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Abstract. In trying to provide formal evidence that composition has se-
curity increasing properties, we ask if the composition of non-adaptively
secure permutation generators necessarily produces adaptively secure
generators. We show the existence of oracles relative to which there are
non-adaptively secure permutation generators, but where the composi-
tion of such generators fail to achieve security against adaptive adver-
saries. Thus, any proof of security for such a construction would need to
be non-relativizing. This result can be used to partially justify the lack of
formal evidence we have that composition increases security, even though
it is a belief shared by many cryptographers.

1 Introduction

While there is arguably no strong theory that guides the development of block-
ciphers such as DES and AES, there is a definite belief in the community that the
composition of functions often results in functions that have stronger security
properties than their constituents. This is evident as many ciphers such as DES,
AES and MARS have a “round structure” at the heart of their constructions,
and a large part of the ciphers’ apparent security comes from the composition
of these rounds.

In an attempt to understand the security benefits of composition, there have
been several papers that have tried to quantify different ways in which the com-
position of functions increases security properties as compared to the constituent
functions [14,1]. A natural question along these lines is to look at functions that
are pseudo-random from the perspective of a non-adaptive adversary, but not
that of the standard adaptive adversary, and ask if composition of these func-
tions necessarily provides security against adaptive adversaries. It appears that
at least some people in the cryptographic community believe this to be true.
In fact, recently Maurer and Pietrzak [16] have shown the cascade of two non-
adaptively statistically-secure permutations results in an adaptively secure con-
struction, where the cascade of two generators is the composition of the first with
the inverse of the second. Additionally, they ask if their cascade construction can
be proven secure in the computational setting.

In this paper we show that there is no non-relativizing proof that compo-
sition of functions provides security against adaptive adversaries. Thus, this
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work falls into a general research program that demonstrates the limitations
of black-box constructions in cryptography. Examples of such research include
[12,19,13,5,7,6]. In the final section, we discuss how the techniques used here
can be lifted and used on at least one other natural construction: the XOR of
function generators.

We note that it is not possible to strictly separate non-adaptively secure
function generators from adaptively secure ones in the black-box model, as there
are several black-box constructions that construct the stronger object from the
weaker one. The first treats the non-adaptively secure generator as a pseudo-
random number generator and then uses the construction of Goldreich, Gold-
wasser and Micali [9] in order to construct a pseudo-random function generator.
The second construction treats the non-adaptively secure function generator as
a synthesizer and then constructs a function generator as described by Naor
and Reingold in [17]. In both cases, we can go from function generators to per-
mutation generators through the well known Luby-Rackoff construction [15].
However, there are several reasons why these constructions are unsatisfying:
first, these constructions are not representative of what is done in practice to
construct block-ciphers; second, they require Ω( n

log n ) calls to the non-adaptively
secure functions generators. Therefore it is natural to ask if the more efficient
constructions used in practice can provide adaptive security.

Finally, since it is possible to construct adaptively secure generators from
non-adaptively secure generators using black box techniques, this result suggests
the possibility that one reason there may be few general theorems championing
the general security amplification properties of compositions is that such theo-
rems are not establishable using standard black-box proof techniques.

1.1 Black-Box Constructions and Proofs

Since the existence of most modern cryptographic primitives imply P �= NP ,
much of modern cryptography revolves around trying to construct more complex
primitives from other simpler primitives that are assumed to exist. That is, if
we assume primitives of type P exist, and wish to show that a primitive of type
Q exists, then we give a construction C, where C(MP ) is an implementation
of Q whenever MP is an implementation of P . However, most constructions in
modern cryptography are black-box. More specifically, when given a a primitive
P , we construct a primitive Q by a construction CP , where the primitive P is
treated as an oracle. The difference between the two constructions is that in the
former case the construction may make use of the machine description, while in
the latter it only treats the primitive as an oracle to be queried: it’s as if P were
inside of a black box.

Observe that it is not immediately clear how to prove that there can be
no black-box construction CP of a primitive Q from an implementation MP of
a primitive P , as the implementation C and the proof of its correctness and
security could always ignore the presence of the oracle P , and independently
use the implementation MP in the construction C. The notion of proving black-
box separation results was initiated by Baker, Gill and Solovay [2], who were
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interested in the techniques necessary to answer the P vs. NP question. Building
on this work, Impagliazzo and Rudich [12] gave a model in which one can prove
separations for cryptographic primitives. In their model they note that black-box
constructions and proofs work relative to any oracle, that is they relativize, and
therefore it is sufficient to provide an oracle O which implements a primitive P ,
but all constructions CO of primitive Q are not secure relative to O. Gertner,
Malkin and Reingold [8] have shown that if one’s goal is to rule out black-box
constructions, then a weaker type of theorem will suffice: for each black-box
construction CP of primitive Q, it suffices to demonstrate an oracle O that
implements primitive P , but for which CO is insecure. Our result will be of this
flavor.

As was stated previously, we cannot separate non-adaptive generators from
adaptive ones, as there are black-box constructions of one from the other. How-
ever, we show that certain constructions (those which are the composition of
permutation generators) cannot provide provable adaptive security using black-
box techniques. This is done by constructing an oracle for each construction that
provides a natural representation of a non-adaptively secure permutation gener-
ator, but where the composition of these generators is not adaptively secure.

Finally, we note that there are several techniques that are used in cryptog-
raphy, such as Zero-Knowledge in its many incarnations (to name but a few
[11,10,4,18,3]) that are often used in cryptographic constructions in such a way
that the construction, and not necessarily the technique, is non-black-box.

1.2 Our Results

Our main result involves permutation generators. These generators have an as-
sociated domain-size parameter n ∈ N that fixes the set {0, 1}n over which the
permutations are defined.

Theorem 1. For every polynomial m, there exists a pair of oracles relative to
which there exist non-adaptively secure pseudo-random permutation generators
P such that the generator P ◦ . . . ◦ P

︸ ︷︷ ︸

m(n)

is not adaptively secure.

