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Abstract. In this paper we present an approach for separating two
transparent layers in images and video sequences. Given two initial un-
known physical mixtures, I1 and I2, of real scene layers, L1 and L2, we
seek a layer separation which minimizes the structural correlations across
the two layers, at every image point. Such a separation is achieved by
transferring local grayscale structure from one image to the other wher-
ever it is highly correlated with the underlying local grayscale structure
in the other image, and vice versa. This bi-directional transfer operation,
which we call the “layer information exchange”, is performed on dimin-
ishing window sizes, from global image windows (i.e., the entire image),
down to local image windows, thus detecting similar grayscale structures
at varying scales across pixels. We show the applicability of this approach
to various real-world scenarios, including image and video transparency
separation. In particular, we show that this approach can be used for
separating transparent layers in images obtained under different polar-
izations, as well as for separating complex non-rigid transparent motions
in video sequences. These can be done without prior knowledge of the
layer mixing model (simple additive, alpha-mated composition with an
unknown alpha-map, or other), and under unknown complex temporal
changes (e.g., unknown varying lighting conditions).

1 Introduction

The need to perform separation of visual scenes into their constituent layers
arises in various real world applications (medical imaging, robot navigation, and
others). This problem is challenging when the layers are transparent, thus gener-
ating complex superpositions of visual information. The problem is particularly
challenging when the mixing process is an unknown, spatially varying, non-linear
function, as is often the case in real-world transparent scenes.

A number of approaches to transparent layer separation have been proposed.
Most of the approaches for separation of still images assume additive trans-
parency with layer mixing functions which are uniform across the entire image
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(e.g., [8,5,7]). Spatially varying functions were handled by [3] assuming spareness
of image derivatives . In the case of video transparency (where the transparent
layers have different relative motions over time), the underlying assumption is
that dense correspondences can be pre-computed for each pixel in each layer
across the entire sequence [9,12]. These methods are therefore restricted to scenes
with simple 2D parametric motions, which are easy to compute under trans-
parency and provide dense correspondences. Non-parametric correspondences
are handled in [10] assuming stereo images. None of the above methods can han-
dle complex non-rigid motions. Szeliski et al [9,10] further assume fixed mixing
coefficients.

In this paper we address the problem of separation of two arbitrarily su-
perimposed layers (either in images, or in video), without any prior knowledge
about the mixing process. We assume that two different combinations of the lay-
ers (generated in an unknown fashion) are given to us, and use these to initiate
the layer separation process. As will be shown later, two different combinations
of layers are often available or otherwise easy to obtain in many real-world sce-
narios, making this approach practical.

Formally, and without loss of generality, we can phrase the problem as follows.
Given two initial unknown physical mixtures, I1 and I2, of real scene layers, L1
and L2, produce approximations L̂1 and L̂2 such that some separation criterion
is satisfied. The two mixtures I1 and I2, can be generally defined as,

I1(i) = α1(i) · L1(i) + α2(i) · L2(i)
I2(i) = β1(i) · L1(i) + β2(i) · L2(i) (1)

where the index i denotes pixel position, and α1(i),α2(i),β1(i), and β2(i), are
the unknown mixing functions (coefficients) which vary over pixel locations. In
the simplest case, when the mixing is uniform and additive (as assumed in [9,
5,8,7]), the mixing functions reduce to constant coefficients; ∀i α1(i) ≡ α̂1,
α2(i) ≡ α̂2, β1(i) ≡ β̂1 and β2(i) ≡ β̂2. In natural scenes, however, such con-
ditions are frequently violated. Smoothly varying glass opacity, window dirt, or
images acquired through polarization filters, can produce varying mixing coeffi-
cients that vary over pixel locations. The formulation of Eq. (1) is general and
captures a wide range of transparency models, including additive transparency
with uniform mixing functions [9,5,8,7], additive transparency with unknown
alpha-matting (e.g., [12]), etc.

