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Abstract. We address the fundamental problem of matching two static
images. Significant progress has been made in this area, but the cor-
respondence problem has not been solved. Most of the remaining diffi-
culties are caused by occlusion and lack of texture. We propose an ap-
proach that addresses these difficulties within a perceptual organization
framework, taking into account both binocular and monocular sources
of information. Geometric and color information from the scene is used
for grouping, complementing each other’s strengths. We begin by gener-
ating matching hypotheses for every pixel in such a way that a variety
of matching techniques can be integrated, thus allowing us to combine
their particular advantages. Correct matches are detected based on the
support they receive from their neighboring candidate matches in 3-D,
after tensor voting. They are grouped into smooth surfaces, the projec-
tions of which on the images serve as the reliable set of matches. The
use of segmentation based on geometric cues to infer the color distribu-
tions of scene surfaces is arguably the most significant contribution of
our research. The inferred reliable set of matches guides the generation
of disparity hypotheses for the unmatched pixels. The match for an un-
matched pixel is selected among a set of candidates as the one that is a
good continuation of the surface, and also compatible with the observed
color distribution of the surface in both images. Thus, information is
propagated from more to less reliable pixels considering both geometric
and color information. We present results on standard stereo pairs.

1 Introduction

The premise of shape from stereo comes from the fact that, in a set of two
or more images of a static scene, world points appear on the images at differ-
ent disparities depending on their distance from the cameras. Establishing pixel
correspondences on real images, though, is far from trivial. Projective and photo-
metric distortion, sensor noise, occlusion, lack of texture, and repetitive patterns
make matching the most difficult stage of a stereo algorithm. To address mainly
occlusion and lack of texture, we propose a stereo algorithm that operates as
a perceptual organization process in the 3-D disparity space knowing that false
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matches will most likely occur in textureless areas and close to depth discontinu-
ities. Since binocular processing has limitations in these areas, we use monocular
information to overcome them. We start by detecting the most reliable matches,
which are grouped into layers. Shape and color information from the layers is
used to infer matches for the remaining pixels.

The paper is organized as follows: Section 2 reviews related work; Section 3
is an overview of the algorithm; Section 4 describes the initial matching stage;
Section 5 the detection of correct matches using tensor voting; Section 6 the
segmentation process; Section 7 the disparity computation for unmatched pixels;
Section 8 contains experimental results; and Section 9 concludes the paper.

2 Related Work

Published research on stereo with explicit treatment of occlusion includes numer-
ous approaches (see [1] for a comprehensive review of stereo algorithms). They
can be categorized into the following categories: local, global and approaches with
extended local support, such as the one we propose. Local methods attempt to
solve the correspondence problem using local operators in relatively small win-
dows. Kanade and Okutomi [2] use matching windows whose size and shape
adapt according to the intensities and disparities that are included in them. In
[3] Veksler presents a method that takes into account the average matching error
per pixel, the variance of this error and the size of the window.

On the other hand, global methods arrive at disparity assignments by opti-
mizing a global cost function that usually includes penalties for pixel dissimi-
larities and violation of the smoothness constraint. The latter introduces a bias
for constant disparities at neighboring pixels, thus favoring frontoparallel planes.
Global stereo methods that explicitly model occlusion include [4][5][6][7] where
optimization is performed using dynamic programming. The drawback of dy-
namic programming is that each epipolar line is processed independently, which
results in “streaking” artifacts in the output. Consistency among epipolar lines
is ensured by using graph cuts to optimize the objective function. Ishikawa and
Geiger [8] explicitly model occlusion in a graph cut framework, but their algo-
rithm is limited to convex energy functions which do not perform well at discon-
tinuities. Kolmogorov and Zabih [9] advance the graph cut matching framework
by proposing an optimization technique that is applicable to more general ob-
jective functions and obtains very good results.