In the theorem P ◦ P ′ denotes the natural composition construction: it is the
generator constructed by fixing the security parameter and randomly choosing
a p ∈ P and p′ ∈ P ′ and computing the permutation p ◦ p′. The construction
P ◦ . . . ◦ P
︸ ︷︷ ︸

m(n)

defines the generator that generates permutations over the set {0, 1}n

by composing m(n) generators P .

1.3 Preliminaries & Notations

Let S be a finite set, and let x ∈U S denote the act of choosing an element x
uniformly at random from S. To describe some of the probabilistic experiments
we adopt the notation Pr[R1; ...; Rk :: E|C] to denote the probability that if
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random processes R1 through Rk are performed, in order, then, conditioned on
event C, the event E occurs.

Notation 1. Let D be any finite set, and let Q1, Q2 ⊆ D ×D be arbitrary sets
of pairs. We define Q1 ◦Q2 = {(a, c)|∃a, b, c ∈ D s.t. (a, b) ∈ Q1 ∧ (b, c) ∈ Q2}.
Generalizing this notion, for a collection of sets Qk1 , . . . , Qkm ⊆ D×D and for
a vector K = (k1, ..., km), let QK = Qk1 ◦ . . . ◦Qkm .

Notation 2. For any finite set D, we denote by D[k] the set of all k-tuples
of distinct elements from D. In a slight abuse of notation, for a k-tuple d =
(d1, . . . , dk) ∈ Dk, we say x ∈ d if there exists an i ≤ k such that x = di.
Additionally, for a function f of the form D → D, we write f(d) to denote
(f(d1), . . . , f(dk)).

Notation 3. We denote by Πn the set of all permutations over {0, 1}n, and we
denote by Fn the set off all functions of the form {0, 1}n → {0, 1}n.

1.4 Organization

In Section 2 we introduce the standard definitions related to Pseudo-Random
Permutation and Function Generators, the difference between adaptive and non-
adaptive security, and we discuss how these definitions are lifted into relativized
worlds. In Section 3 we present the oracles relative to which we will prove our re-
sult. We show that, relative to these oracles, non-adaptively secure permutation
generators exist, but that their composition does not provide adaptive security.
This is done by showing that non-adaptive adversaries cannot make effective use
of one of the oracles that an adaptive adversary can make use of. We demonstrate
the oracles’ lack of effectiveness to the non-adaptive adversary by demonstrating
how the oracles responses could easily be simulated by a non-adaptive adversary.
In Section 4 we present the proofs of the combinatorial lemmas behind the sim-
ulation just mentioned. We finish in Section 5 by discussing how the techniques
presented can be lifted to get similar results for other constructions, such as
those based on XOR. Finally, we discuss some directions for future work.

2 Standard Definitions

We use the standard, Turing machine based, uniform definitions for pseudo-
random function generators and adversaries.

Definition 1 (Function Ensembles). We call G : {0, 1}κ×{0, 1}n → {0, 1}n
a function generator. We say that k ∈ {0, 1}κ is a key of G, write G(k, ·) as
gk(·) and say that key k chooses the function gk. Let g ∈U G represent the act
of uniformly at random choosing a key k from {0, 1}κ, and then using the key k
to choose the function gk.
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Let � be a polynomial, and let N ⊆ N be an infinitely large set. For each
n ∈ N , let Gn : {0, 1}�(n) × {0, 1}n → {0, 1}n be a function generator.
We call G = {Gn|n ∈ N} a function ensemble. Given an ensemble G, if for
every n ∈ N , the function g ∈U Gn is a permutation, then we say G is a
permutation ensemble. We say an ensemble G is efficiently computable if there
exists a Turing machine M and a polynomial p such that for all sufficiently large
n, for all x ∈ {0, 1}n and k ∈ {0, 1}�(n) the Turing machine’s M(k, x) output is
Gn

k (x) and M(k, x) runs in time p(n).

Definition 2 ((Non-)Adaptive Adversaries). An adversary, A, is a proba-
bilistic, polynomial-time Turing machine with oracle access that outputs an ele-
ment in {0, 1}. We denote an adversary A with access to an oracle f as Af . In
order to query an oracle f , A writes its query to a special oracle-query-tape, and
enters a specified query request state. The response to the query is then written
to an oracle-response-tape by the oracle, and A continues its computation. For
accounting purposes, we assume that it takes unit time to write the response of
the oracle to the tape, once A has entered the query state. An adversary is adap-
tive if it can make multiple queries to the oracle, where future queries can depend
on the results of previous queries. A non-adaptive adversary may make multi-
ple queries to the oracle, but all queries must be made in parallel at the same
time. Formally, the adversary is permitted to write several queries at a time to
the oracle-query-tape. When the machine enters the specified query state, the
response to all of the queries are written to the response tape.

Definition 3 ((Non-)Adaptive Pseudo-Random Function Generator
Ensembles). Let m and � be polynomials. Let G = {Gn|n ∈ N} be an efficiently
computable function generator ensemble such that for each n the generator Gn

is of the form {0, 1}�(n) × {0, 1}n → {0, 1}m(n). Define F = {Fn|n ∈ N}.
We say that G is adaptively (resp. non-adaptively) secure if for all constants

c > 0, for all adaptive (resp. non-adaptive) polynomial time adversaries A and
for all sufficiently large n:

∣

∣

∣

∣

∣

∣

Pr
g∈UGn

r∈U{0,1}∗
[Ag(1n) = 1]− Pr

f∈UFn

r∈U{0,1}∗

[

Af (1n) = 1
]

∣

∣

∣

∣

∣

∣

≤ 1
nc

,

where the r ∈ {0, 1}∗ represent the random coin-tosses made by A.

