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Abstract. The main purpose of this paper is to investigate the local er-
ror for the sampling problem in diverse situations. We find that the local
error is heavily depending on the asymptotic behavior of the sampling
function. By virtue of evaluating the decay of the sampling function, we
give a local error estimation for uniform and non-uniform sampling in
multiresolution analysis (MRA) and in shift-invariant spaces.

1 Introduction and Preliminaries

In digital signal and image processing and digital communications, a continu-
ous function (signal) is usually represented by its discrete samples. Then how
to reconstruct a continuous function from its discrete samples is a fundamen-
tal problem. Many mathematicians and engineers contribute to this area, e. g.,
see[1],[3],[13]. Most of their work is mainly concerned with the whole domain
cases, i.e., the sampling domain is the whole Euclidean space IRd and we want
to recover the function on the whole space. But in many real applications, sam-
pling may be limited to a bounded domain, and we need only to recover the
function in a local area. So finding a suitable method to recover a function from
its discrete samples locally is significant both in theory and application. The
earliest results on local sampling may be found in [7,9]. In [2], N. Atreas et al.
investigated the local error of the reconstruction formula in a multiresolution
analysis (MRA). In [14], S. Y. Yang find a new method to evaluate the asymp-
totic rate of decay of the sampling function, and generalized their result to higher
dimensional cases. In this paper, we shall investigate the local error for sampling
problem in diverse situations, including sampling in shift-invariant spaces and
in MRA, uniform sampling and non-uniform sampling.

1.1 Notations

Before proceeding with our discussion, we must introduce some notations first.
IN, ZZ,IR,C denote the set of natural numbers, integers, real numbers and com-
plex numbers, respectively. IRd and Λ denote the d-dimensional Euclidean space
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and unit lattice respectively. Td = IRd/Λ is the d-dimensional torus. l1(Λ) de-
notes the well-known Banach space of all absolutely summable sequences on Λ.
The Fourier transform of a function f ∈ L1(IRd) is defined by

f̂(u) =
∫

IRd

f(x)e−i2π〈x,u〉dx,

this transform maps s onto itself and extends to all tempered distributions s′

by duality, here s denotes the class of all infinitely differentiable functions with
rapid decay at infinity. We shwll also use the Wiener Amalgam space W (Lp)
defined by

W (Lp) =


f ∈ Lp(IRd) : ‖f‖W (Lp) =

(∑
k∈Λ

sup
x∈[0,1]d

|f(x + k)|p
)1/p

< ∞

 ,

and we use W0(Lp) to denote its closed subspace of continuous functions. En-
dowed with the norm ‖ · ‖W (Lp), then W (Lp) and W0(Lp) are Banach spaces;
e.g., see [5,6]. V p(ϕ)(1 ≤ p ≤ ∞) is the shift-invariant space defined by

V p(ϕ) =

{∑
k∈Λ

c(k)ϕ(· − k) : c ∈ lp(Λ)

}
,

where ϕ is the so-called generator. For such a shift-invariant space to be well
defined, we need the generator ϕ ∈ W0(L1) and satisfies the following condition

0 < m ≤
∑
k∈Λ

|ϕ̂(ξ + k)|2 ≤ M < ∞

for some m, M > 0. Under these conditions, the shift-invariant space V p(ϕ) is a
closed subspace of Lp(IRd)(1 ≤ p ≤ ∞). Moreover, we have

mp‖c‖lp(Λ) ≤ ‖
∑
k∈Λ

c(k)ϕ(· − k)‖Lp(IRd) ≤ Mp‖c‖lp(Λ), ∀ c ∈ lp(Λ) (1)

for1 ≤ p ≤ ∞ and some positive constants mp, Mp depending on p, e. g., see[1].
In this situation, the generator ϕ is said to be stable. By the way, we also need
the the following notation

ϕ̂∗ =
∑
k∈Λ

ϕ(k) exp(i2π〈k, ·〉) (2)

defined on Td.
Multiresolution analysis (MRA) is a fundamental concept in wavelet theory;

e.g., see [4,11,12].

Definition 1. A dyadic multiresolution analysis (MRA) of L2(IRd)is a sequence
{Vm : m ∈ ZZ} of closed subspaces of L2(IRd) with the following properties:
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(i) ∀ m ∈ ZZ, Vm ⊆ Vm+1,
(ii)

⋂
m Vm = {0}, ⋃m Vm = L2(IRd),

(iii) f ∈ Vm ⇔ f(2−m·) ∈ V0,
(iv) ∃ ϕ ∈ V0, a scaling function, such that {τnϕ = ϕ(· − n) : n ∈ Λ} is an

orthonormal basis for V0.