Having two initial combinations, I1 and I2, generated in an unknown fashion,
we seek a layer separation into representations of L1 and L2 which minimizes
the structural correlations across the two layers at every image point. Such a
separation is achieved by transferring local structure from one image to the other
wherever it is highly correlated with the underlying local structure in the other
image, and vice versa. This bi-directional transfer operation, which we call the
“layer information exchange”, is performed on diminishing window sizes, from
global image windows (i.e., the entire image) down to local image windows, thus
detecting correlated structures at varying scales across pixel positions.



330 B. Sarel and M. Irani

Two different initial combinations (I1 and I2) are available, e.g., when two
images of the same transparent scene are taken with different polarizers (as
in [5,8]), or under different illuminations. However, our approach is not limited
to those cases nor is it restricted to still imagery. When a single video cam-
era records two transparent layers with different relative motions over time, and
when the motion of only one of those layers is computable (e.g., a 2D parametric
motion), then such initial layer separation is possible. This can be done even if
the second layer contains very complex non-rigid motions (e.g., running water).
Moreover, the layer mixing process is not known and can possibly change over
time, and other unknown complex temporal changes may also occur simulta-
neously (such as varying illumination and changing light reflections over time).
Such examples are shown and discussed in the paper.

This paper has three main contributions: (i) The idea of “layer information
exchange”. (We also believe that this idea has applicability in disciplines of signal
processing other than Computer Vision). (ii) To our best knowledge, this is the
first time that video sequences containing non-rigid transparent motions have
been separated (moreover, under unknown complex varying lighting conditions).
(iii) Our approach provides a unified treatment to a wide range of transparency
models, without requiring prior selection of the transparency model and the
corresponding separation method. When the unknown mixing coefficients are
spatially-invariant (i.e., only grayscale dependent, but independent of the pixel
position), then our approach produces comparable results to Farid and Adelson’s
ICA-based separation [5]. However, when the mixing coefficients are spatially-
varying (unknown) functions, our approach performs better. Similarly, if the
motions of both transparent layers in a video sequence are easy to compute, then
our approach compares to existing methods for separating video transparency [9,
12]. However, it performs better when one of the layers contains complex motions
(such as non-rigid motions, 3D parralax) and other complex temporal changes.

The rest of the paper is organized as follows. In Section 2 we identify an
information correlation measure which is best suited for the underlying problem.
In Section 3 we introduce our layer information exchange process, which is used
for recovering the separate layers. In Section 4 we show the applicability of the
method to transparency separation in still images and in video sequences.

2 The Information Correlation Measure

There are various commonly used measures for correlating information across
images. In this section we review some of their advantages and drawbacks, and
identify a measure which is best suited for the task at hand.

The Mutual Information (MI) of two images (f and g) captures the statisti-
cal correlation (or co-occurrence) of their grayscales: MI(f, g) = H(f)+H(g)−
H(f, g), where H(f) is the entropy of the grayscale distribution in f , and H(f, g)
is the joint entropy [4]. Mutual Information can account for non-linear grayscale
transformations which are spatially invariant (i.e. transformations which depend
only on the grayscale value at a pixel, but not on the pixel position). However,
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(a) Original (b) Linear (c) Non-linear (d) Spatially varying
image grayscale grayscale (position dependent)

deformation deformation deformation

fa fb = ( fa
2 ) + 100 fc = f3

a fd(x, y) =(see caption)

Measure fa vs. fa fa vs. fb fa vs. fc fa vs. fd
(normalized)

MI 1.0000 1.0000 1.0000 0.3426
NGC 1.0000 1.0000 0.8329 0.8700

GNGC 1.0000 1.0000 0.9165 0.9981
(e)

Fig. 1. Comparing different information correlation measures (a) Original
image. (b) After a linear grayscale transformation. (c) After a nonlinear grayscale
transformation. (d) After a spatially varying (i.e., position-dependent) grayscale trans-
formation: fd(x, y) = fa ·(sin( 4π·x

nx
) sin( 4π·y

ny
) ·0.333+0.667), where nx ×ny is the image

size. (e) Comparing the information correlation between the original image fa and the
transformed images (fb, fc, fd) under different measures (NGC, MI, GNGC – see Sec-
tion 2). As can be seen, GNGC correlates extremely well across all transformations.