In this work we are concerned with the above definitions, but in worlds where
a pair of oracles (O, R) exist. We note we use a pair of oracles, as opposed to
just one, to simplify the presentation of the proof. We extend the definitions of
function ensembles and adaptive/non-adaptive adversaries by allowing Turing
machines to have access to the oracles O and R. We stress that non-adaptive
adversaries are permitted to query O and R in an adaptive manner: the non-
adaptive restriction on oracle queries in the definition of the adversary (Defn.
2) are only for the oracles f and g specified in the definition of pseudo-random
function generator ensembles (Defn. 3).
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3 The Separating Oracles for Composition

We will construct an oracle that contains an information theoretically secure
pseudo-random permutation generator (PRPG). By this we mean that for each
n it will include 2n random permutations over {0, 1}n. Clearly, a non-adaptively
secure PRPG F can be immediately constructed from such an oracle, but it is
also clear that the same generator will be adaptively secure. Therefore, we add
another oracle R that weakens the security of O. To help describe R, suppose
the construction of interest is the composition of two permutations from O, and
suppose the adversary has access to a function g that is either a function chosen
randomly from Fn→n or π1 ◦ π2 for π2, π1 ∈U Πn. The oracle R iteratively re-
quests the values of yi = g(xi) for enough (but still a small number of) randomly
chosen values xi that it should be able to uniquely identify π1, π2 ∈ O, if it is
the case that g = π1 ◦ π2. If R determines that that there exists a π1, π2 ∈ O
such that yi = π1 ◦ π2(xi) for each i, then it will predict a random input/output
pair (x∗, y∗), where y∗ = π1 ◦ π2(x∗). Alternatively, if there is no pair of per-
mutations in O whose composition is consistent with all of the (xi, yi) then the
oracle rejects and outputs ⊥.

The oracle R provides a trivial way for an adaptive adversary to break the
security of the composed generators: such an adversary can easily supply the
yi = g(xi) values R requests as responses to its xi challenges. If R returns a
prediction (x∗, y∗) that is consistent with y∗ = g(x∗) then almost surely g is
a composition of permutations from O. In contrast, if the adversary is non-
adaptive then the oracle R will be of essentially no use to the adversary because
of R’s iterative nature. Therefore, it is as if R does not exist to the adversary,
and therefore the adversary cannot use R to help identify permutations that are
in O.

3.1 Oracle Definitions

Definition 4 (The Oracle O). Let On O← Πn denote the process of choosing
an indexed set of 2n random permutations from Πn with replacement. Let On

k

denote the kth permutation in On. Let O = {On|n ∈ N}. Where n is clear we
write Ok to denote On

k . For k1, ..., km ∈ {0, 1}n and K = (k1, ..., km), let OK

denote Okm ◦ . . . ◦ Ok1 . Further, for x1, ..., x� ∈ {0, 1}n and x = (x1, ..., x�),
denote Ok(x) = y = (Ok(x1), . . . , Ok(x�)).

Definition 5 (Composition Construction). Let m : N → N be a polyno-
mial where for every i ∈ N, m(i) > 2. For an oracle O, for every n ∈ N and
k1, ..., km(n) ∈ {0, 1}n let Fn

(k1,...,km(n))
(x) = Ok1,...km(n)(x). Let F = ∪n{Fn} be

the proposed construction for an adaptively secure PRPG.

Definition 6 (The Oracle R). For an oracle O as described in Definition
4 and a construction F of m compositions as described in Definition 5 we
define the oracle R as follows. Define, with foresight, �(n) = m(n) + 1. Let
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R = {(R1, R2, R3)} be an oracle that for each n is chosen randomly according to
the random process Ψn(O), and the fixed. The process Ψn(0) is described below:

R1(1n)→ x1, . . . , x�(n) where (x1, . . . , x�(n)) ∈U ({0, 1}n)[�(n)].
R2(1n, x1, . . . , x�(n), y1, ..., y�(n))→ x�(n)+1, x�(n)+2 for the x1, . . . , x�(n) output

by R1(1n); any y1, . . . , y�(n) ∈ {0, 1}n; and
(

x�(n)+1, x�(n)+2

) ∈U
({0, 1}n \ {x1, . . . , x�(n)}

)[2].
R3(1n, x1, . . . , x�(n)+2, y1, . . . , y�(n)+2) = (x∗, y∗) for the (x�(n)+1, x�(n)+2) out-

put by R2(1n, x1, . . . , x�(n), y1, . . . , y�(n)); any y�(n)+1, y�(n)+2 ∈ {0, 1}n; κ ∈U
{

κ = (k1, . . . , km(n)) ∈ {0, 1}n·m(n)|Oκ(x1, . . . , x�(n)+2) = (y1, . . . , y�(n)+2)
}

;
x∗ ∈U {0, 1}n; and y∗ = Oκ(x∗).

On all other inputs to the oracles R1, R2 and R3 the result is ⊥. Finally, we de-
note by R

R← Ψ(O) the process of randomly choosing R given a fixed O, according
to the random process Ψn(O) described above for each n ∈ N.

3.2 The Oracle O Provides Adaptive Security

We state, without proof, the following lemma that states that most of the oracles
O provide a natural, adaptively secure permutation generator.

Lemma 1. For all probabilistic, polynomial-time, adaptive adversaries A and
for all sufficiently n:

Pr
O

O←Π
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∣

∣

∣

∣

∣

Pr
f∈UOn

r∈U{0,1}∗

[

Af,O(1n) = 1
]− Pr

g∈UΠn

r∈U{0,1}∗

[

Ag,O(1n) = 1
]

∣

∣

∣

∣

∣

∣

≤ 1
2n/2



 ≥ 1− 1
2n/2

,

where r ∈U {0, 1}∗ represents the random coin-tosses of A.

3.3 The Oracle R Breaks Adaptive Security

Lemma 2. There exists an efficient adversary, Adv, such that for all oracle
pairs (O, R) that could possibly be constructed, Adv breaks the adaptive security
of F relative to O and R.

Proof. We show that the following adversary has a significant chance of dis-
tinguishing between the composition of m(n) functions from O and a random
function. Note that this adversary calls f adaptively.