Between these two extremes are approaches that are neither “winner-take-
all” at the local level, nor global. They start from the most reliable matches
to estimate the disparities of less reliable ones. Many authors [10][11] use the
support and inhibition mechanism of cooperative stereo to ensure the propaga-
tion of correct disparities and the uniqueness of matches with respect to both
images. Reliable matches without competitors are used to reinforce matches
that are compatible with them and eliminate the ones that contradict them,
progressively disambiguating more pixels. Zhang and Kambhamettu [12] extend
the cooperative framework from single pixels to segmented surfaces, in the form
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of small locally planar patches. A different method of aggregating support is
nonlinear diffusion, proposed by Scharstein and Szeliski in [13], where disparity
estimates are propagated to neighboring pixels until convergence. Sun et al. [14]
formulate the problem as an MRF with explicit handling of occlusions. In the be-
lief propagation framework, information is passed to adjacent pixels in the form
of messages whose weight also takes into account image segmentation. Other
progressive approaches include Szeliski and Scharstein [15] and Zhang and Shan
[16] who start from the most reliable matches and allow the most certain dis-
parities guide the estimation of less certain ones, while occlusions are explicitly
labeled.

The final class of methods reviewed here are based on image segmentation.
Birchfield and Tomasi [17] cast the problem of correspondence as image segmen-
tation followed by the estimation of an affine transformation for each segment
between the images. Tao et al. [18] introduce a stereo matching technique where
the goal is to establish correspondence between image regions rather than pix-
els. Both these methods are limited to planar surfaces, unlike the one of [12]
which was described above. Lin and Tomasi [19] propose a framework where 3-D
shape is estimated by fitting splines, while 2-D support is based on image seg-
mentation. Processing alternates between these two steps until convergence. As
mentioned above, in [14] image segmentation is a soft constraint, since messages
can be passed between different image segments with a lower weight. All of these
approaches, however, address color segmentation independently of disparity.

The perceptual organization stage of the approach we propose here is based
on the work of Lee et al. [20], which was later extended to multiple views in [21].
However, there are significant differences in the way initial matches are generated
and, most importantly, in the integration of monocular cues to specifically ad-
dress occlusion and lack of texture. The approach in [20] has a less sophisticated
initial matching scheme, the failures of which cannot always be corrected. In ad-
dition, the post-processing mechanism based on edge detection it proposes is not
as effective against occlusion as the approach presented here. On the other hand,
information propagation in 3-D and the use of surface saliency as the criterion
for the selection of pixel correspondences remain cornerstones of our approach.

3 Algorithm Overview

The proposed algorithm has four steps, which are illustrated in Fig. 1, for the
“Sawtooth” stereo pair (courtesy of [1]).

– The input to the first stage is a pair of images which we assume have been
rectified so that conjugate epipolar lines are parallel and share the same y
coordinate. The goal is the generation of matching hypotheses for every pixel
and it is accomplished with three different matching techniques. The output
is a set of points in 3-D disparity space (Fig. 1(b)).

– Next is the tensor voting stage, during which the unorganized point cloud
from the previous stage is encoded in the form of second order symmetric
tensors which cast votes to their neighbors. Salient matches can be detected
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(a) Left image (b) Initial matches (c) Sparse disparities

(d) Layer labels (e) Final disparities (f) Error map

Fig. 1. Overview of the processing steps for the “Sawtooth” dataset. The initial
matches have been rotated so that the multiple candidates for each pixel are visi-
ble. Black pixels in the error map indicate errors greater than 1 disparity level, gray
pixels correspond to errors between 0.5 and 1 disparity level, while white pixels are
correct (or occluded and thus ignored)

based on the amount of support they receive from their neighbors. Unique-
ness is also enforced at the end of this stage with respect to surface saliency
and not a local measure, such as cross-correlation, which is more susceptible
to noise. The output, which we term “sparse disparity map”, consists of at
most one match for each pixel of the reference image, which has an associ-
ated surface saliency value and an estimate of surface orientation. It can be
seen in Fig. 1(c). This part of the algorithm is based on our previous work,
published in [20].