Throughout this paper we shall use the standard notationϕm,n = 2md/2ϕ(2m ·
−n) for m ∈ ZZ, n ∈ Λ.

Definition 2. A closed subspace V of L2(IRd) is said to be a reproducing kernel
Hilbert space (RKHS) with reproducing kernel K(x, y) if and only if

∀ f ∈ V, x ∈ IRd, f(x) = 〈K(x, ·), f〉.
LetX = {xj : j ∈ J} ⊆ IRd. Then X is said to be separated if infi �=j |xi−xj | >

0; X is said to be γ0-dense in IRd if IRd =
⋃

j∈J Bγ(xj) holds for all γ > γ0,
where Bγ(xj) denotes the open ball centered at xj with diameter γ.

1.2 Reconstruction Formula for Sampling Problems

The basic idea of sampling is to recover a function f(x) from its discrete samples
{f(xj) : j ∈ J}. Of course, only special kind of functions can be reconstructed
in this way, moreover, the sampling set x = {xj : j ∈ J} must satisfy certain
density condition. For the functions in a shift-invariant space V 2(ϕ), we can
recover them from their samples on the unit lattice Λ. the following proposition
is well-known (e. g., see[13,14]).

Proposition 1. Suppose the generator ϕ ∈ W0(L1) is stable and ϕ̂∗ is non-
vanishing on Td, where ϕ̂∗ is defined by (2) in subsection 1.1. Then

a. {ϕ(· − n) : n ∈ Λ} is a Riesz basis for V 2(ϕ);
b. V 2(ϕ) is an RKHS with the reproducing kernel K(x, y) determined by

K(x, y) =
∑
k∈Λ

ϕ(x − k)ϕ̃(y − k), (3)

where ϕ̃ is the dual of ϕ determined by

〈ϕ(· − k), ϕ̃(· − l)〉 = δ(k − l), ∀ k, l ∈ Λ ; (4)

c. There exist a unique function s ∈ W0(L1) such that

f =
∑
k∈Λ

f(k)s(· − k), ∀ f ∈ V 2(ϕ) , (5)

s is the so-called sampling function determined by

ŝ = ϕ̂/ϕ̂ ∗ . (6)

For MRA cases, we also have the following well-known proposition, e. g., see[2].
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Proposition 2. Let {Vm} be an MRA of L2(IRd) with scaling function ϕ ∈
W0(L1). If ϕ is stable and ϕ̂∗ is non-vanishing on Td, then

a. For each m, Vm is a RKHS, the corresponding reproducing kernel Km is
uniquely determined by

Km(x, y) =
∑
n∈Λ

ϕm,n(x)ϕm,n(y) ; (7)

b. There is a unique function s ∈ V0 with the property that

f =
1

2dm/2

∑
n∈Λ

f(
n

2m
)sm,n, ∀ f ∈ Vm (8)

the convergence is in L2(IRd) and is absolute, and therefore also uniform on IRd.
Where s is the so-called sampling function determined by (6) in Proposition 1.

For non-uniform sampling, we need the sampling set X satisfy certain density
condition. The following proposition are borrowed from[1].

Proposition 3. Suppose ϕ ∈ W0(L1) is a stable generator, X = {xj : j ∈
J} ⊆ IRd is a separated set, K(x, y) is the reproducing kernel defined by (3) in
Proposition 1. Then there exists some γ0 > 0 such that if X is γ0-dense in IRd,
then {K(xj , ·) : j ∈ J} is a frame for V 2(ϕ). hence for any f ∈ V 2(ϕ), we have
the following reconstruction formula

f(x) =
∑
j∈J

〈f, K(xj , ·)〉 ˜K(xj , ·) =
∑
j∈J

f(xj) ˜K(xj , ·), (9)

where { ˜K(xj , ·) : j ∈ J} is the dual frame of {K(xj , ·) : j ∈ J}. In this situation,
X is said to be a set of sampling

1.3 Local Error for Sampling Problem

Suppose we want to recover a function f ∈ V 2(ϕ) in a bounded domain Ω ⊆
IRd. Then we must sample in a neighborhood of Ω. For simplicity, we suppose
the sampling domain is Ωδ =

{
x ∈ IRd : dist(x, Ω) < δ

}
, where dist(x, Ω) =

infy∈Ω |x − y| denotes the distance between x and Ω, and we shall use XΩ,δ to
denote the set X

⋂
Ωδ.