Advf,O,R(1n)
x1 = (x1, . . . , x�(n))← R1(1

n).
y1 = (y1, ..., y�(n))← f(x1).
x2 = (x�(n)+1, x�(n)+2)← R2(1

n, x1, y1).
y2 = (y�(n)+1, y�(n)+2)← f(x2).
If ⊥ = R3(1

n, x1, x2, y1, y2) output 0.
Otherwise output 1.
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Fix the oracles O and R. We show that if f was chosen from F then we
output 1 and otherwise (w.h.p.) we output 0. It is an easy observation that if
f ∈ F then, by the construction of Adv and R, the adversary necessarily outputs
1. Alternatively, if f ∈ n then it is easy to see by the following claim that there
is not likely to be any key k where Ok(x) = y holds, and therefore the oracle
R will output ⊥, and thus (w.h.p.) Adv will output 0. We remind the reader of
the notation defined in Notn. 2, as it is used in the statement of the claim.

Claim 1. For all sufficiently large n, for x = (x1, . . . , x�(n))← R(1n):

Pr[f ∈U Πn :: ∃K ∈ {0, 1}n·m(n) s.t. f(x) = OK(x)] ≤ 2−n.

Proof. Let S = {OK(x)|K ∈ {0, 1}n·m(n)}. Clearly |S| ≤ 2n·m(n). Consider
the probability that f(x) ∈ S, and since f ∈U Πn it is easy to see that this
probability is bound by 2n·m(n)/

∏�(n)
i=1 (2n − i) ≤ 2n·(m(n)−�(n)−1) < 2−n, as

�(n) = m(n) + 1. ��

3.4 Simulating the Oracle R for Non-adaptive Adversaries

It needs to be shown that R does not destroy the non-adaptive security of O. We
show that for every non-adaptive adversary with access to the oracle R we can
construct another non-adaptive adversary that is essentially just as successful
at breaking O, but that has no access to R. Since O is a large set of random
permutations, it is clear that without R there can be no successful distinguishing
adversary, and therefore there must be no successful non-adaptive adversary
relative to R either.

We will begin by showing that for every adversary B relative to R, there
exists an adversary ̂B that distinguishes nearly as well as B, but does not make
queries to R3. This is done by having ̂B simulate the responses of R3. In this
simulation there are two general cases: first, there are queries which are likely to
be made, and in these cases it turns out that ̂B can simulate R3’s responses with
only access to O. Next, there are queries that are unlikely to be made, and we
cannot simulate R3’s responses in these cases: we show it is incredibly unlikely
that B will make such queries, and thus incorrect answers will not significantly
affect the acceptance probability of ̂B. Finally, it is then a simple observation
that ̂B can easily simulate R1 and R2 perfectly, and thus there is no need for ̂B
to query the oracle R.

In order to construct ̂B we need B to be in a normal form. First, we assume
that an adversary never makes the same oracle query twice. Any adversary
that does can be converted to one that does not by storing all of its previous
oracle queries and the corresponding responses; it can then look up responses on
duplicate queries. Next, for our adversary B, with access to a function oracle f :
{0, 1}n → {0, 1}n, we assume without loss of generality that Bf,O,R(1n) always
makes exactly T (n) combined queries to f, O and R, for some polynomial T .
Further, we will assume that B records all of its queries and their corresponding
responses on its tape in a manner which is efficiently retrievable. In particular,
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we will assume that for each k ∈ {0, 1}n there is a set Qk = {(q, r)} that
contains all of the query/response pairs Ok(q) → r that have been made; a
set Qf = {(q, r)} that contains all the query/response pairs to the challenge
function, where f(q) → r; and a set SR2 that contains all the query/response
pairs to R2.

Lemma 3. Let T be a polynomial. For every oracle adversary B that on input
of size n makes T (n) queries, there exists an oracle adversary ̂B: ̂B on input of
size n makes at most T (n) · m(n) oracle queries; ̂B never queries R3; and for
all sufficiently large n it is the case that

Pr[O O← Π ; R R← Ψ(O); f ∈U On :: ̂BO,R,f (1n) �= BO,R,f (1n)] ≤ 5 · T (n)/2n/2

and

Pr[O O← Π ; R R← Ψ(O); f ∈U Πn :: ̂BO,R,f (1n) �= BO,R,f (1n)] ≤ 5 · T (n)/2n/2.

Proof. Fix n. We now construct an adversary ̂B that doesn’t make queries to
R3. We note that in the statement of the lemma and its proof we don’t concern
ourselves with the random coin-tosses of B or ̂B. It will be obvious from the
proof, that the random coin-tosses do not affect any of the probabilities we
discuss, and that we could simply fix the random coin tosses of B and prove the
theorem for each such sequence.

We will consider a series of hybrid adversaries. Let ̂Ai(1n) be an adversary
that runs B(1n) but on the first i oracle queries rather than make an oracle
query q it runs the sub-routine G(q) and takes the output of G(q) as the result
of the query. Before giving the description of G we remind the reader of the
notation defined in Notn. 1 and 2. The sub-routine G is defined below:

G(q)
If q is not a query to R3 perform query q and let a be the
oracle’s response: output a

Otherwise q = R3(x1, ..., xl(n)+2, y1, ..., y�(n)+2).
x1 = (x1, ..., xl(n)) and let x2 = (xl(n)+1, xl(n)+2).
y1 = (y1, ..., yl(n)) and let y2 = (yl(n)+1, yl(n)+2).

(6) If ((x1, y1), x2) /∈ SR2 output ⊥.

(7) K = {K ∈ ({0, 1}n ∪ {f})m(n) |((x1, x2), (y1, y2)) ∈ QK}.
(8) If |K| �= 1 output ⊥.
(9) K = {k}.
(10) If f ∈ k output ⊥
(11) Choose x∗ ∈U {0, 1}n and query y∗ ← Ok(x∗).
(12) Output (x∗, y∗).