– The outputs of the tensor voting are grouped, using the estimated surface
orientations, into smooth layers. These are refined by removing those 3-D
points that correspond to pixels that are inconsistent with the layer’s color
distribution. This addresses the usual problem of surface over-extension that
occurs near occlusions. The over-extensions are usually not color-consistent
and are removed at this stage. Thus we derive the set of reliable matches.
Please note that the term layer throughout this paper is used interchangeably
with surface, since by layer we mean a smooth, but not necessarily planar,
surface in 3-D disparity space (x, y, d), where d denotes disparity. The label
of each pixel can be seen in Fig. 1(d).

– The last module starts from a set of segmented surfaces and computes dis-
parities for unmatched pixels. Disparity candidates are generated from the
nearby layers, to which the pixel may belong based on its color. These are
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also validated in the right image and the final disparity is selected as the one
that is a smooth continuation of the most likely layer. The output of this
stage is a dense disparity map with one disparity estimate for every pixel of
the reference image including the occluded ones (Fig. 1(e)). Disparity esti-
mation for occluded pixels is possible since the surfaces can be extrapolated
using tensor voting even if they are occluded.

The algorithm is applied on the four datasets proposed in [1] and the two pro-
posed in [22], which are also available online at

http://www.middlebury.edu/stereo.
Quantitative results are presented in Section 8.

4 Initial Matching

A large number of matching techniques have been proposed in the literature [1].
We propose a scheme for combining heterogeneous matching techniques, thus
taking advantage of their combined strengths. For the results presented in this
paper, three matching techniques are used, but any kind of matching can be
integrated in the framework. The techniques used here are:

– A 5×5 normalized cross correlation window, which is small enough to capture
details and only assumes constant disparity for small parts of the image.

– A 35×35 normalized cross correlation window, which is applied only at pixels
where the standard deviation of the three color channels is less than 20. The
use of such a big window over the entire image would be catastrophic, but it
is effective when applied only in virtually textureless regions, where smaller
windows completely fail to detect correct matches.

– A 7×7 symmetric interval matching window with truncated cost function as
in [15]. The images are linearly interpolated along the x-axis so that samples
exist in half-pixel intervals. The cost for matching pixel (xL, y) in the left
image with pixel (xR, y) in the right image is:

C(xL, xR, y) =
∑

c

min{dist(ILc(xi, y), IRc(xj , y)) :

xi ∈ [xL − 1
2

xL +
1
2
], xj ∈ [xR − 1

2
xR +

1
2
]} (1)

The summation is over the three RGB color channels and dist() is the Eu-
clidean distance between the value of a color channel ILc in the left image
and IRc in the right image. If the distance for any channel exceeds a preset
truncation parameter trunc, the total cost is set to 3×trunc. This technique
is effective near discontinuities due to the robustness of the cost function to
pixels from different surfaces. Typical values for trunc are between 3 and 10.

Each matching technique is repeated using the right image as reference and
the left as target. This increases the true positive rate especially near discon-
tinuities, where the presence of occluded pixels in the reference window affects
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the results of matching. When the other image is used as reference, these pixels
do not appear in the reference window.

The maximum matching score, or the minimum cost, for every pixel is re-
tained as a matching hypothesis. Matching scores and costs are then discarded
and each hypothesis is treated equally in the following stage. A simple parabolic
fit [1] is used for subpixel accuracy, mainly because it makes continuous slanted
or curved surfaces appear continuous and not staircase-like. Computational com-
plexity is not affected since the number of matching hypotheses is unchanged.
Besides the increased number of correct detections, the combination of these
matching techniques offers the advantage that the failures of a particular tech-
nique are not detrimental to the success of the algorithm. The 35 × 35 window
is typically applied to very small uniform parts of the image and never near
discontinuities, where color exhibits some variance. Our experiments have also
shown that the errors produced by small windows, such as the 5 × 5 and 7 × 7
used here, are randomly spread in space and do not usually align to form non-
existent structures. This property is important for our methodology that is based
on the perceptual organization, due to “non-accidental alignment”, of candidate
matches in space.