it cannot account for spatially varying grayscale transformations which are pixel
position dependent (such as the spatially varying mixing functions of Eq. (1)).
In other words, if f̂ is an image obtained from f by some (non-linear) transfor-
mation on the histogram of f , then MI(f, f̂) = MI(f, f) (see Fig. 1.b and 1.c).
However, if f̂ is obtained from f by some spatially varying (position-dependant)
grayscale transformation, then the mutual information of f and f̂ reduces signif-
icantly: MI(f, f̂) � MI(f, f), even though the geometric structures observed
in f and in f̂ are highly correlated (see Fig. 1.d).

A different widely used information correlation measure is the Normalized
Gray-scale Correlation (NGC): NGC(f, g) = C(f,g)√

V (f)·V (g)
, where C(f, g) =

1
N

∑N
j=1 fj · gj − f̄ · ḡ is the covariance of f and g, N is the number of pix-

els in f (f and g are of the same size), f̄ , ḡ are the average grayscale values
of f, g, and V (f) = 1

N

∑N
j=1 f2

j − f̄2 is the variance of f . NGC can account
only for linear grayscale transformations which are spatially invariant (i.e., only
changes in the mean and variance of the intensity – see Fig. 1.b). Intuitively
speaking, the normalized correlation (captured by NGC) can be regarded as a
linear approximation of statistical correlation (captured by MI).
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The above two measures require global grayscale correlations (whether nor-
malized or statistical). We next define an information correlation measure which
requires only local correlations, and can therefore account for a wide variety
of grayscale variation (linear and non-linear), including spatially-varying (i.e.,
position-dependant) grayscale transformations. This measure, which we will re-
fer to as the Generalized NGC (GNGC) measure, is a weighted average of local
NGC measures on small (typically 5x5) windows:

GNGC(f, g) =
∑N

i=1 NGC2
i (f, g) · (Vi(f) · Vi(g))

∑N
i=1(Vi(f) · Vi(g))

=
∑N

i=1 C2
i (f, g)

∑N
i=1 Vi(f) · Vi(g)

(2)

where Ci(f, g) and NGCi(f, g) are, respectively, the local covariance and the
local normalized correlation measure between two small corresponding windows
(5 × 5) centered at pixels i in images f and g. In principle, one could define a
similar global measure to that of Eq. (2) using a weighted sum of local MI mea-
sures (instead of local NGC measures). However, there is not enough grayscale
statistics in small 5 × 5 windows, which is why we resort to the local NGC
measures. In case of color images, the sum is taken over all three color bands.

The normalized weighted sum in Eq. (2) takes into account the correlations
of small corresponding windows across f and g. These are weighted according to
their reliability, which is measured by the grayscale variances in the local (5×5)
windows. This captures correlations of small geometric features (under different
grayscale transformations) without introducing numerical instabilities which are
common to regular normalized correlation in small windows. Prominent geomet-
rical features in the image are characterized by large local gray-scale variances
and therefore contribute more to the global correlation (GNGC) measure, while
flat gray-scale regions have small local grayscale variances, hence small weights.

Unlike the MI measure, the GNGC measure (Eq. (2)) captures also the
statistical correlations between geometric structures in the image. It can there-
fore account for spatially varying non-linear grayscale transformations, such as
the one showed in Fig. 1.d, whereas MI cannot. The reason for this difference
between the two measures, is that MI requires global statistical correlation of
grayscales across the two images (a condition which is violated under spatially-
varying grayscale transformations), whereas GNGC requires only local statistical
correlation across the two images (but at every 5×5 window in the image). Sim-
ilar measures to the GNGC measure have been previously used for other tasks
where correlation between geometric structures was needed (e.g., for multi-sensor
alignment [6]), although in the past a regular integration of local correlation val-
ues for those tasks was typically used, whereas our global measure is a weighted
sum of the local measures. This modification is crucial to the stability of the
layer separation process.