The intuition behind G is the following: for any query q to an oracle other
than R3 it behaves identically to that oracle on query q; for queries to R3 it
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will almost surely output the same result as the query to R3. We give a quick
outline of the intuition for the latter case. First, in Line 6, when G outputs ⊥ it
is almost surely the correct answer because if (x1, y1) has not been queried from
R2, then the probability of the adversary guessing x2 correctly is negligible. On
Line 8 we really have two cases: first, when |K| = 0, it is unlikely there is a key,
K, such that OK(x1, x2) = (y1, y2), and thus the response ⊥ is almost surely
correct; next, when |K| ≥ 2, and in this case G will output the incorrect answer,
but the probability of this case occurring is negligible. The intuition for Line 10
is really the main point behind the proof. If the adversary manages to find a key
where it can substitute the function f for part of the key, then the simulation
G will output an incorrect answer. However, because of the iterative nature in
which x1 and x2 are exposed and the adversary’s limitation of accessing f in
a non-adaptive manner, we show that the probability of this event occurring is
negligible. Finally, If (x∗, y∗) is output on Line 12 then the output is almost
surely correct.

We now look at the cumulative errors that can be made in the hybrid process.
We use the following two lemmas that are proven in Section 4.

Lemma 4. For all sufficiently large n:

Pr[O O← Π ; R R← Ψ(O); f ∈U On :: ̂AO,R,f
i+1 (1n) �= ̂AO,R,f

i (1n)] ≤ 5/2n/2

Lemma 5. For all sufficiently large n:

Pr[O O← Π ; R R← Ψ(O); f ∈U Πn :: ̂AO,R,f
i+1 (1n) �= ̂AO,R,f

i (1n)] ≤ 5/2n/2

We note that by the previous two lemmas, the probabilities that B and
̂AT (n)+1 have differing outputs in the same experiments is less than T (n)·5/2n/2,
and, since T is a polynomial, this is a negligible amount. Let ̂B be the Turing
machine ̂AT (n)+1. We note that by inspection of G, and remembering that the
call to Ok(x∗) on Line 11 of G can mask m(n) queries, ̂B(1n) makes ̂T (n) ·m(n)
queries. Further, the probability that BO,R,f (1n) and ̂BO,R,f (1n) have differing
outputs for the either experiment defined in Lemma 3 is less than T (n) · 5/2n/2.

��
The last remaining step is to get rid of the queries to R1 and R2 that are

made by ̂B. We note that the results of queries to R1 and R2 are independent
of O and the challenge function f , and since the results of such queries are
random bit strings, they are easy to simulate. Specifically, we consider a Turing
machine C that executes ̂B faithfully, but before beginning the simulation C(1n)
will randomly select (x1, ..., x�(n)) ∈U ({0, 1}n)[�(n)]. During the simulation of
̂B(1n), if there is a query to R1(1n), it will respond with (x1, ..., x�(n)) and if
for y1, . . . , y�(n) ∈ {0, 1}n there is a query to R2(1n, x1, ..., x�(n), y1, .., y�(n)) it

responds with (x′�(n)+1, x
′
�(n)+2) ∈U

({0, 1}n \ {x1, . . . , x�(n)}
)[2]. Note that this

simulation is perfect. We can now prove the final result of this section.
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Lemma 6. For every probabilistic, polynomial-time, non-adaptive adversary A
and for all sufficiently large n:

Pr
O

O←Π

R
R←Ψ(O)

[∣

∣

∣

∣
Pr

f∈UOn

[

AO,R,f (1n) = 1
]− Pr

g∈UΠn

[

AO,R,g(1n) = 1
]

∣

∣

∣

∣
≤ 1

2n/3

]

≥ 1− 1
2n/2

,

where the r ∈ {0, 1}∗ represent the random coin-tosses made by A.

Proof. Assume for contradiction that there exists a probabilistic, polynomial
time adversary B and infinitely many n for which:

Pr
O

O←Π

R
R←Ψ(O)





∣

∣

∣

∣

∣

∣

Pr
f∈UOn

r∈{0,1}∗

[

BO,R,f (1n) = 1
]− Pr

g∈UΠn

r∈{0,1}∗

[

BO,R,g(1n) = 1
]

∣

∣

∣

∣

∣

∣

>
1

2n/3



 >
1

2n/2

By Lemmas 4 and 5 and the discussion following them, there exists a proba-
bilistic, polynomial time, non-adaptive adversary C that does not query oracle
R and infinitely many n such that:

Pr
O

O←Π

R
R←Ψ(O)





∣

∣

∣

∣

∣

∣

Pr
f∈UOn

r∈{0,1}∗

[

CO,f (1n) = 1
]− Pr

g∈UΠn

r∈{0,1}∗

[

CO,g(1n) = 1
]

∣

∣

∣

∣

∣

∣

>
1

2n/3−1



 >
1

2n/2

Observing that the choices over R
R← Ψ(O) have no effect and can be removed,

this result contradicts Lemma 1. ��
By using standard counting arguments and the previous lemma, we get the
following theorem.

Theorem 2. There exists a pair of oracles (O, R) where O is a non-adaptively
secure permutation generator and where F is not an adaptively secure permuta-
tion generator.

4 Combinatorial Lemmas

4.1 Unique Paths Lemma

An essential point in proving Lemmas 4 & 5 is the following: unless an adversary
has already determined by oracle queries to O that for a given key, K, of F and
�-tuples, x and y, where OK(x) = y; then the probability that OK(x) = y holds
is negligible. The following lemma and its corollary formalizes this concept.

Lemma 7 (Unique Paths Lemma). Let T , � and m be polynomials. For all
sufficiently large n ∈ N: let x = (x1, ..., x�(n)), y = (y1, ..., y�(n)) ∈ ({0, 1}n)[�(n)];
for each i ∈ {0, 1}n there is a set Qi ⊆ ({0, 1}n)2 such that

∑

i∈{0,1}n |Qi| ≤
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T (n); let K = (k1, .., km(n)) ∈ ({0, 1}n)m(n) such that there is no i where
(xi, yi) ∈ QK , then:

Pr[O O← Π :: OK(x) = y|∀i, ∀(a, b) ∈ Qi, Oi(a) = b] ≤ 2(n−1)·�(n)).