5 Detection of Correct Matches

This section describes how correct matches can be found among the hypotheses of
the previous stage by examining how they can be grouped with their neighboring
candidate matches to form smooth 3-D surfaces. This is accomplished by tensor
voting, which also allows us to infer the orientation of these surfaces.

5.1 Overview of Tensor Voting

The use of a voting process for structure inference from sparse and noisy data was
presented in [23]. The methodology is non-iterative and robust to considerable
amounts of outlier noise. It has one free parameter: the scale of voting, which
essentially defines the size of the neighborhood of each point. The input data is
encoded as second-order symmetric tensors, and constraints, such as proximity,
co-linearity and co-curvilinearity are propagated by voting within the neighbor-
hood. The tensors allow the representation of points on smooth surfaces, surface
intersections, curves and junctions, without having to keep each type in separate
spaces. In 3-D, a second-order tensor has the form of an ellipsoid, or equivalently
of a 3 × 3 matrix. Its shape encodes the type of feature that it represents, while
its size the saliency or the confidence we have in this information (Fig. 2(a)).

The tensors are initialized as unitary matrices, since no information about
their preferred orientation is known. During the voting process, each input site
casts votes to its neighboring input sites that contain tokens. The votes are also
second-order symmetric tensors. Their shape corresponds to the orientation the
receiver would have, if the voter and receiver were in the same structure. The
saliency (strength) of a vote cast by a unitary stick tensor decays with respect
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to the length of the smooth circular path connecting the voter and receiver,
according to the following equation:

S(s, κ, σ) = e−( s2+cκ2

σ2 ) (2)

Where s is the length of the arc between the voter and receiver, and κ is its
curvature (see Fig. 2(b)), σ is the scale of voting, and c is a constant. The votes
cast by un-oriented voters can be derived from the above equation, but this is be-
yond the scope of this paper. Vote accumulation is performed by tensor addition,
which is equivalent to the addition of 3 × 3 matrices. After voting is completed,
the eigensystem of each tensor is analyzed and the tensor is decomposed as in:

T = λ1ê1ê
T
1 + λ2ê2ê

T
2 + λ3ê3ê

T
3 =

= (λ1 − λ2)ê1ê
T
1 + (λ2 − λ3)(ê1ê

T
1 + ê2ê

T
2 ) + λ3(ê1ê

T
1 + ê2ê

T
2 + ê3ê

T
3 ) (3)

where λi are the eigenvalues in decreasing order and êi are the corresponding
eigenvectors. The likelihood that a point belongs to a smooth perceptual struc-
ture is determined as follows. The difference between the two largest eigenval-
ues encodes surface saliency, with a surface normal given by e1. The difference
between the second and third eigenvalue encodes curve saliency, with a curve
tangent parallel to e3. Finally, the smallest eigenvalue encodes junction saliency.
If surface saliency is high, the point most likely belongs on a surface and e1 is its
normal. Outliers that receive no or inconsistent support from their neighborhood
can be identified by their low saliency and the lack of a dominant orientation. In
the case of stereo, we assume that that all inliers lie on surfaces that reflect light
towards the cameras, and therefore we do not consider curves and junctions.

(a) Example tensors (b) Vote generation (c) Voting in 3-D

Fig. 2. Tensor Voting. (a) The shape of the tensor indicates if there is a preferred
orientation, while its size the confidence of this information. The top tensor has a
strong preference of orientation and is more salient than the bottom tensor, which is
smaller and un-oriented. (b) Vote generation as a function of the distance and curvature
of the arc and the orientation of the voter. (c) Voting in 3-D neighborhoods eliminates
interference between adjacent pixels from different layers
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5.2 Detection of Matches as Surface Inliers

The goal of this stage is to address stereo as a perceptual organization problem
in 3-D, based on the premise that the correct matches should form coherent
surfaces in the 3-D disparity space. This is the only part of our approach that
is based on [20]. The input is a cloud of points in a 3-D space (x, y, zscale × d),
where zscale is a constant used to make the input less flat with respect to the
d-axis, since is disparity space is usually a lot flatter than actual (x, y, z). Its
typical value is 8 and the sensitivity is extremely low for a reasonable range such
as 4 to 20. The quantitative matching scores are disregarded and all candidate
matches are initialized as un-oriented tensors with saliency (confidence) 1. If two
or more matches fall within the same (x, y, zscale×d) voxel their initial saliencies
are added, thus increasing the confidence of candidate matches confirmed by
multiple matching techniques.

