
Using Parallelism in Experimenting and Fine
Tuning of Parameters for Metaheuristics�

Maria Blesa and Fatos Xhafa

Universitat Politècnica de Catalunya
C6 Campus Nord, E-08034 Barcelona, Spain

{mjblesa,fatos}@lsi.upc.es

Abstract. We show that parallel implementations of metaheuristics are
efficient tools for both experimenting and fine tuning of parameters.

1 Introduction

Metaheuristics were introduced in the last two decades as a new kind of approxi-
mate algorithms for solving combinatorial optimization problems which combine
heuristic methods with higher level frameworks [5]. Their implementation is usu-
ally a complex task, since they involve three main concepts: (1) Main method,
(2) internal/external heuristics, and (3) setting of search parameters.

Measuring the performance of a metaheuristic implementation requires test-
ing on a large set of instances and on real world instances usually of big and
very big size. Moreover, finding of right values for the search parameters of the
metaheuristic is almost indispensable for the success of the metaheuristic imple-
mentation. Considerable efforts have been done by researchers and practitioners
to provide, on the one hand, a methodology and rigorous basis for experimental
evaluation of heuristics [11,2] and, on the other, to find efficient approaches for
fine tuning of parameters such as developing specific software [1], use of experi-
mental design [7] and self-adaptive procedures [10].

We address the issue of using parallel implementations as a mean for efficient
experimenting and fine tuning of parameters for metaheuristics. Our proposal
is based on two parallel models and, to illustrate our proposal, we have applied
it in experimenting and fine tuning of parameters for the Tabu Search method
applied to the 0-1 Multidimensional Knapsack problem. High quality solutions
as compared with best known up-to-date results for the problem are obtained.

2 Parallel Models for Experimenting and Fine Tuning

Parallelism has been usually used to reduce computation times. For our purpose
we describe here two simple parallel models: the Independent Runs (IR) and
� Partially supported by the CICYT Project TIC2002-04498-C05-03 (TRACER)

and by the Catalan Research Council of the Generalitat de Catalunya (grant
no. 2001FI-00659). For a longer version of this work, see [4].

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 429–432, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



430 M. Blesa and F. Xhafa

the Independent Runs with Autonomous Strategies (IRAS). Although closely
related, they are used here with different objectives: the IR model is intended
for experimenting while IRAS model for the fine tuning of parameters.

In the Independent Runs model (IR) there is a coordinator processor
sending the problem instance and parameters’ setup and receiving the results,
and each processor runs the same instance of the program. Observe that this
model make sense as far as the program is non-deterministic. This is precisely the
case of metaheuristic implementations which take randomized or probabilistic
decisions. Running the same implementation in p different processors leads to
exploring different areas of the search space and it is equivalent to performing p
sequential executions, thus scaling down the experimentation time with a factor
of up to p. For this reason, this model is then very suitable for experimental
evaluation of metaheuristic implementations. The Independent Runs with
Autonomous Strategies (IRAS) can be seen as a special case of the IR
model in which the processors are given, additionally, a strategy to be used for its
own search. A strategy is defined as an m-tuple 〈parameter1, . . . , parameterm〉,
where each parameteri is a different parameter of the metaheuristic. For each
processor proci, the coordinator processor proc0 computes a strategy Si, and
then sends it together with the problem instance to the processor proci. Clearly,
using this parallel model we can efficiently make the fine tuning of parameters.

Our implementation of both parallel models is fully generic and indepen-
dent of the (sequential) metaheuristic implementation at hand. This is achieved
through a careful class design and implementation in C++ using the MPI as a
communication library. The class Solver LAN will be be in charge of running
the parallel program while the sub-classes Solver IR and Solver IRAS will im-
plement specifically the task of coordinator and slave processors. Solver Seq
denotes the sequential implementation of the metaheuristic, through which we
can declare an instance of such implementation and run the main method.
There is a one-to-one relationship between Solver LAN and Solver Seq since
the former will use instances of the latter as a black-box. The classes Instance,
Setup, Strategy and Solution represent the problem instance data, parame-
ters, strategy and a feasible solution to the problem, respectively. Those entities
are problem-dependent and will be implemented according to the problem at
hand. The parallel program provides their interfaces and hence can use them as
black-boxes. Any of the models is run via the method run() of the corresponding
class Solver IR or Solver IRAS. This generic way of designing and implement-
ing the framework has important benefits, like genericity and reusability. Once
the execution is finished, different information of the search process can be ac-
cessed, e.g., the best solution found or the time required to find it.

3 Tabu Search for the 0-1 Multidimensional Knapsack

To illustrate our proposal, we implement the Tabu Search (TS) for the 0-1 Mul-
tidimensional Knapsack problem both in the IR model (which is intended for
experimenting) and the IRAS model (which is intended for the fine tuning.)



Using Parallelism in Experimenting and Fine Tuning 431

Table 1. Numerical values for the parameters.

nb iterations independent runs tabu list size max neighbors
100n (small and middle) 2 [3 . . . 15] full exploration

1000n (big size)

nb best sols nb intensifications history rep nb diversifications
[10 . . . 15] � 10 80 − 95% � 10

Table 2. Results for the 0-1MKNP. Best and average costs obtained over 20 executions,
respectively. The 7th column is the deviation of the sample wrt. the average. The last
two columns indicate the number of iterations performed and time spent on it.

