronization step ensures convergence.

Projections of hanging nodes during the solution process require to access the
corresponding faces and edges. Parallel execution needs explicit communication
because processes do not have information about the current refinement levels
of neighboring volumes. We reduce the number of sent messages by extracting
the necessary information for faces during remote refinement and by using our
collect&get communication mechanism for edges.

Phase III – Assembling the Element Stiffness Matrices. The entire main
diagonal and the global right-hand-side vector are re-computed after assembling
the element stiffness matrices for the new volumes. For the main diagonal, con-
taining accumulated values, the global summation of subtotals for duplicated
nodes is necessary and is supported by the functions collect val and get val.

Phase IV – Solving the System of Equation. Figure 3 outlines the con-
jugate gradient method for solving the system of equation in parallel. There
are 3 communication situations to distinguish: calculation of scalar products,
accumulation of subtotals, and projections for hanging nodes.

To determine the global scalar product each process computes subtotals
which have to be accumulated. Duplicated nodes do not require special con-
sideration because computation is done on unaccumulated vectors only. To cre-
ate a uniform start vector u and to provide a uniform residual vector r for the
preconditioner, partial results for duplicated nodes have to be accumulated us-
ing collect val and get val. Hanging nodes require several projections. If there are
modifications of values for duplicated nodes, communication can be necessary
to send the results to the other owner processes. To perform this the functions
collect own and get own are provided.

Phase V – Error Estimation. The parallel error estimator determines the
global maximum error by investigating the set of volumes with the maximum
local error. To determine the error per volume calculations for the faces of the
volumes are necessary. If a face is shared between two volumes, the overall result
for this face is composed of the partial results computed by the different owners.

152 J. Hippold, A. Meyer, and G. Rünger

Solving the system of equation

of subtotals

accumulation

while(!convergence(gamma)) {

Ws = stiffnessmatrix Vs * Ss

apply adjoint operator

project hanging nodes on edges

Ss = Ws + beta * Ss

for each volume V:

gamma_old = gamma

}

project hanging nodes on faces

Us = Us + alpha * Ss
Rs = Rs + alpha * Ws

global scalar

products

hanging nodes

projections for

create start vector Us from solution vector

if(gamma_old > 0.0) beta = gamma / gamma_old

for each volume V: Rs = stiffnessmatrix Vs * Us - bs
gamma_old = 0.0

pr
ec

on
di

tio
ne

r

gamma = Ws * Rs

alpha = Ws * Ss alpha = -gamma / alpha

determine solution for nodes without shape function

copy vector Us to solution vector

W = C * R-1

Fig. 3. Solving the system of equation with the parallel PCGM. Shaded areas indicate
global data exchange. Capital letters denote vectors.

5 Experimental Results

To gain experimental results two platforms have been used: XEON a 16x2 SMP
cluster of 16 PCs with 2.0 GHz Intel Xeon processors running Linux and SB1000
a 4x2 SMP cluster of 4 SunBlade 1000 with 750 MHz UltraSPARC3 processors
running Solaris. One process is assigned to each cluster node which enforces
network communication. For parallel and sequential measurements linear finite
elements and the Jacobi preconditioner have been used. We consider three exam-
ples: layer3 a boundary layer for the convection-diffusion equation (−ε∆u+u =
1 in Ω = (0, 1)3; u = 0 for x, y, z = 0; ∂u

∂n = 0 for x, y, z = 1), ct01
representing the Lamé equation (2) (Ω = (0, 2) × (0, 1) × (0, 4); ∂Ω

(i)
1 =

(0, 1) × (0, 1) × {0}, i = 1, 2, 3; ∂Ω
(3)
2 = (0, 2) × (0, 1) × {4}, g3 = 1000),

and torte4d a layer near a non-convex edge (−∆u = 0 in Ω; Ω = (0, 3) ×
(0, 3

2Π) × (0, 1); u = 100 on Γ1 = ∂Ω).
The advantages of adaptivity illustrate the volume refinement histories for

adaptive and regular subdivision: e. g. 36 vs. 521; 554 vs. 262,144; 1884 vs.
134,217,728 volumes after 3, 6, 9 program iterations for ct01. The number of
initial volumes might be less than the number of parallel processes. Therefore
regular refinement is performed at program start until a satisfying number of

An Adaptive, 3-Dimensional, Hexahedral Finite Element Implementation 153

Fig. 4. Error for torte4d, ct01, and layer3 using different initial numbers of volumes.

Fig. 5. Speedups for example ct01 on 2 processors of SB1000 and XEON and for
example torte4d on 3 processors of SB1000.

Fig. 6. Speedups for example torte4d on 2 and layer3 on 7 processors of XEON. Com-
parison of runtimes for example layer3.

volumes is reached. Figure 4 compares the development of the maximum error
for different initial numbers of volumes.

Figure 5 and Figure 6 (left) depict speedups on SB1000 and XEON for the
examples ct01 and torte4d using different initial numbers of volumes. In general
speedups increase with growing number of program iterations because the com-
munication overhead compared to the computation effort is reduced. For larger
initial numbers of volumes, speedups are in most cases better than for smaller
numbers. This is caused by the better computation-communication ratio and
by cache effects due to the huge amount of data to process by the sequential
program. If the initial number of volumes is too high and many nodes are shared

154 J. Hippold, A. Meyer, and G. Rünger

between the processors, speedup decrease is possible with proceeding refinement
(see example ct01 on SB1000).

On the right of Figure 6 sequential and parallel runtimes on XEON are com-
pared for layer3. After 6 iterations runtimes increase extremely due to a rapid
increase of volumes. Thus cache effects largely influence the achievable speedups
(strongly superlinear). Speedups with different calculation bases (sequential, 2,
3 processors) are shown in the middle of Figure 6.

6 Conclusion

We have presented a parallel implementation for adaptive, hexahedral FEM
on distributed memory. The numerical algorithm and the parallel realization
have been designed to reduce communication effort. The modular structure of
the implementation allows internal optimizations without modifying the original
algorithm. Tests for three examples deliver good speedup results.

References

1. Meyer, A.: A parallel preconditioned conjugate gradient method using domain de-
composition and inexact solvers on each subdomain. Computing 45 (1990) 217–234

2. Meyer, A.: Parallel Large Scale Finite Element Computations. In Cooperman, G.,
Michler, G., Vinck, H., eds.: LNCIS 226. Springer Verlag (1997) 91–100

3. Meyer, A., Michael, D.: A modern approach to the solution of problems of classic
elasto–plasticity on parallel computers. Num. Lin. Alg. with Appl. 4 (1997) 205–221

4. Beuchler, S., Meyer, A.: SPC-PM3AdH v1.0, Programmer’s Manual. Technical
Report SFB393/01-08, Chemnitz University of Technology (2001)

5. Yserentant, H.: On the multi-level-splitting of the finite element spaces. Numerical
Mathematics 49 (1986) 379–412

6. Bramble, J., Pasciak, J., J.Xu: Parallel multilevel preconditioners. Mathematics of
Computation 55 (1991) 1–22

7. Kunert, G.: A posteriori error estimation for anisotropic tetrahedral and triangular
finite element meshes., Phd Thesis, TU-Chemnitz, Logos Verlag Berlin (1999)

8. Gross, L., Roll, C., Schoenauer, W.: Nonlinear Finite Element Problems on Parallel
Computers. In: Proc. of PARA’94. (1994) 247–261

	Introduction
	Adaptive, 3-Dimensional Finite Element Method
	Parallelization Approach
	Shared Data Structures
	Minimization of Communication Needs
	Consistence of Refinement Levels

	Parallel Implementation
	Experimental Results
	Conclusion