After the inputs have been encoded as tensors, they cast votes to their neigh-
bors. The voting neighborhood includes all locations at which the strength of the
votes is at least 2.5% of the voter’s saliency. Therefore, its size is a function of σ
from Eq. 2. What should be pointed out here is the fact that since information
propagation is performed in 3-D there is very little interference between candi-
date matches for pixels that are adjacent in the image but come from different
surfaces (see Fig. 2(c)). This is a big advantage over information propagation
between adjacent pixels, even if it is mitigated by some dissimilarity measure.

Once voting is completed, the results can be analyzed and the surface saliency
of every candidate match can be computed as in Eq. 3. Uniqueness is enforced
with respect to the left image by retaining the candidate with the highest surface
saliency for every pixel. We do not enforce uniqueness with respect to the right
image since it is violated by slanted surfaces which project to a different number
of pixels on each image. Since the objective is disparity estimation for every
pixel in the reference image, uniqueness applies to that image only. The fact
that a candidate match has no competition for a given pixel does not necessarily
indicate that it is correct, since the correct match could have been missed at the
first stage. Therefore, candidate matches with low surface saliency are rejected
even if they satisfy uniqueness. Surface saliency is a more reliable criterion for
the selection of correct matches than the score of a local matching operator,
because it requires that candidate matches, identified as such by local operators,
should also form coherent surfaces in 3-D. This scheme is capable of rejecting
false positive responses of the local operators, which is not possible at the local
level. Based on the datasets we use, good results are achieved when the least
salient candidates are gradually rejected until disparity estimates remain for
about 70-80% of the pixels. In the data set, which we call the “sparse disparity
map”, remain matches with high surface saliency, which also satisfy uniqueness.

6 Segmentation into Layers

Surface inliers are segmented into layers using a simple growing scheme. By
layers we mean surfaces with smooth variation of surface normal. Therefore, the
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layers do not have to be planar and the points that belong to them do not have
to form one connected component. Labeling starts from seed matches that have
maximum surface saliency by examining matches within a certain distance in
3-D for compatibility in terms of surface normals as in Fig. 3(a). If a smooth
surface that goes through the seed and the match under consideration exists,
then the point is added to the layer. Further comparisons for the addition of
more points to a layer are made between unlabeled points and the points from
the layer that are closer to them. For all the experiments presented in this paper
the grouping criteria are: cos(θ1) < 0.95 and max{cos(θ2), cos(θ3)} < 0.08.
The search region, which is a non-critical parameter, is set equal to the voting
neighborhood size. Since we do not attempt to fit global surface models, our
grouping scheme performs equally well when the scene surfaces deviate from
planar or quadric models.

To derive the reliable set of matches, one additional step is necessary to
remove possible contamination from the layers due to surface over-extension
from the initial matching stage. The colors of all points assigned to a layer are
examined for consistency with the layer’s local color distribution and the outliers
are removed from the layer. Color consistency of a pixel is checked by computing
the ratio of pixels of the same layer with similar color to the current pixel over
the total number of pixels of the layer within the neighborhood. This is repeated
for every layer on both images and if the current assignment does not correspond
to the maximum ratio in both images, then the pixel is removed from the layer.
The color similarity ratio for pixel (x0, y0) in the left image with layer i can be
computed according to the following equation:

Ri(x0, y0) =

∑
(x,y)∈N T (lab(x, y) = i AND dist(IL(x, y), Il(x0, y0) < cthr))∑

(x,y)∈N T (lab(x, y) = i))