Proof. We consider several cases. First, we consider the case that there exists a
pair (a, b) ∈ QK such that either there exists an i s.t. xi = a but yi �= b or there
exists a j s.t. yj = b but xj �= a. In this case it is not possible for OK(x) = y,
so the probability is 0.

Second, we consider the case that there exists a ki ∈ K where Qki = {}. A
necessary condition for OK(x)=y is that Oki

(

Oki−1,...,k1(x)
)

= O−1
ki+1,...,km(n)

(y).

The probability of this event is no more than
∏�(n)

j=1 (1/(2n− i)) ≤ 1
2(n−1)·�(n) (for

sufficiently large n).
Thirdly, we consider the case where for every ki ∈ K the corresponding set

Qki is not empty. Because of our conditioning on the probability, for each xi

there exist a value kj where αi = Ok1,...,kj−1(xi) and βi = O−1
km(n),...,kj+1

(yi),
but (αi, βi) /∈ Qkj , as otherwise (xi, yi) ∈ QK which is not permitted by the
statement of the lemma. Therefore, the probability that Okj (αi) = βi is less
than 1

2n−|Qkj
|−�(n) (We subtract �(n) in the denominator as several xi’s may

have this condition occur for the same key kj .). Therefore, the probability that
OK(x) = y is less than

∏�(n)
i=1

1
2n−|Qi|−�(n) ≤ 1

2(n−1)·�(n) , for sufficiently large n

(remembering |Qi| ≤ T (n)). ��

Corollary 1. Let T , � and m be polynomials. For all sufficiently large n ∈ N: let
x = (x1, ..., x�(n)), y = (y1, ..., y�(n)) ∈ ({0, 1}n)[�(n)]; for each i ∈ {0, 1}n there is
a a set Qi ⊆ ({0, 1}n)2 such that

∑

i∈{0,1}n |Qi| ≤ T (n); let KS ⊆ ({0, 1}n)m(n)

such that for each K ∈ KS there is no i such that (xi, yi) ∈ QK, then:

Pr[O O← Π :: ∃K ∈ KS s.t. OK(x) = y|∀i, ∀(a, b) ∈ Qi, Oi(a) = b] ≤
2n·(m(n)−�(n))−�(n).

Proof. This proof follows directly from Lemma 7 and a union bound over the
probabilities of each of the keys K ∈ KS . ��

4.2 Proof of Lemma 4

For the convenience of the reader, we restate Lemma 4.

Lemma 8. For all sufficiently large n:

Pr[O O← Π ; R R← Ψ(O); f ∈U On :: ̂AO,R,f
i+1 (1n) �= ̂AO,R,f

i (1n)] ≤ 5
2n/2
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Proof. We note that in the statement of the lemma and its proof we don’t
concern ourselves with the random coin-tosses of Ai or Ai+1. It will be obvious
from the proof, that the random coin-tosses do not affect any of the probabilities
we discuss, and that we could simply fix the random coin tosses of B and prove
the theorem for each such sequence.

We begin by proving upper-bounds on two probabilistic events that we will
frequently want to condition on. We will frequently want to bound the probability
that Ai+1 makes any of its first i queries to Ok, where f = Ok. We will call such
an event F.

Claim 2. For all sufficiently large n: Pr[O O← Π ; R R← Ψ(O); f ∈U On ::
̂Af,O,R

i+1 (1n) makes a query to Ok = f in one of the first i calls to G] ≤ 2i/2n.

Proof. Observe that queries to R1 and R2 are statistically independent of f and
O. Further, the first i queries are all made by G, and therefore there have been
no queries to R3. Thus the probability of making a query to Ok corresponding
to f is no more than the probability of drawing at random the unique red ball
from a vase of 2n balls in i draws without replacement, as there are most i
different keys on which O can be queried. Therefore, the probability is bound
by

∑i−1
j=0 1/(2n − j) < 2i/2n, for sufficiently large n. ��

We also frequently want to bound the probability that by ̂Ai+1’s ith call to
G two oracle queries to O (or O and f) have been made that have the same
output. We call such queries collisions and we denote such an event by E.

Claim 3. For all sufficiently large n: Pr[O O← Π ; R R← Ψ(O); f ∈U On :: after
̂Af,O,R

i+1 (1n) makes i calls to G there exists k �= j ∈ {0, 1}n ∪ {f} s.t. (a, b) ∈
Qi ∧ (c, b) ∈ Qj ] ≤ 2(i ·m(n))2/2n.

Proof. We note that since we are only concerned with queries made in the first
i calls to G, there have been no queries to R3. Next, we condition on F from
Claim 2, so query results on f and Ok for k ∈ {0, 1}n are independent of each
other. It can easily be observed that to maximize the probability of a collision
the adversary should make all of its queries to different functions. The structure
of G does not necessarily permit this, but this permits an easy upper-bound on
the probability of a collision. Since each call to G makes at most m(n) queries,
the probability of E can be upper-bounded by

∑i·m(n)
j=1

j
2n ≤ (i ·m(n))2/2n Since

for sufficiently large n the probability of event F is bound by 2i/2n, we can
bound the probability of the claim by 2(i ·m(n))2/2n. ��

To prove Lemma 4, we note that any difference in executions between
AO,R,f

i+1 (1n) and AO,R,f
i (1n) must occur in G. We will consider the places where

G could have an output different from that of the actual query to the oracle,
and bound this probability. We note that this can only occur on lines 6, 8, 10
and 12, and we bound the probability of error on each of these lines with the
following series of claims. In order to prove the lemma we take the union bound
of the errors from these claims.
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Claim 4. The probability that G gives incorrect output on line 6 is less than
1

22n−1 for all sufficiently large n.