Definition 3. Let X be a set of sampling (see Proposition 3). Then the local
error of the reconstruction formula (9) is defined by

EΩ,δf(x) = f(x) −
∑

xj∈XΩ,δ

f(xj) ˜K(xj , x), x ∈ Ω. (10)
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Since the reconstruction formulas (5) and (8) are just special cases of the
reconstruction formula (9), we can define the local error of these reconstruction
formulas similarly, i.e.

EΩ,δf(x) = f(x) −
∑

n∈Λ
⋂

Ωδ

f(n)s(x − n), x ∈ Ω (11)

for (5) and

Em
Ω,δf(x) = f(x) −

∑
n∈Λ:2−mn∈Ωδ

f
( n

2m

)
s(2mx − n), x ∈ Ω (12)

for (8).
In general, the localization of these reconstruction formulas can be measured

by the asymptotic rate of decay of the local error EΩ,δ (or Em
Ω,δ) as δ increases.

If the local error decays very fast, then the reconstruction formula is well lo-
calized, and we can recover a function from its samples locally. But as we shall
see, the asymptotic rate of decay of the local error is heavily depending on the
asymptotic behavior of the sampling function s(x) (in uniform case) or the dual
frame { ˜K(xj , ·) : j ∈ J} (in non-uniform case), so we must evaluate the asymp-
totic rate of decay of the aforementioned sampling function and dual frame first.
Fortunately, we have already many results on this topic at hand.

Here is a brief outline of this paper. In section 2, we evaluate the local error
for uniform sampling problems, Theorem 1, Theorem 2, Theorem 3 and Theorem
4 are the main results in this section; In section 3, we evaluate the local error for
the non-uniform sampling problem, Theorem 5 is the main result in this section.

2 Local Error Estimation for Uniform Sampling

This section mainly deals with the uniform case. We shall give several estimates
for the local error in different situations. Through out this section, we always
assume the generator (or scaling function in MRA case) ϕ satisfies one of the
following conditions
(C1) ϕ(x) = O((1 + |x|)−β) as |x| −→ ∞ for some β > d

2 ;
(C2) ϕ(x) = O(exp(−α · |x|)) as |x| −→ ∞ for some α > 0.
If the generator (or scaling function in MRA case) ϕ satisfies condition (C1),
then S. Y. Yang has already give the following result (see[14])

Theorem 1. Assume the generator ϕ ∈ W0(L1) is stable and satisfies condition
(C1) for some β > d

2 . Then the local error EΩ,δf(x) defined by (11) in subsection
1.3 satisfies

sup
x∈Ω

|EΩ,δf(x)| = O(δd/2−β) · ‖f‖L2(IRd) as δ −→ ∞, ∀ f ∈ V 2(ϕ). (13)



86 S.-Y. Yang and W. Lin

Theorem 2. Assume the scaling function ϕ ∈ W0(L1) is stable and satisfies
condition (C2) for some β > d

2 . Then the local error Em
Ω,δf(x) defined by (12)

in subsection 1.3 satisfies

sup
x∈Ω

|Em
Ω,δf(x)| = O(δd/2−β) · ‖f‖L2(IRd) as δ −→ ∞, ∀ f ∈ Vm(ϕ). (14)

Now we assume the generator (or scaling function in MRA case) is continuous
and satisfies condition (C2), then ϕ automatically belongs to W0(L1). We first
give the following lemma, which will also be used in the next section, its proof
is direct, one can see[15], Lemma 3.1.

Lemma 1. Let I1(δ, α) =
∫

|y|≥δ
|y|−d−αdy, I2(δ, α) =

∫
|y|≥δ

exp(−α · |y|)dy,
then we have

I1(δ, α) = 2πd/2Γ

(
d

2

)−1

· 1
α

δ−α (15)

and

I2(δ, α) = 2πd/2Γ

(
d

2

)−1

· e−αδ ·
(

d−1∑
k=0

(d − 1)!
(d − 1 − k)!

· α−k−1 · δd−1−k

)
. (16)

To evaluate the asymptotic rate of decay of the sampling function s(x), we
need the following lemma, its proof is found in[10].

Lemma 2. Suppose ϕ ∈ W0(L1) satisfies condition (C2) for some α > 0.
a. If ϕ is the generator of a shift-invariant space V 2(ϕ), then the sampling func-
tion s(x) determined by (6) in Proposition 1 satisfies

s(x) = O(exp(−α′|x|)) as |x| −→ ∞ (17)

for some α′ ∈ (0, α);
b. If ϕ is the scaling function of an MRA, then the sampling function s(x)
determined by (6) also satisfies (17) for some α′ ∈ (0, α).