(4)

Where T () is a test function that is 1 if its argument is true, lab() is the label of a
pixel and cthr is a color distance threshold in RGB space, typically 10. The same
is applied for the right image for pixel (x0−d0, y0). Rejected pixels are not added
to the layer with the maximum color similarity since they are not geometrically
consistent with that layer. Layers with a very small number of points, such as
0.5% of the number of pixels, are also rejected. This addresses the usual problem
of surface over-extension that occurs near occlusions, since occluded pixels can
be erroneously assigned the disparity of the foreground, due to the absence of
a visible correspondence in the other image. The over-extensions, however, are
usually not color-consistent and are removed at this stage.

Our reliable set of matches is in the form of these layers which consist of
matches that are unique with respect to the left image, have high surface saliency,
and are both geometrically and photometrically consistent with their neighbors.
Quantitative evaluation for the reliable sets of matches is presented in Table 1.
The error metric used is the one proposed in [1], where matches are considered
erroneous if they correspond to un-occluded image pixels and their disparity
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error is greater than one integer disparity level. Compared to similar results
published in [24][25][26], our method outperforms [24] and [25] and is inferior to
[26] which, however, assumes constant disparity for the dense features it detects.
Also, Szeliski and Scharstein [15] report an error rate for the reliable matches for
the Tsukuba dataset of 2.1% for 45% density which rises to 4% for 73% density.

Table 1. Quantitative evaluation of density and error rate for the Middlebury stereo
evaluation datasets

Method Tsukuba Sawtooth Venus Map
error density error density error density error density

Our results 1.18% 74.5% 0.27% 78.4% 0.20% 74.1% 0.08% 94.2%
Sara [24] 1.4% 45% 1.6% 52% 0.8% 40% 0.3% 74%
Veksler [25] 0.38% 66% 1.62% 76% 1.83% 68% 0.22% 87%
Veksler [26] 0.36% 75% 0.54% 87% 0.16% 73% 0.01% 87%

Fig. 3. (a) Surface compatibility test for surface segmentation. (b) Candidate genera-
tion for unmatched pixels based on segmented layers. Note that only matches from the
appropriate layer vote at each candidate

7 Surface Growth

The goal of this module is to generate candidate matches for the unmatched
pixels. Given the already estimated disparities and labels for a large set of the
pixels, there is more information available now that can enhance our ability to
estimate the missing disparities. Color similarity ratios are computed for each
unlabeled pixel (x, y) as in Eq. 4, for all layers within the neighborhood. All
ratios are normalized by their sum and layers with high normalized ratios are
considered as possible surfaces for the pixel under consideration. For each can-
didate layer a range of potential disparities is estimated from pixels of the layer
neighboring (x, y). The range is extended according to the disparity gradient
limit constraint, which holds perfectly in the case of rectified parallel stereo
pairs. These disparity hypotheses are verified on the target image by repeating
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the same process, unless they are occluded, in which case we allow occluding
surfaces to grow underneath the occluding ones. Votes are collected at valid po-
tential matches in disparity space, as before, with the only difference being that
only matches from the appropriate layer cast votes (see Fig. 3(b)). The most
salient among the potential matches is selected and added to the layer, since it
is the one that ensures the smoothest surface continuation.

Finally, there are a few pixels that cannot be resolved because they exhibit
low similarity to all layers, or because they are specular or in shadows. Candi-
dates for these pixels are generated based on the disparities of all neighboring
pixels and votes are collected at the candidate locations in disparity space. Again,
the most salient ones are selected. We opted to use surface smoothness at this
stage instead of image correlation, or other image based criteria, since we are
dealing with pixels where the initial matching and color consistency failed to
produce a consistent match.