Proof. The response to query q = R3(x1, y1, x2, y2) will always be ⊥ unless
R2(x1, y1) = x2. If R2 has not yet been queried, then it is easily seen, by the
definition of R2, that the probability of the adversary correctly guessing x2 in its
query to R3 is 1

(2n−�(n))(2n−�(n)−1) . For sufficiently large n, this value is upper-
bounded by 1

22n−1 . ��
Claim 5. The probability that G gives incorrect output on line 8 is less than 1

2n/2

for all sufficiently large n.

Proof. For this claim, we consider two separate cases: first we consider the case
in which |K| = 0 and next we consider the case where |K| ≥ 2.
[Case |K| = 0]: We first show that for query R3(x1, x2, y1, y2), if we let KS =
{(k1, ..., km(n))|∃is.t.(xi, yi) ∈ Qk1,...,km(n)}, then with high probability |KS | ≤
�(n)+2. Next, we show that for each element K ∈ KS that there is a very small
chance that OK(x1, x2) = (y1, y2). We then show that for K ∈ ({0, 1}n)m(n) \
KS that the chances that OK(x1, x2) = (y1, y2) holds is very small using the
Unique Paths Corollary (Corollary 1).

In order to bound (w.h.p.) the size of KS we will condition on event E
from Claim 3 (i.e. there are no collisions). Observe that if E holds, then it is not
possible for |KS | > �(n)+2, as otherwise by the pigeonhole principle there would
be two keys, κ = (κ1, ..., κm(n)) and κ′ = (κ′1, ..., κ

′
m(n)), where for some a (1 ≤

a ≤ �(n)+2) we would have ya = Oκ(xa) = Oκ′(xa), and letting j be the largest
index where κj �= κ′j this implies Oκj

(

Oκ1,..,κj−1(xa)
)

= Oκ′j

(

Oκ′1,..,κ′j−1
(xa)

)

,

which is a collision and thus this contradicts our conditioning on event E.
Next, we condition on F from Claim 2 to ensure that responses for queries to

O are statistically independent of responses for queries to f . We now bound the
probability that for any specific key K ∈ KS that OK(x1, x2) = (y1, y2). We
wish to consider the probability that for a key K = (k1, ..., km(n)) ∈ KS that
(y1, y2) = OK(x1, x2). For each such key K there exists an i s.t. (xi, yi) /∈ QK

(otherwise |K| ≥ 1 contradicting the case we are in) Consider the smallest j
such that there exists a b ∈ {0, 1}n where (xi, b) ∈ Qk1...kj−1 , and such that
for every b′ ∈ {0, 1}n it is the case that (xi, b

′) /∈ Qk1...kj . The probability that
Okj (b) = O−1

kj+1,...,km(n)
(yi) is less than 1/(2n − |Qkj |) ≤ 1/(2n − i ·m(n)), as at

most i ·m(n) queries have been made. Therefore, the probability there exists a
key K ∈ KS such that OK(x) = y is less than �(n)+2

(2n−i·m(n)) , as |KS | ≤ �(n) + 2
by our conditioning on E.

For the remaining set of keys KS = ({0, 1}n)m(n) \ KS the Unique Paths
Corollary shows that the probability that there exists a key K ∈ KS such that
OK(x1, x2) = (y1, y2) is no more than 2n·(m(n)−�(n))−�(n)

Therefore, the probability of the case when |K| = 0 is bounded by 2(i·m(n))2

2n +
2i
2n + (�(n)+2)

(2n−i·m(n)) + 2n·(m(n)−�(n))−�(n) < 1
2n/2 (for sufficiently large n), where the

first two summands bound the probabilities of events E and F respectively.
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[Case |K| ≥ 2]: We observe that in order for |K| ≥ 2 to occur, the event E of
Claim 3 must occur at least �(n) + 2 times: there must be at least one collision
for each y ∈ (y1, y2) in order for there to be two keys K1, K2 ∈ K such that
(y1, y2) = OK1(x1, x2) = OK2(x1, x2). Therefore, we can use the bound on the
probability of E to bound the probability of incorrect output by 2(i·m(n))2

2n < 1
2n/2

(for sufficiently large n). ��

Claim 6. The probability that G gives incorrect output on line 10 is less than
1

2n/2 .

Proof. We begin by conditioning on F, so that responses from queries to Ok,
for k ∈ {0, 1}n, are independent of the responses of queries from f . We consider
two exclusive cases: first, when ̂Ai+1 queries f before it queries R2(x1, y1); and
second, when ̂Ai+1 queries R2(x1, y1) before it queries f .
[Case that f was queried before R2(x1, y1)]: The intuition behind this case
is that the adversary needs to construct a key κ = (k1, .., ku−1, f, ku+1, .., km(n)),
and perform queries such that (x�(n)+1, y�(n)+1), (x�(n)+2, y�(n)+2) ∈ Qκ. We will
argue that it is very unlikely that the queries x�(n)+1 or x�(n)+2 were made to Ok

for any k ∈ {0, 1}n or f before the query R2(x1, y1). Assuming this to be true,
a necessary condition to find a κ satisfying our requirements is to make queries
Ok(α) = β, for α, k ∈ {0, 1}n, for which there exists a j, γ ∈ {0, 1}n such that
there was a (β, γ) ∈ Qj at the time of the query to R2. We show this is unlikely
as well.