Because GNGC captures correlations of meaningful geometrical structures,
it is therefore more suited for the problem at hand. Moreover, the GNGC mea-
sure is easy to differentiate in order to derive an analytic solution to the layer
separation problem, as will be shown in Section 3.
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I1 = 0.6 · Robert + 0.4 · Fountain I2 = 0.4 · Robert + 0.6 · Fountain

(a) (b)

(c) GNCG(I2, I1 − σ · I2) as a function of σ:

Some examples of (I1 − σ · I2) for a few σ’s:
σ = 0 σ = 0.3 σ = 0.667 σ = 1 σ = 1.3

(d) (e) (f) (g) (h)

L̂1 The recovered layers L̂2

(i) (j)

Fig. 2. The Layer Information Exchange. (a)-(b) The initial mixtures I1 and I2.
(c) Different values of σ produce different degrees of information correlation between
images I2 and I1−σ·I2. (d)-(h) Examples of I1−σ·I2 for various values of σ. ”Fountain”
decreases until at σ = 0.667 it disappears completely, and when σ is increased further, it
becomes negative and the GNGC increases again. (i)-(j) The recovered layer separation
using the algorithm described in Section 3.1.

3 The Layer Information Exchange

Let I1 and I2 be two different combinations of two unknown layers L1 and L2,
obtained in an unknown fashion (i.e., the coefficients α1(i), α2(i), β1(i) and
β2(i) in Eq. (1) are unknown, spatially varying, non-linear mixing functions).
We will obtain a separation of I1 and I2 into two layers L̂1 and L̂2 (which
are visual representations of L1 and L2) by transferring information from I1 to
I2, and vice versa, until the structural correlation between those two images is
minimized. The information transfer is performed at different information scales,
ranging from the entire image to small image windows. To explain this concept
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of “layer information exchange”, let us first examine the simpler case of uniform
mixing functions (i.e., constant unknown coefficients). We will later relax this
assumption, and show how the process is generalized to spatially-varying non-
linear mixing functions.

3.1 Handling Uniform Mixing Functions

Assuming uniform mixing functions, then Eq. (1) reduces to:

I1(i) = α1 · L1(i) + α2 · L2(i) , I2(i) = β1 · L1(i) + β2 · L2(i) (3)

There exists a constant scalar σ such that L̂1(i) = I1(i)−σI2(i) will contain only
the geometric structure of L1(i), without any trace of L2(i). For example, σ = α2

β2

will lead to such a layer separation: L̂1(i) = I1(i) − α2
β2

I2(i) = (α1 − α2
β1
β2

)L1(i).
Namely, L1(i) is recovered up to a constant scale factor (α1 − α2

β1
β2

). However,
since α1, α2, β1 and β2 are not known, the transfer factor σ is also unknown.

We do know, however, that for the correct transfer factor σ, the layer L2(i)
will disappear in L̂1(i), thus minimizing the structural correlation between
L̂1(i) = I1(i) − σI2(i) and I2(i). This is visually shown in Fig. 2. We can there-
fore recover the transfer factor σ (and accordingly the layer L1, up to a scale),
by minimizing the following objective function:

σ = argmin(GNGC(I2, I1 − σI2)) (4)

Plugging in the definition of GNGC from Eq. (2), results in an objective function
which is quadratic in σ. Differentiating the above objective function with respect
to σ and equating to zero (i.e., ∂

∂σ GNGC(I2, I1 − σI2) = 0), yields an analytic
expression for σ:

σ =
∑N

i=1 Ci(I1, I2) · Vi(I2)
∑N

i=1 V 2
i (I2)

, (5)

where Ci and Vi are the local (5 × 5) covariances and variances as defined in
Section 2. Having computed the transfer factor σ, we can recover the first layer
(up to a scale):

