
Dynamic Parallel Job Scheduling in
Multi-cluster Computing Systems

J.H. Abawajy

Deakin University
School of Information Technology

Geelong, Victoria, Australia

Abstract. Job scheduling is a complex problem, yet it is fundamental to
sustaining and improving the performance of parallel processing systems.
In this paper, we address an on-line parallel job scheduling problem in
heterogeneous multi-cluster computing systems. We propose a new space-
sharing scheduling policy and show that it performs substantially better
than the conventional policies.

1 Introduction

In the last few years, the trends in parallel processing system design and deploy-
ment have been moving away from a single powerful supercomputers to coopera-
tive networked distributed systems such as commodity-based cluster computing
systems. Research in cluster computing has focused on tools that are useful
for putting together a cost-effective off-the-shelf high-performance cluster com-
puting systems as well as developing application programs and executing them
remotely. Aggregation of many resources is not enough to guarantee good per-
formance - careful scheduling must be employed to achieve the best performance
possible [6]. Without the support from well-designed cluster job scheduling pol-
icy, resources are shared in an ad-hoc manner, limiting performance as well as
the utilization of the resources. Hence, one of the most important problems that
must be addressed in order to realize the advantages of cluster computing sys-
tems is that of job scheduling problem.

Job scheduling problem has been extensively studied on parallel computers
(e.g., [8], [4], [11], [2]) and to a lesser extent on cluster computing systems (e.g.,
[1] and [6]). Existing job scheduling policies can be classified into space-sharing
(e.g., [4], [10], [11]) and time-sharing (e.g., [8]). It is also possible to combine
these two types of policies into a hybrid policy as in [6], [2]. In a time-sharing
policy, processors are shared over time by executing different applications on the
same processors during different time intervals, which is commonly known as
time-slice or quantum. In the space sharing approach, processors are partitioned
into disjoint sets and each application executes in isolation on one of these sets.

In this paper, we focus on space-sharing policy. In general, based on when
processor partition is created, space-sharing policies can be classified as fixed,
static, and dynamic approaches. In fixed policy, processors are partitioned into

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 27–34, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



28 J.H. Abawajy

a fixed size partitions at the time the system starts. The scheduler assigns one
or more partitions to parallel jobs based on the size of the jobs. Most of the con-
ventional cluster-based systems (e.g., LSF [1]) use fixed scheduling policy. The
positive aspect of the fixed approach is its implementation simplicity. However,
it does not adapt to changes both in the system load conditions and resource
requirements of applications. Hence, it can lead to processor fragmentation prob-
lem [6], which in turn can lead to relatively low processor utilization and system
throughput.

In static space sharing policies (e.g., [4], [11]), the partition size allocated to a
job is determined at allocation time. Hence, it can adapt to the system load con-
dition as such avoiding some problems associated with the fixed space-sharing
approach. However, as in fixed approach, applications will hold the processors
assigned to them until they terminate (i.e., for the lifetime of the application),
which can also lead to processor fragmentation problem. The dynamic space-
sharing approach eliminates most of the problems associated with fixed and
static approaches. The basic idea behind the dynamic space-sharing policy is to
make the jobs in the system share the processors equally as much as possible.
This is achieved by varying the number of processors allocated to an application
during its execution. This means processors may be reclaimed from a running job
and distributed to newly arrived jobs, or additional processors may be added to
an executing job when processors become available. Dynamic space-sharing poli-
cies are typically used in shared-memory systems since significant programming
effort and execution overhead must be expended to change a job’s processor al-
location during execution. In a distributed memory environment especially, the
costs of data repartitioning can overwhelm the scheduling benefits realized by
malleable job support.

In this paper, we address the problem of scheduling parallel jobs in multi-
ple cluster computing systems. Job scheduling is a challenging problem as the
performance and applicability of the scheduling policy is highly sensitive to a
number of factors such as machine architecture. In particular, cluster comput-
ing systems have several subtle but significant characteristics that influence and
complicate scheduling decisions, which are not an issue in conventional parallel
processing systems. Some of these factors include system heterogeneity, scale,
interconnection technologies that typically exhibit high overhead and low band-
width, and the availability of the system resources vary over time. This variation
is both highly dynamic and unpredictable. Due to such inherent characteristics
of cluster computing systems, scheduling strategies developed for the traditional
distributed systems have to be extended significantly to support the dynamics of
cluster computing systems. Dynamic scheduling is required since resources (i.e.,
machines and networks) may suffer dynamic load fluctuations or may be added
or removed during the course of application execution.