8 Experimental Results

This section contains results on the color versions of the four datasets of [1] and
the two proposed in [22]. The initial matching in all cases was done using the
three matching techniques presented in Section 4. The scale of the voting field
was σ2 = 100 (except for Tsukuba, where it was 50) which corresponds to a vot-
ing radius of 20, or a neighborhood of 41×41×41. Layer segmentation was done
using the thresholds of Section 6 and the color distance threshold cthr was set to
10. The error metric used is the one proposed in [1], where matches are consid-
ered erroneous if they correspond to un-occluded image pixels and their disparity
error is greater than one integer disparity level. Table 2 contains the error rates
we achieved, as well as the rank our algorithm would achieve among the 27 algo-
rithms in the evaluation. Due to lack of space we refer readers to the Middlebury
College evaluation webpage (http://www.middlebury.edu/stereo) for results ob-
tained by other methods. Based on the overall results for unoccluded pixels, our
algorithm would rank first in the evaluation at the time of submission.

Table 2. Quantitative evaluation for the original Middlebury stereo datasets

Dataset Unoccluded Untextured Discontinuities
error rank error rank error rank

Tsukuba 2.19% 10 0.92% 5 11.93% 11
Sawtooth 0.53% 4 0% 1 4.91% 6
Venus 0.36% 1 0.16% 2 5.00% 4
Map 0.33% 9 - - 4.69% 10

Table 3 reports results for the two datasets of [22] and results of three stereo
algorithms, sum of squared differences (SSD), dynamic programming (DP) and
graph cuts (GC) implemented by the authors of [22]. To our knowledge, our
results are the best for these datasets.
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Table 3. Quantitative evaluation for the new Middlebury stereo datasets

Dataset Our result SSD DP GC
Cones 5.57% 17.8% 17.1% 12.6%
Teddy 9.10% 26.5% 30.1% 29.3%

Fig. 4. Left images, final disparity maps and error maps for the “Venus”, “Tsukuba”,
“Cones” and “Teddy” datasets from the Middlebury Stereo evaluation

9 Discussion

We have presented a novel stereo algorithm that addresses the limitations of
binocular matching by incorporating monocular information. We use tensor vot-
ing to infer surface saliency and use it as a criterion for deciding on the cor-
rectness of matches as in [20] and [21]. However, the quality of the experimental
results depends heavily on the inputs to the voting process, that are generated
by the new initial matching stage, and the notion of geometric and photomet-
ric consistency we have introduced for the layers. Careful initial matching and
the use of smoothness with respect to both surface orientation and color com-
plement each other to derive more information from the stereo pair. Textured
pixels are typically resolved by binocular matching, while untextured ones by the
smooth extension of neighboring surfaces guided by color similarity. Arguably
the most significant contribution is the segmentation into layers based on geo-
metric properties and not appearance. We claim that this is advantageous over
other methods that use color-based segmentation, since it utilizes the already
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computed disparities which are powerful cues that provide very reliable initial
estimates for the color distribution of layers.

Other contributions include the initial matching stage that allows the in-
tegration of any matching technique without any modification to subsequent
modules. Information propagation in 3-D via tensor voting eliminates interfer-
ence between adjacent pixels from different world surfaces. The proposed color
similarity model works very well, despite its simplicity, because, locally, similar
colors tend to belong to the same layer. The choice of a local non-parametric
color representation allows us to handle surfaces with heterogeneous and vary-
ing color distributions, such as the ones in the Venus dataset, on which image
segmentation may be hard. An important contribution of this scheme is the
elimination of over-extending occluding surfaces. Finally, the implicit assump-
tion that scene surfaces are frontoparallel is only made in the initial matching
stage, when all pixels in a small window are assumed to have the same dispar-
ity. After this point, the surfaces are never assumed to be anything other than
continuous.

The algorithm is able to smoothly extend partially visible surfaces to infer the
disparities of occluded pixels, but fails when entire surfaces are only monocularly
visible, or when occluded surfaces abruptly change orientation. It also fails when
objects are entirely missed and are not included in the set of reliable matches.
Over or under-segmentation is not catastrophic. For instance a segmentation of
the Venus dataset into three instead of the correct four layers yields an error
rate of 0.63%.
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