L̂1 = I1 − σI2,

and proceed to computing the second layer in the same way. The second layer

L̂2 = I2 − ηL̂1,

is recovered by seeking η which minimizes GNGC(L̂1, I2 − ηL̂1). In practice, we
repeat this process a few times (typically 2 to 3 times), to obtain cleaner layer
separation. At each iteration, the previously recovered L̂1 and L̂2 serve as the
new mixtures. Namely, L̂k+1

1 = L̂k
1 − σk+1L̂k

2 , L̂k+1
2 = L̂k

2 − ηk+1L̂k+1
1 where k

is the iteration number.
We refer to the above procedure as the “layer information exchange”, because

at each step we transfer some portion of one image to the other. For example,
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the step L̂1 = I1 − σI2 transfers some portion of I2 to/from I1 (depending on
whether σ is negative/positive). In the next step, a different portion of the new
image L̂1 is transferred in the other direction, according to the magnitude and
sign of η. Fig. 2.i and 2.j show the two layers recovered from images I1 and I2
(Fig. 2.a and 2.b) by applying the above information exchange procedure.

3.2 Generalizing to Spatially Varying Mixing Functions

So far we have assumed that the mixing coefficients α1(i), α2(i), β1(i) and β2(i)
are constant. However, in most real-life scenarios, this is not true. To solve the
separation problem for the case of spatially-varying mixing functions, we assume
that if we use a small enough window Wi around a pixel i, then within that region
of analysis the mixing coefficients are approximately uniform (although different
from the mixing coefficients in other nearby pixels). In other words, the global
layer exchange procedure described in Section 3.1 can be applied to a small local
region of analysis Wi to compute σ(i) and η(i) at the corresponding pixel i. These
transfer factors are repeatedly computed for each pixel i = 1..N , using a window
Wi centered around each image pixel. This results in a spatially-varying layer in-
formation exchange: L̂1(i) = I1(i)−σ(i)I2(i), and L̂2(i) = I2(i)−η(i)L̂1(i). This
procedure is repeated iteratively: L̂k+1

1 (i) = L̂k
1(i)−σk+1(i)L̂k

2(i) , L̂k+1
2 (i) =

L̂k
2(i) − ηk+1(i)L̂k+1

1 (i) until σk(i) and ηk(i) are small enough (where k is the
iteration number).

Note that we are now dealing with two different types of local image windows:
(i) the local region of analysis Wi used of the piece-wise approximation of the
mixing functions, and (ii) the small 5 × 5 window (mentioned in Section 2),
which is used for obtaining local measurements (local NGC) to be summed for
generating the global GNGC measure. These 5 × 5 windows are the smallest
reliable information elements over which the local NGC measures are computed
across the two images (regardless of whether the mixing functions are uniform
or not). These local measures are then summed within the region of analysis,
which is the entire image for the case of uniform mixing functions, and smaller
Wi in the case of spatially varying mixing functions.

(a) I1 (b) I2 (c) L̂1 (d) L̂2

Fig. 3. Handling spatially varying mixing functions. (a)-(b) The two mixtures
I1 and I2 were obtained by mixing two images (”fountain” and ”waterfall”) with 4
different non-linear functions (α1 was a sinus, α2 and β1 were two exponent functions,
and β2 was a constant function). (c)-(d) The recovered transparent layers using our
global-to-local layer separation method described in Section 3.2 .
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Since we do not know ahead of time the degree of non-linearity of the mix-
ing functions, the above local procedure is repeated using coarse-to-fine (i.e.,
large-to-small) regions of analysis Wi. We start the iterative process with Wi

being the entire image. This compensates for the case of globally uniform mix-
ing functions (i.e., constant coefficients throughout the entire image). We then
gradually decrease the window size Wi to smaller and smaller windows (but not
below 15 × 15, for numerical stability). This gradual process is aimed to assure
that the resulting mixing functions remain as smooth as possible, whenever a
smooth solution is a valid interpretation. Fluctuations from uniform/contant
mixing functions occur when there is no simpler interpretation.