The rest of the paper is organized as follows. In Section 2, the system model
and the proposed scheduling policy are described. In Section 3, the performance
evaluation of the proposed policy is described. It is shown that the proposed



Dynamic Parallel Job Scheduling in Multi-cluster Computing Systems 29

policy performs substantially better than a baseline policy. Conclusion and future
directions are described in Section 4.

2 Dynamic Scheduling Policy

2.1 System Model

For the most part, job scheduling research in cluster computing environments
has focused on a single cluster computing systems (e.g, [9]) under a common as-
sumption that all processors in the system have equal processing capacity (i.e.,
homogeneous) (e.g., [10], [9]) and dedicated (e.g., [10]). In contrast, we focus on
shared, heterogeneous, and multi-programmed cluster computing systems com-
posed (see Figure 1) of multiple clusters as in [6], [3] spanning campus wide
area.

cluster 1

LAN

Resource Management

LAN LAN

cluster 2 cluster n

Application Application

Interconnection Network

Fig. 1. Multicluster Computing System

We assume that a cluster is geographically compact and contains a set
of workstations of similar architecture, connected by a fast Ethernet (100
Mbits/sec). Similarly, inter-cluster interconnection network is a fast Ethernet
(100 Mbits/sec). We also assume that a network segment contains a single clus-
ter only. Computers in different clusters do not share the communication band-
width. Note that these assumptions can be easily relaxed, but allow us to ignore
the mechanisms involved in getting jobs to run, and concentrate on policy issues
for selecting which jobs as well as where and when they should run. In addition,



30 J.H. Abawajy

we restrict our focus to two dimensions of heterogeneity: processor speed and
cluster sizes as these two are expected to be the major components of system
heterogenity in networked-systems [6].

Adaptive space-sharing policies for cluster computing systems should have at
least two components: processor allocation (i.e., how many processors is allocated
to a job) and processor selection (i.e., which processors should be allocated to a
job). However, the classical space-sharing policies (e.g., [2], [10]), consider only
the processor allocation aspect while they are oblivious to processor selection
problem. An approach to partition a moldable parallel job on distributed systems
is described in [11] but not address the processor selection problem. Also, they
are characterized with all-or-nothing approach, which means that jobs will hold
on to the processors allocated to them even if they do not need it. Existing
adaptive policies do not actively correct such a resource imbalance state. As a
result, some clusters may be overloaded while others may sit idle. This leads
to poor resource utilization due to processor fragmentation. The next section
discusses the proposed scheduling policy.

2.2 Proposed Scheduling Policy

The proposed policy essentially mimics the conventional dynamic space-sharing
approach such that idling processors are allocated to other jobs that can fruitfully
utilize them. To achieve this, we keep a pool of available processors from which
the scheduler allots a set of processors to unscheduled jobs. When a processor
is assigned to a job completes the allocated task, it immediately returns to the
pool where it becomes available for re-assignment to another job.

The activation of the scheduler occurs in three instances: (1) when a job ar-
rives; (2) when a job departs; and (3) when there are α processors, 0 ≤ α ≤ P, in
the pool, where α is a tunable parameter and P is the total number of processors
in the system. When the algorithm is invoked, it assigns a set of processors equal
to the lesser of the partition size and the job’s maximum parallelism. The target
partition size is determined as follows:

target = min(maximum parallelism of the job, partition size) (1)

where the maximum parallelism is given at the job arrival time and the
partition size is computed as follows:

partition size =
⌈

P
(Queued Jobs+1) + (0.5 × Executing Jobs)

⌉
(2)

The scheduler then goes into processor selection phase, which selects appro-
priate processors for the job. Processor selection phase is performed as follows:

1. Select processors within the same cluster if possible
2. Select processors taking cluster proximity into account



Dynamic Parallel Job Scheduling in Multi-cluster Computing Systems 31

Next, the scheduler determines the exact number of tasks assigned to each
processor, Pi, in the target partition as follows:

bunch = ff(Pi) × Job Maximum Parallelism
ff(System)

(3)

where parameter ff is called a fitness factor for each processors Pi in the system
that is defined as follows:

ff =
CPU speed × Default MPL

slowest processor speed in the system
(4)

Finally, the tasks assigned to processor Pi are folded onto the target partition
size allocated to the job. For example, if Pi is assigned 3 tasks, these tasks are
folded into one large task assuming that jobs are malleable.