We begin by bounding the probability that there had been a query of the
form x�(n)+1 or x�(n)+2 before the query to R2, Assume the query R2(x1, y1) was
the jth query (j ≤ i), then the probability that there exists a β, k ∈ {0, 1}n such
that (x�(n)+1, β) ∈ Qk,(x�(n)+2, β) ∈ Qk,(x�(n)+1, β) ∈ Qf or (x�(n)+2, β) ∈ Qf

is less than 2·j·m(n)
2n−�(n)−2 . Next, we condition on that event not happening, and

show that there is a small probability that any of the (j + 1)st through ith
queries are of the form Ok(a) = b, where there exists a c, v ∈ {0, 1}n such that
(b, c) ∈ Qv or (b, c) ∈ Qf is small. This probability can easily be bounded
by

∑i+1
s=j

i+1
2n−s·m(n) Therefore, the probability of the first case is less than

2·j·m(n)
2n−�(n)−2 +

∑i+1
s=j

(i+1)
2n−s·m(n) ≤ 2·i·m(n)

2n−�(n)−2 + (i+1)2

2n−(i+1)·m(n) ≤ 2−2n/3.
[Case R2(x1, y1) was queried before f ]: In the second case when the adver-
sary queries f it has already queried R2, and therefore it needs to find a key
κ = (κ1, ..κu−1, f, κu+1, ..., κm(n)) such that for each t ≤ �(n), (xt, yt) ∈ Qκ. A
necessary condition is for there to exist an a ∈ {0, 1}n and ys ∈ y1 such that
(a, ys) ∈ Qf,κj+1,...,κm(n). We show the probability of this occurring is small. We
begin by showing it is unlikely that after the query to f there will exists an
a, b, c, k ∈ {0, 1}n where both (a, b) ∈ Qf and (b, c) ∈ Qk. Likewise, it is unlikely
that there will exist an a ∈ {0, 1}n and y ∈ y1 where (a, y) ∈ Qf . If neither of
these cases hold then, in order to satisfy our necessary condition, a query to O
must be made after the query to f in which there exists a b, k ∈ {0, 1}n where
Ok(b) ∈ y1. We show that the probability of this is also low, proving the lemma.
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More formally, assume the query to f is the jth query. There can be at most
i (parallel) queries made to f . The probability that the queries to f collide with
with any previously made queries is less than i·j

2n−i . The probability that the

queries to f will output a y ∈ y is bound by i·�(n)
2n−i . Finally, the probability

that any queries to O after the query to f will result in y ∈ y is less than
m(n)·i

2n−(i+1)·m(n) . Therefore, by the union bound the probability of the second case

can easily be bound by 3·i·m(n)
2n−(i+1)·m(n) .

Therefore, for all sufficiently large n the probability that the entire claim
holds is bound by 3·i·m(n)

2n−(i+1)·m(n) + 1/22n/3 + 2(i ·m(n))2/2n ≤ 2−n/2, where the
last summand accounts for our conditioning on F. ��

Claim 7. The probability that G gives incorrect output on line 12 is less than
1

2n/2 .

Proof. The only reason we may have an incorrect output on line 12 is be-
cause the output to an actual query to R3(1n, x1, x2, y1, y2) is (x∗, y∗) for
κ ∈U

{

κ ∈ {0, 1}n·m(n)|Oκ(x1, x2) = (y1, y2)
}

, x∗ ∈U {0, 1}n and y∗ = Oκ(x∗);
whereas, G always outputs OK(x∗) for K ∈ K and x∗ ∈U {0, 1}n. Thus, even if
there exists a K ′ ∈ ({0, 1}n)m(n), where K �= K′ and OK′(x1, x2) = (y1, y2),
there is no possibility for (x∗, OK′(x∗)) to be output by G. We show that it
is highly unlikely that

∣

∣

{

κ ∈ {0, 1}n·m(n)|Oκ(x1, x2) = (y1, y2)
}∣

∣ > 1, and thus
there is rarely an error in output of G on line 12.

The result follows by conditioning on there being no collisions and then
applying the Unique Paths Corollary. In particular, assuming E holds then our
sets Q satisfy the requirements for the Unique Paths Corollary where KS =
({0, 1}n)m(n) \ K. Therefore, by the Unique Paths Corollary we can bound the
probability by 2n·(m(n)−�(n))−�(n), and we bound the probability of E by 2(i ·
m(n))2/2n. Therefore by the union bound, the probability of error is less than
2−n/2 for sufficiently large n. ��

To finish proving Lemma 4 we simply take the union bound on the probability
of errors in Claims 4,5,6 and 7, and this is less than 5/2n/2 proving the lemma.

��
4.3 Proof of Lemma 5

For the convenience of the reader we restate Lemma 5.

Lemma 9. For all sufficiently large n:

Pr[O O← Π ; R R← Ψ(O); f ∈U Πn :: ̂AO,R,f
i+1 (1n) �= ̂AO,R,f

i (1n)] ≤ 5
2n/2

Proof. We note that this proof is basically the same as the proof of Lemma 4 in
the previous section. The only portion of the proof of Lemma 4 that relied on
the fact that f ∈ O as opposed to f ∈ Π was Claim 2, which defines the event
F and bound the probability of it occurring; and those claims that conditioned
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on the event F and then later had to add in a small probability for error in the
case that F held.

We remind the reader that definition of the event F is that Ai+1 makes
any of its first i queries to Ok, where f = Ok. Clearly, in the experiment for
Lemma 5 the probability of the event F is 0, as f ∈ Π and not O. Therefore,
the probability of error in this lemma will be smaller than that of Lemma 4. ��

5 Other Constructions, Concluding Remarks & Open
Questions

The authors note that the basic design of this oracle and the proof techniques of
this paper can be naturally lifted to at least one other natural construction: the
XOR of functions. The important observation is that the construction needs to
have some natural combinatorial property that corresponds to the Unique Paths
Lemma, and with XOR such a property exists, although the notion needs a bit
of massaging. The authors leave the proof of this claim to a later version of this
paper.

The previous observation leads to the question of whether or not there is a
simple combinatorial characterization of those constructions that require a non-
relativizing proof technique to show they achieve adaptive security. It also leads
to a natural quantitative question: what is the lower-bound on the number of
calls to a non-adaptively secure function generator in an adaptively secure black-
box construction? Recently, there has been some success in getting quantitative
lower bounds in such black-box settings [5,6,13], and so it is conceivable one
could be found in this setting as well.

As mentioned in the introduction, there is currently a known upper-bound
of Ω(n/ logn) calls to a non-adaptive generator in order to achieving black-box
adaptive security. Further, the same upper-bound is achieved by two indepen-
dent constructions. It would be interesting to know whether or not the current
constructions are effectively the best possible. A natural question along these
lines is whether or not there are any constructions that would give a smaller
upper-bound.
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