Fig. 3 shows an example of applying the above procedure to the pair of
mixtures I1 and I2 (Figs. 3.a and 3.b). These images were generated with spa-
tially varying non-linear mixing function/coefficients (see figure for more de-
tails). Fig. 3.c and 3.d show the resulting separation obtained using our layer
information exchange (without prior knowledge of the spatially varying mixing
coefficients, of course). It has been able to completely separate the structures of
the two layers.

4 Applications

The information exchange approach assumes that two different initial combina-
tions (I1 and I2) of the unknown transparent layers (L1 and L2) are available,
but the way in which I1 and I2 were generated from L1 and L2 is not known,
and can be very complex. In this section we explore some cases where such
initial combinations are readily available or else easy to extract, and show the
applicability of our layer exchange approach for addressing these cases.

(a) I1 (b) I2 (c) L̂1 (d) L̂2

Fig. 4. Recovering Transparent Layers from Polarized Images (a)-(b) Two
real images obtained under different polarizations, showing the reflection of Sheila in
a Renoir picture. (The images were taken from Farid [5].) (c)-(d) The recovered
transparent layers using our layer separation method.

4.1 Separating Layers in Polarized Images

Due to the physical nature of light polarization through reflecting and transmit-
ting surfaces, two superimposed transparent layers differ in their polarization.
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(a) Input (b) I1 (c) I2 (d) Recovered (e) Recovered
sequence layer L̂1 layer L̂2

Fig. 5. Separating non-rigid transparencies in video. Column (a) Five frames
from the input movie (see text for details). Columns (b)-(c) The initial separation
acquired by extracting the median image from the aligned sequence. Columns (d)-(e)
The recovered layered. The residual traces of the woman which were visible in (b) are
removed in (d), the true color of the fountain is recovered, and the temporal variations
in the indoor illumination are recovered in (e). The video sequences can be viewed at
http://www.wisdom.weizmann.ac.il/∼vision/TrasnparentLayers.html.

Different mixtures (I1 and I2) of transparent scene layers can be obtained by
changing the angle of a polarization filter in front of the camera (as in [5,8]).
Fig. 4 shows the result of applying our algorithm to a real pair of images of the
same scene obtained with different polarizers. (These results are comparable to
those of [5].)

4.2 Separating Non-Rigid Transparent Layers in Video

When a video camera records two transparent layers with different relative mo-
tions over time, and when the motion of one of those layers is easy to compute
(e.g., if it is a 2D parametric motion), then such a layer separation is possible.
This can be done even if the second layer contains very complex non-rigid mo-
tions (such as flickering fire, running water, walking people, etc.), the mixing
process is not known and may be spatially varying (e.g., due to varying glass
opacity or window dirt), and other temporal changes may occur simultaneously
(such as varying illumination over time).

Such examples are shown in Fig. 5 (a simulated example) and in Fig. 7 (a real
example). Fig. 5 shows a simulated example of an indoor scene with motion and
varying illumination, reflected in a window through which a dynamic outdoor
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scene is visible. The input video sequence was generated by superimposing two
video sequences: (i) an “indoor scene” video, showing a woman’s head moving
while the illumination changes over time (dimming and brightening of indoor
illumination), reflected in a window, and (ii) an outdoor scene of a fountain
displaying highly non-rigid complex motion, with changing specular reflections,
etc. The left column of Fig. 5 displays some representative frames from the
generated sequence. The woman’s reflection is more visible when the illumination
is darker, and is less visible when the illumination is brighter. The goal here was
to separate this generated sequence into its original two layers (sequences, in this
case): the outdoor scene (the fountain) with all its dynamics and specularities,
and the indoor scene (the woman) with its motion and changing illumination.

