
WINGS: A Parallel Indexer for Web Contents

Fabrizio Silvestri1,2, Salvatore Orlando3, and Raffaele Perego1

1 Istituto di Scienze e Tecnologie dell’Informazione - ISTI–CNR, Pisa, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy

Abstract. In this paper we discuss the design of a parallel indexer for
Web documents. By exploiting both data and pipeline parallelism, our
prototype indexer efficiently builds a partitioned inverted compressed in-
dex, a suitable data structure commonly utilized by modern Web Search
Engines. We discuss implementation issues and report the results of pre-
liminary tests conducted on a SMP PCs.

1 Introduction

Nowadays, Web Search Engines (WSEs) [1,2,3,4] index hundreds of millions
of documents retrieved from the Web. Parallel processing techniques can be
exploited at various levels in order to efficiently manage this enormous amount
of information. In particular it is important to make a WSE scalable with respect
to the size of the data and the number of requests managed concurrently.

In a WSE we can identify three principal modules: the Spider, the Indexer,
and the Query Analyzer. We can exploit parallelism in all the three modules.
For the Spider we can use a set of parallel agents which visit the Web and
gather all the documents of interest. Furthermore, parallelism can be exploited
to enhance the performance of the Indexer, which is responsible for building
an index data structure from the collection of gathered documents to support
efficient search and retrieval over them. Finally, parallelism and distribution is
crucial to improve the throughput of the Query Analyzer (see [4]), which is re-
sponsible for accepting user queries, searching the index for documents matching
the query, and returning the most relevant references to these documents in an
understandable form.

In this paper we will analyze in depth the design of a parallel Indexer, dis-
cussing the realization and the performance of our WINGS (Web INdexinG Sys-
tem) prototype. While the design of parallel Spiders and parallel Query Analyz-
ers has been studied in depth, only a few papers discuss the parallel/distributed
implementation of a Web Indexer [5,6].

Several sequential algorithms have been proposed, which try to well balance
the use of core and out-of-core memory in order to deal with the large amount of
input/output data involved. The Inverted File (IF) index [7] is the data structure
typically adopted for indexing the Web. This is mainly due to two main reasons.
First it allows the efficient resolution of queries on huge collections of Web pages,
second it can be easily compressed to reduce the space occupancy in order to
obtain a better exploitation of the memory hierarchy [8].

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 263–270, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

264 F. Silvestri, S. Orlando, and R. Perego

An IF index on a collection of Web pages consists of several interlinked
components. The principal ones are: the lexicon, i.e. the list of all the index
terms appearing in the collection, and the corresponding set of inverted lists,
where each list is associated with a distinct term of the lexicon. Each inverted
list contains, in turn, a set of postings. Each posting collects information about
the occurrences of the corresponding term in the collection’s documents. For the
sake of simplicity, in the following discussion we will consider that each posting
only includes the identifier of the document (DocID) where the term appears,
even if postings actually store other information used for document ranking
purposes.

Another important feature of the IF indexes is that they can be easily par-
titioned. In fact, let us consider a typical parallel Query Analyzer module: the
index can be distributed across the different nodes of the underlying architecture
in order to enhance the overall system’s throughput (i.e. the number of queries
answered per each second). For this purpose, two different partitioning strategies
can be devised. The first approach requires to horizontally partition the whole
inverted index with respect to the lexicon, so that each query server stores the
inverted lists associated with only a subset of the index terms. This method
is also known as term partitioning or global inverted files. The other approach,
known as document partitioning or local inverted files, requires that each query
server becomes responsible for a disjoint subset of the whole document collec-
tion (vertical partitioning of the inverted index). Following this last approach
the construction of an IF index become a two-staged process. In the first stage
each index partition is built locally and independently from a partition of the
whole collection. The second phase is instead very simple, and is needed only to
collect global statistics computed over the whole IF index.

Since the document partitioning approach provides better performance fig-
ures for processing typical Web queries than the term partitioning one, we
adopted it in our Indexer prototype. Figure 1 illustrates this choice, where the
document collection is here represented as a set of html pages.

Note that in our previous work [4] we conducted experiments where we
pointed out that the huge sizes of the Web make the global statistics useless.
For this reason, we did not consider this phase in the design of our indexer.