3 Performance Evaluation

We used discrete event simulation written in C programming language to study
the performance of the proposed policy and compare it with the baseline policy
[2]. For relative performance evaluation, we use the mean response time (MRT)
and average utilization. The MRT is defined as the average job response time of
completed jobs. The average utilization is defined as the job arrival rate times
the mean service demand of the jobs divided by the number of processors in the
system.

In this paper, we focus on moldable parallel workload. Moldable jobs are
parallel jobs that are flexible in the number of processors at the time the job
starts, but cannot be reconfigured during execution. The motivation for consid-
ering moldable parallel workload is that such workload constitutes a significant
portion of the high-performance computing centers workloads and likely to in-
crease in future. As in [2], we assume that jobs only request processors and we
do not include in the model any other type of resources.

We used a system composed of 8 clusters, each cluster with 8 processors.
In order to model the processors speed, we used the SPECfp2000 results for
a family of Intel Pentium 3 and 4 processors with different clock speeds. We
used 200µs for the context switch overhead, which is consistent with most of
modern operating system for workstations. We set the space-sharing threshold
(α = 2), MPL = 2 and background job mean service demand=2.0. We model
the communication overhead as follows:

Tcomm = Startup +
Message size
Bandwidth

(5)

The communication network latency to be 50µsec with the transfer rate of
100Mbits/sec.

The abstract model for parallel programs consists of a set of input parameters
along with a job structure. Each job is characterized by arrival time, service



32 J.H. Abawajy

demand time in a dedicated environment, maximum parallelism, and the size of
the job in Kbytes. Also, each can be decomposed into t tasks, T={T1,...,Tt} and
each task Ti executes sequential code. The maximum parallelism of the jobs is
uniformly distributed over the range of 1 to 64, while the service demands of the
jobs are generated using hyper-exponential distribution with mean 14.06 [10],
[2]. The default arrival CV is fixed at 1 (i.e., we assume Poisson arrivals) and
the default service time CV is fixed at 3.5 as empirical observations at several
supercomputer centers indicated this to be a reasonable value [10].

4 Results and Discussion

4.1 Relative Performance

We compared the relative performance of the proposed policy with the MPAP
policy [2] in homogeneous environments. The result shows that at low system
loads, there is no significant difference among the two policies as there are plenty
of processors idle most of the time at this load level. However, as the load
increases the dynamic policy performs better (by about 20% to 30%) than the
baseline policy. This trend can be explained by the fact that in the MAP policy
jobs tend to be allocated smaller partition-size as the system load increases and
in the presence of local workload. As the number of processors allocated to a job
decreases below its maximum parallelism, the service demand of the tasks also
increases. This makes the jobs sensitive to the presence of the background load,
which can increase the wait time of the jobs.

4.2 Sensitivity Analysis

We examined the impact of the background workload on the performance of
the two policies. Note that the impact of the background load on the parallel
job depends on the service demand of the parallel tasks; the longer a parallel
task occupies the processor the more likely its execution is interrupted by the
background workload. The result shows that the MAP policy is more sensitive
than the dynamic policy. This is because the MAP policy suffers from a form of
processor fragmentation induced by the presence of the background load and the
way the partition-size is assigned to the jobs. Since partition size is computed
based on the total number of processors in the system, the actual number of idle
processors can be lower than the partition-size computed. This is because of the
fact that some of the processors run background load at the time and the MAP
policy does not take into account the background loads when computing the
partition size. In this situation, the processors will remain idle as the scheduler
will not assign them to jobs even if there are small jobs that can fruitfully utilize
them.

Sensitivity of the two policies to the combined effects of background load
and processor heterogeneity is also examined. At medium to high system loads,
the MAP policy tends to be more sensitive than the dynamic policy. This is



Dynamic Parallel Job Scheduling in Multi-cluster Computing Systems 33

due to the fact that, in addition to processor heterogeneity, the jobs experience
slowdown due to interference from the background jobs. Note that heterogeneity
can lead to a load imbalance situation. In such situations, the completion time
of the jobs increases. When the execution of jobs in an already imbalanced
environment is interrupted due to background jobs, the finishing time of the
jobs is further increased.