Now we can evaluate the decay of the local error. The following theorem can
be proved in the same way as Theorem 3.1 in[14], so we omit its proof.

Theorem 3. Assume the generator ϕ is continuous, stable and satisfies condi-
tion (C2) for some α > 0. Then for any f ∈ V 2(ϕ), the local error EΩ,δf(x)
defined by (11) in subsection 1.3 satisfies

sup
x∈Ω

|EΩ,δf(x)| = O(δ(d−1)/2 · exp(−α′δ)) · ‖f‖L2(IRd) as δ −→ ∞ (18)

for some α′ ∈ (0, α).

For the MRA case, similar result also holds. The following theorem can be
proved in the same way as theorem 3, so we also omit its proof.
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Theorem 4. Assume the scaling function ϕ is continuous, stable and satisfies
condition (C2) for some α > 0. Then for any f ∈ V 2(ϕ), the local error Em

Ω,δf(x)
defined by (12) in subsection 1.3 satisfies

sup
x∈Ω

|Em
Ω,δf(x)| = O(δ(d−1)/2 · exp(−α′δ)) · ‖f‖L2(IRd) as δ −→ ∞ (19)

for some α′ ∈ (0, α).

3 Local Error Estimation for Non-uniform Sampling

This section mainly deals with the non-uniform case. Through out this section,
we assume the generator ϕ either satisfy condition (C2) defined in section 2 or
satisfy the following condition
(C3) ϕ(x) = O((1 + |x|)−β) as |x| −→ ∞ for some β > d.
Hence if moreover ϕ is continuous, then in both cases we can conclude that
ϕ ∈ W0(L1). By Proposition 3, if X is a set of sampling, then the reconstruc-
tion formula (9) holds. It is easy to observe that the localization of this re-
construction formula is determined by the off-center decay of the dual frame
{ ˜K(xj , ·) : j ∈ J}, because if each ˜K(xj , ·) is concentrated in a neighborhood of
xj , then f(x) is mainly determined by few samples which are near the point x.
So evaluating the off-center decay of every ˜K(xj , ·) is important. Fortunately,
S. Jaffard investigated the off-diagonal decay of the infinite matrices, got the
conclusion that the inverse matrix has almost the same off-diagonal decay as the
original matrix (see[8]). Recently, K. Gröchenig using Jaffard’s result to evalu-
ate the off-center decay of the dual frame { ˜K(xj , ·) : j ∈ J}, e. g. see[10]. The
following lemma is one of his main results.

Lemma 3. Assume the generator ϕ is continuous and stable, K(x, y) is the
corresponding reproducing kernel defined by (3) in Proposition 1, X = {xj : j ∈
J} is a set of sampling, { ˜K(xj , ·) : j ∈ J} is the dual frame of {K(xj , ·) : j ∈ J}.
a. If moreover ϕ satisfies condition (C3), then we have

|K(xj , y)| ≤ C(X, ϕ)(1 + |y − xj |)−β , ∀ j ∈ J , (20)

where C(X, ϕ) is a constant depending on X and ϕ, independent of j.
b. If moreover ϕ satisfies condition (C2) for some α > 0, then there exists some
α′ ∈ (0, α) such that

|K(xj , y)| ≤ C(X, ϕ) exp(−α′|y − xj |), ∀ j ∈ J , (21)

where C(X, ϕ) has the same property as in a.

By virtue of the above result, we now can give an evaluation for the local
error EΩ,δf(x) defined by (10) in subsection 1.3.
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Theorem 5. Suppose the generator ϕ is continuous and stable, X = {xj : j ∈
J} is a set of sampling satisfying infi �=j |xi − xj | = µ > 0.
a. If moreover ϕ satisfies condition (C3), then the local error EΩ,δf(x) defined
by (10) in subsection 1.3 satisfies

sup
x∈Ω

|EΩ,δf(x)| = O(δd/2−β) · ‖f‖L2(IRd) as δ −→ ∞, ∀ f ∈ V 2(ϕ) . (22)

b. If moreover ϕ satisfies condition (C2) for some α > 0, then there exists some
α′ ∈ (0, α) such that

sup
x∈Ω

|EΩ,δf(x)| = O(δ(d−1)/2 ·exp(−α′δ))·‖f‖L2(IRd) as δ −→ ∞, ∀ f ∈ V 2(ϕ) .

(23)

Because of page limit, we omit the proof of this theorem, but we will present it
in another paper.
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