Instance n m Optimum Best cost Avg. cost deviation Iters. time (s)
KNAP15 15 10 4015 4015 4014.1 0 3000 3.6
KNAP20 20 10 6120 6120 6120.0 0 1600 2.5
KNAP50 50 5 16537 16520 16441.0 0.001 10000 21.3
SENTO1 60 30 7772 7772 7772.0 0 5000 53.5
SENTO2 60 30 8722 8722 8720.6 0 5000 55.5
OR10x100-00 100 10 23064 22478 22360.4 0.025 85629 600
OR10x250-00 250 10 59187 56213 55945.6 0.050 55132 900
OR10x500-00 500 10 117726 111773 111486.7 0.051 35487 1200
OR30x100-00 100 30 21946 21614 21520.7 0.015 31615 600
OR30x250-00 250 30 56693 54711 54534.6 0.035 15215 900
OR30x500-00 500 30 115868 111272 110942.4 0.040 10459 1200

Tabu Search [9] belongs to the family of local search algorithms but here the
search is done in a guided way in order to overcome the local optima. The search
process tries to avoid cycling by forbidding or penalizing moves which take the
solution, in the next iteration, to solutions previously visited (called tabu). To
this aim, TS keeps a tabu list which constitutes the tabu search memory. The
role of the memory can change as the algorithm proceeds. At initialization the
goal is to make a coarse examination of the solution space and further on the
search is focused to produce local optima solutions in a process of intensification
or make a diversification in order to explore new regions of the solution space.

The NP-hard 0-1 Multidimensional Knapsack problem (0-1MKNP) consists
in selecting a subset of n given objects in such a way that the total profit of the
selected objects is maximized while a set of knapsack constraints are satisfied.
The 0-1MKNP problem can be stated as: maximize c · x, subject to: Ax ≤ b,
x ∈ {0, 1}n, where c ∈ N

n, A ∈ N
m×n, and b ∈ N

m. The binary components xj of
x are decision variables: xj = 1 if the object j is selected, and xj = 0 otherwise.
The profit associated to j is denoted by cj . Each Aix ≤ bi is a capacity constraint.
Parameters involved, fine tuning and computational results. Five parameters de-
fine the 0-1MKNP: the number of objects n, the number of constraints m, the
profits of the objects c ∈ N

n, the matrix of constraints A ∈ N
m×n, and the

capacities b ∈ N
m. Every fixed set of values for these parameters defines an in-

stance of the problem and, according to them, instances can be easier or harder
to solve. This is an important feature to consider when studying the robustness
and the performance of an algorithm. The basic parameters controlling TS are



432 M. Blesa and F. Xhafa

concerned with stopping conditions (nb iterations, and independent runs)
and the influence of the historical search memory (tabu list size). Other
parameters control the search process, specially the neighborhood exploration
(max neighbors), the diversification (history rep and nb diversifications),
and the intensification (nb best sols and nb intensifications). All those pa-
rameters are mutually and strongly dependent. For the success of the method,
appropriate values for those parameters have to be find. We have tuned the Tabu
Search parameters by using the IRAS model introduced above.

After tuning these parameters (see Table 1), we have run the 0-1MKNP im-
plementation in a cluster of computers AMD K6-11 with 450 MHz processors
and 256Mb of memory (see [4]). To obtain some statistical significance about the
robustness of the algorithm, the same instance should be run several times with
the same parameters setting and average results should be provided. We test
small (n ≤ 50), middle-sized (50 < n ≤ 100) and big instances (100 < n ≤ 500)
taken from the literature [8,6,3]. Since our aim is to test how does our generic
implementation and parallel fine tuning of parameters behave, we have chosen
instances for which the optimum value (obtained through computationally ex-
pensive exact methods) is known (see Table 2). The low values on the deviation
of the cost of our solutions from the optimum shows both that the values of
the parameters that we found through our approach are appropriate, and also
the robustness of our approach in the sense that the values we found for the
parameters perform very well for a large set of different instances.

References

1. B. Adenso-Diaz and M. Laguna. (2002). Fine tuning of Algorithms Using Frac-
tional Experimental Designs and Local Search. Submitted.

2. R.S. Barr, B.L. Golden, J. Kelly, W.R. Stewart, M.G.C. Resende. (2001) Designing
and Reporting Computational Experiments with Heuristic Methods. Journal of
Heuristics, 1(1):9–32.

3. J.E. Beasley. (1990). OR-Library: Distributing Test Problems by Electronic Mail.
Journal of the Operational Research Society, 41:1069–1072.

4. M. Blesa and F. Xhafa. (2003). Using Parallelism in Experimenting and Fine Tun-
ing of Parameters for Metaheuristics. Technical Report no. LSI-03-56-R, UPC.

5. C. Blum and A. Roli. (2003). Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–308.

6. C. Cotta and J.M. Troya. (1998). A Hybrid Genetic Algorithm for the 0-1 Multiple
Knapsack Problem. In Artificial Neural Nets and Genetic Algorithms, chapter 3,
pp. 251–255. Springer-Verlag.

7. S.P. Coy, B.L. Golden, G.C. Runer, E.A. Wasil. (2000). Using Experimental Design
to Find Effective Parameter Settings for Heuristics Journal of Heuristics, 7:77–97.

8. A. Freville and G. Plateau. (1990). Hard 0-1 multiknapsack test problems for size
reduction methods. Investigation Operativa, 1:251–270.

9. F. Glover and M. Laguna. (1997). Tabu Search. Kluwer Academic Publishers.
10. J. Kivijärvi, P. Fränti and O. Nevalainen. (2003). Self-Adaptive Genetic algorithm

for Clustering. Journal of Heuristics, 9:113–129.
11. R.L. Rardin and R. Uzsoy. (2001). Experimental Evaluation of Heuristic Optimiza-

tion Algorithms: A Tutorial. Journal of Heuristics, 7:261–304.


	Introduction
	Parallel Models for Experimenting and Fine Tuning
	Tabu Search for the 0-1 Multidimensional Knapsack