In summary, the relatively poor performance of the MAP policy is due to the
space sharing nature of the policy. Note that in the extreme case, the MAP policy
ends up allocating a single processor to each job. Therefore, all the optimizations
proposed to alleviate the problems associated with MAP policy have no impact at
this stage. In addition, the presence of the background load also exacerbates the
situation by creating interference for currently running jobs. This interference is
observed as an increase in the completion time of the parallel jobs due to resource
contention. The MAP policy reaches a point at which performance dramatically
falls off. When the load is sufficiently high with all the processors running at
least 1 job, the interference increases rapidly and performance can be very poor.
Also under the MAP policy a job may have to be executed in one of the slower
processors, considerably degrading the execution time.

5 Conclusion and Future Direction

In this paper, we investigated parallel job scheduling problem on heterogeneous
networks of workstations, where computing power varies among the worksta-
tions, and local and parallel jobs may interact with each other in execution. We
proposed a scheduling policy based on a virtually rooted tree structure that
employs a pull-push scheme for scheduling and load balancing parallel jobs over
multiple clusters. The proposed policy allows multiple job streams to share the
system concurrently in an environment where the actual load distribution is not
completely predictable in advance and scheduling is done dynamically. Also,
the policy integrates several approaches (i.e. task scheduling, load balancing,
self-scheduling, and time-space sharing) into a simple framework for parallel
job scheduling on a system composed of multiple clusters. We studied the
performance of the proposed scheduling policy through simulation. The results
indicate that the proposed scheduling policy significantly better than the other
scheduling policies used in the study.

Acknowledgments. Financial help is provided by Deakin University. The help
of Maliha Omar is also greatly appreciated.

References

1. Ming Q. X.: Effective Metacomputing using LSF MultiCluster, Proceedings of
CCGrid (2001) 100-106.

2. Thyagaraj, T.K. and Dandamudi, S. P.: An Efficient Adaptive Scheduling Scheme
for Distributed Memory Multicomputers, IEEE Transactions on Parallel and Dis-
tributed Systems, 12, (2001) 758-768.



34 J.H. Abawajy

3. Abawajy, J. H. and Dandamudi, S. P.: A Unified Resource Scheduling Approach
on Cluster Computing Systems, Proceedings of the PDCS’03, (2003) 43-48.

4. Rosti, E. Smirni, E. Serazzi, G. and Dowdy, L. W.: Analysis of Non-Work-
Conserving Processor Partitioning Policies, Proceedings of JSSPP (1995) 165-181.

5. Abawajy, J. H. and Dandamudi, S. P.: Scheduling Parallel Jobs with CPU and
I/O Resource Requirements in Cluster Computing Systems, Proceedings of the
11th IEEE/ACM MASCOTS’03 (2003) 336-351.

6. Abawajy, J. H. and Dandamudi, S. P.: Parallel Job Scheduling on Multi-Cluster
Computing Systems, Proceedings of the IEEE Cluster (2003) 11-17.

7. Feitelson, D. G. and Rudolph, L.: Toward Convergence in Job Schedulers for Par-
allel Supercomputers, Proceedings of JSSPP (1996) 1-26.

8. Feitelson, D. G. and Jette, M. A.: Improved Utilization and Responsiveness with
Gang Scheduling”, Proceedings of JSSPP (1997) 238-261.

9. Ryu, K.D. and Hollingsworth, J.K.: Exploiting Fine-Grained Idle Periods in Net-
works of Workstations, IEEE Transactions on Parallel and Distributed System,
11, (2000) 683-698.

10. Stergios, A. V. and Sevcik, K. C.: Parallel Application Scheduling on Networks of
Workstations, Journal of Parallel and Distributed Computing, 43 (1997) 1159-66.

11. Zhengao, Z. and Dandamudi,S. P.: An Adaptive Space-Sharing Policy for Hetero-
geneous Parallel Systems, HPCN’01 (2001) 353-362.


	Introduction
	Dynamic Scheduling Policy
	System Model
	Proposed Scheduling Policy

	Performance Evaluation
	Results and Discussion
	Relative Performance
	Sensitivity Analysis

	Conclusion and Future Direction