The paper is organized as follow. Section 2 motivates the choices made in the
design of WINGS and discusses parallelism exploitation and implementation is-
sues. Some encouraging experimental results obtained running WINGS on Linux
SMP PCs are instead presented and discussed in Section 3. Finally, Section 4
draws some conclusions and outlines future work.

2 The Design of WINGS

The design of a parallel Indexer for a WSE adopting the document partition
approach (see Figure 1, can easily exploit data parallelism, thus independently
indexing disjoint sub-collections of documents in parallel. Besides this natural
form of parallelism, in this paper we want to study in depth the parallelization

WINGS: A Parallel Indexer for Web Contents 265

Fig. 1. Construction of a distributed index based on the document partition paradigm,
according to which each local inverted index only refers to a partition of the whole
document collection.

opportunities within each instance of the Indexer, say Indexeri, which accom-
plishes its indexing task on a disjoint partition i of the whole collection.

Table 1. A toy text collection (a), where each row corresponds to a distinct document,
and (b), the corresponding inverted index, where the first column represents the lexicon,
while the last column contains the inverted lists associated with the index terms.

Document Id Document Text
1 Pease porridge hot, pease porridge cold.
2 Pease porridge in the pot.
3 Nine days old.
4 Some like hot, some lite it cold.
5 Some like in the pot.
6 Nine days old.

(a)

Term Postings list
cold 1, 1
days 3, 6
hot 1, 4
in 2, 5
it 4, 5

like 4, 5
nine 3, 6
old 3
.

(b)

The job performed by each Indexeri to produce a local inverted index is
apparently simple. If we consider the collection of documents as modeled by
a matrix (see Table 1.(a)), building the inverted index simply corresponds to
transpose the matrix (see Table 1.(b)). This matrix transposition or inversion
can be easily accomplished in-memory for small collections. Unfortunately, a
naive in-core algorithm becomes rapidly unusable as the size of the document
collection grows. Note that, with respect to a collection of some GBs of data,
the size of the final lexicon is usually a few MBs so that it can be maintained

266 F. Silvestri, S. Orlando, and R. Perego

in-core, while the inverted lists cannot fit into the main memory and have to be
stored on disk, even if they have been compressed.

To efficiently index large collections, a more complex process is required.
The most efficient techniques proposed in literature [7], are all based on external
memory sorting algorithms. As the document collection is processed, the Indexer
associates a distinct DocID with each document, and stores into a in-core buffer
all the pairs < Term, DocID >, where Term appears at least once in document
DocID. Buffer size occupies as much memory as possible, and when it becomes
full, it is sorted by increasing Term and by increasing DocID. The resulting
sortedruns of pairs are then written into a temporary file on disk, and the
process repeated until all the documents in the collection are processed. At the
end of this first step, we have on disk a set of sorted runs stored into distinct
files. We can thus perform a multi-way merge of all the sorted runs in order to
materialize the final inverted index.

According to this approach, each Indexeri works as follows: it receives a
stream of documents, subdivides them in blocks, and produce several disk-stored
sorted runs, one for each block. We call this phase Indexerpre

i . Once Indexerpre
i

is completed, i.e. the stream of pages has been completely read, we can start the
second phase Indexerpost

i , which performs the multi-way merge of all the sorted
runs.

Fig. 2. Forms of parallelism exploited in the design of a generic Indexer, in particular
of the first module (a) Indexerpre

i , and the (b) Indexerpost
i one.

The main activities we have identified in Indexerpre and Indexerpost are
illustrated in Figure 2.(a) and Figure 2.(b), respectively.

WINGS: A Parallel Indexer for Web Contents 267

Indexerpre can be in turn modeled as a two stage pipeline, Parser and
Inverterpre. The former recognizes the syntactical structure of each document
(html, xml, pdf, etc.), and generates a stream of the terms identified. The Parser
job is indeed more complex than the one illustrated in figure. It has to determine
the local frequencies of terms, remove stop words, perform stemming, store in-
formation about the position and context of each occurrence of a term to allows
phase searching, and, finally, collect information on the linking structure of the
parsed documents. Note that information about term contexts and frequencies
are actually forwarded to the following stages, since they must be stored in the
final inverted files in order to allow to rank the results of each WSE query. For
the sake of clarity, we will omit all these details in the following discussion.

The latter module of the first pipeline, Inverterpre, thus receives from the
Parser stage a stream of terms associated with distinct DocIDs, incrementally
builds a lexicon by associating a TermIDs with each distinct term, and stores
on disk large sorted runs of pairs < TermID, DocID >. Before storing the run,
it has to order them first by TermID, and then by DocID. Note that the use
of integer TermID and DocID not only reduces the size of each run, but also
makes faster comparisons and thus runs’ sorting. Inverterpre has a sophisticated
main memory management, since the lexicon has to be kept in-core, each run has
to be as large as possible before flushing to disk, and we have to avoid memory
swapping.

When the first pipeline Indexerpre ends processing a given document parti-
tion, the second pipeline Indexerpost can start its work. The input to this second
pipeline is exactly the output of Indexerpre, i.e., the set of sorted runs and the
lexicon relative to the document partition. The first stage of the second pipeline
is the Inverterpost module, whose job is to produce a single sorted run starting
from the various disk-stored sorted runs. The sorting algorithm is very simple:
it is a in-core multi-way merge of the n runs, obtained by reading into the main
memory the first block b of each run, where the size of the block is carefully
chosen on the basis of the memory available. The top pairs of all the blocks
are then inserted in a (min-)heap data structure, so that the top of the heap
contains the smallest TermID, in turn associated with the smallest DocID. As
soon as the lowest pair p is extracted from the heap, another pair, coming from
the same sorted run containing p (i.e., form the corresponding block), is inserted
into the heap. Finally, when an in-core block b is completely emptied, another
block is loaded from the same disk-stored run. The process clearly ends when
all the disk-stored sorted runs have been enterely processed, and all the pairs
extracted from the top position of the heap.

Note that Indexerpost as soon as extracts each ordered pair from the heap,
forwards it to the Flusher, i.e. the latter stage of the second pipeline. This stage
receives in order all the postings associated with each TermID, compresses them
by using the usual techniques based on the representation of each inverted list as
a sequence of gaps between sorted DocIDs, and stores each compressed list on
disk. A scratch of the inverted index produced is shown in Figure 3. Note that
the various lists are stored in the inverted file according to the ordering given

268 F. Silvestri, S. Orlando, and R. Perego

Fig. 3. Inverted file produced by the Flusher.

by the TermID identifiers, while the lexicon shown in figure has to be finally
sorted according to lexicographic order given by the corresponding terms.

3 Experimental Results

All the tests were conducted on a 2-way SMP equipped with two Intel 2.0 GHz
Xeon processors, one GB of main memory, and one 80 GB IDE disk.

For the communication between the various stages of the Indexer pipelines,
we used an abstract communication layer that can be derived in order to exploit
several mechanisms. In the tests we performed, since the pipeline stages are
mapped on the same node, we exploited the System V message queue IPC.

In order to evaluate the opportunity offered by the pipelined parallelization
scheme illustrated above, we have first evaluated the computational cost of the
Parser, the Inverter, and the Flusher module, where each of them uses the
disk for input/output.

Table 2. Sequential execution times for different sizes of the document collection.

Collection Size Time (s) Time (s) Time (s) Tot. Throughput
(GB) Parser Inverter F lusher (GB/h)

1 3610 1262 144 0.71
2 7044 3188 285 0.68
3 11355 4286 429 0.67
4 14438 5714 571 0.69
5 18047 6345 725 0.71

As you can observe from the execution times reported in Table 2, the most
expensive module is the Parser, while the execution time of the Flusher is, on
average, one order of magnitude smaller than whose of the Inverter. Moreover,
we have to consider that, in the pipeline version, the Inverter module will be
split into two smaller ones, Inverterpre and Inverterpost, whose cost is smaller
than the whole Inverter. From the above considerations, we can conclude that

WINGS: A Parallel Indexer for Web Contents 269

the pipeline implementation will result in an unbalanced computation, so that
if we execute a single pipelined instance Indexeri on a 2-way multiprocessors,
processors, it should result in a under-utilization of the workstation. In particu-
lar, the Invertedpre should waste most of its time waiting for data coming from
the Parser.

When a single pipelined Indexeri is executed on a multiprocessor, a way to
increase the utilization of the platform is to try to balance the throughput of
the various stages. From the previous remarks, in order to balance the load we
could increase the throughput of the Parser, i.e. the most expensive pipeline
stage, for example by using a multi-thread implementation where each thread
independently parses a distinct document1. The other way to improve the mul-
tiprocessor utilization is to map multiple pipelined instances of the indexer, each
producing a local inverted index from a distinct document partition.

Table 3. Total throughput (GB/s) when multiple instances of the pipelined Indexeri

are executed on the same 2-way multiprocessor.

Coll. Size No. of instances
(GB) 1 2 3 4

1 1.50 2.01 2.46 2.57
2 1.33 2.04 2.44 2.58
3 1.38 1.99 2.38 2.61
4 1.34 2.04 2.45 2.64
5 1.41 2.05 2.45 2.69

In this paper we will evaluate the latter alternative, while the former one will
be the subject of a future work. Note that when we execute multiple pipeline
instances of Indexeri, we have to carefully evaluate the impact on the shared
multiprocessor resources, in particular the disk and the main memory. As regards
the disk, we have evaluated that the most expensive stage, i.e. the Parser, is
compute-bound, so that the single disk suffices to serve requests coming from
multiple Parser instances. As regards the main memory, we have tuned the
memory management of the stages Inverterpre and Inverterpost, which in prin-
ciple could need the largest amount of main memory to create and store the
lexicon, store and sort the runs before flushing to the disk, and to perform the
multi-way merge from the sorted runs.

In particular, we have observed that we can profitably map up to 4 instances
of distinct pipelined Indexersi on the same 2-way processor, achieving a maxi-
mum throughput of 2.64 GB/hour. The results of these tests are illustrated in
Table 3. Note that, when a single pipelined Indexeri is executed, we were how-
ever able to obtain a optimal speedup over the sequential version (� 1.4 GB/h

1 The Parser is the only pipeline stage that can be further parallelized by adopting
a simple data parallel scheme.

270 F. Silvestri, S. Orlando, and R. Perego

vs. � 0.7 GB/h), even if the pipeline stages are not balanced. This is due to
the less expensive in-core pipelined data transfer (based on message queues) of
the pipeline version, while the sequential version must exploit the disk to save
intermediate results.

4 Conclusion

We have discussed the design a WINGS, a parallel indexer for Web contents
that produces local inverted indexes, the most commonly adopted organization
for the index of a lrge-scale parallel/distributed WSE. WINGS exploits two
different levels of parallelism. Data parallelism, due to the possibility of inde-
pendently building separate inverted indexes from disjoint document partitions.
This is possible because WSEs can efficiently process queries by broadcasting
them to several searchers, each associated with a distinct local index, and by
merging the results. In addition, we have also shown how a limited pipeline par-
allelism can be exploited within each instance of the indexer, and that a low-cost
2-way workstation equipped with an inexpensive IDE disk is able to achieve a
throughput of about 2.7 GB/hour, when processing four document collections
to produce distinct local inverted indexes. Further work is required to assess the
performance of our indexing system on larger collections of documents, and to
fully integrate it within our parallel and distributed WSE prototype [4]. More-
over, we plan to study how WINGS can be extended in order to exploit the
inverted lists active compression strategy discussed in [8].

References

1. Baeza–Yates, R., Ribiero–Neto, B.: Modern Information Retrieval. Addison Wesley
(1998)

2. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes – Compressing and In-
dexing Documents and Images. second edition edn. Morgan Kaufmann Publishing,
San Francisco (1999)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30 (1998) 107–117

4. Orlando, S., Perego, R., Silvestri, F.: Design of a Parallel and Distributed WEB
Search Engine. In: Proceedings of Parallel Computing (ParCo) 2001 conference,
Imperial College Press (2001) 197–204

5. Jeong, B., Omiecinski, E.: Inverted File Partitioning Schemes in Multiple Disk
Systems. IEEE Transactions on Parallel and Distributed Systems (1995)

6. Melnik, S., Raghavan, S., Yang, B., Garcia-Molina, H.: Building a Distributed Full–
Text Index for the Web. In: World Wide Web. (2001) 396–406

7. Van Rijsbergen, C.: Information Retrieval. Butterworths (1979) Available at
http://www.dcs.gla.ac.uk/Keith/Preface.html.

8. Silvestri, F., Perego, R., Orlando, S.: Assigning document identifiers to enhance
compressibility of web search. In: Proceedings of the Symposium on Applied Com-
puting (SAC) - Special Track on Data Mining (DM), Nicosia, Cyprus, ACM (2004)

	Introduction
	The Design of WINGS
	Experimental Results
	Conclusion