In this case we have only one input (the video sequence of Fig. 5.a). To obtain
two different initial layer mixtures (I1 and I2), we did the following: The woman’s
motion is a simple 2D parametric motion, which can be computed using one of
the dominant motion estimation methods (e.g., [1,2,9]). This brings the woman
into alignment. Now, using Weiss’ method for extracting intrinsic images [11],
we apply it to the aligned sequence. This process recovers a median image of the
woman, and a residual image for each frame after removing the median image
of the woman. These are displayed in the second and third columns of Fig. 5
(after unwarping the images to their original coordinate system according to the
estimated 2D motion of the woman). Because the process of [11] results in a
single intrinsic image, it does not capture any temporal changes. As a result,
the woman’s sequence in Fig. 5.c does not contain any of the changes in indoor
illumination, and the “residual” sequence (Fig. 5.b) still contains a small residue
of the woman (sometimes dark, sometimes bright), while the true colors of the
fountain are lost.

Each pair of images in the second and third columns of Fig. 5 can be re-
garded as initial layer mixtures I1 and I2 (unknown and non-linear) for that
time instance. These sequences (I1 and I2) are fed as the initial combinations
to our layer exchange process. Results of the layer separation process are dis-
played in the last two columns of Fig. 5. Note that now the fountain sequence is
fully recovered, with its true colors and no traces of the woman (Fig. 5.d), while
the true changes in indoor illuminations have been recovered and automatically
associated with the indoor woman sequence (Fig. 5.e).

The initial separation into a “medians” and “residuals” forms the initial
mixtures I1 and I2 above. The (unknown) mixing functions which relate I1
and I2 to the original (unknown) layers (see Eq. (1)), cannot be assumed to be
constant or position invariant. This is because the median operator is non-linear.
Our Information Exchange approach handles this well (see Figs. 5.d and 5.e).
However, the ICA-based separation [5,13] does not perform well on these I1 and
I2 , as can be seen in Figs. 6.c and 6.f. This is because it is not suited for the
case of non-uniform spatially varying coefficients.

To our best knowledge, this is the first time videos containing non-rigid
transparent motions have been separated (and moreover, under unknown varying
lighting conditions). Current approaches for video transparency separation (e.g.,
[9,10,12]), assume that each layer moves rigidly, since dense correspondences
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Initial mixtures Layer-exchange separation ICA separation

(a) (b) (c)

(d) (e) (f)
Fig. 6. ICA vs. Information Exchange separation We compare results of
applying the ICA-based separation [5,13] to our layer-based separation displayed in
Fig. 5. ICA was applied to the same initial mixture sequences (the “median” and the
“residual” images in Figs. 5.b and 5.c). Almost all of the resulting frames displayed
wrong separation. One such example is shown in the third column of this figure ((c)
and (f)). For comparison, we display the corresponding frames of the initial mixture
images (a) and (d), and our separation result (b) and (e).

of both layers across the sequence need to be recovered in those methods. We
currently need to compute only one of the motions, allowing the second motion
to be arbitrarily complex.

Fig. 7 shows a real example of video transparency with non-rigid motions
and changing effects of illumination. In this case, a still video camera recorded
a scene with non-rigid human motions reflected in a swivelling glass door of an
entry hall to a building. The reflected outdoor scene therefore appears moving,
while the indoor scene is static. At the last part of the sequence, due to a strong
reflections of light in the glass, the AGC (Automatic Gain Control) of the camera
induced fluctuating changes in the dynamic range of the image. The left column
of Fig. 7 displays three representative frames from the recorded sequence. As
before, we used Weiss’ method [11] for extracting the intrinsic image from the
sequence. The median image was then removed from the sequence, producing a
“residual” sequence. These were used as the initial combinations (I1 and I2) for
our layer exchange approach. The resulting separation into layers is displayed
in the second and third columns of Figs. 7. The reflected scene was separated
from the glass door, and the changing effects of illumination due to the change
in aperture have also been recovered.

5 Conclusions

We presented an approach for separating two transparent layers through a pro-
cess termed the “layer information exchange”. Given two different (unknown
complex) combinations of the layers, we recover the layers by gradually trans-
ferring information from one image to the other, until the structural correlation
across the two images is minimized. The information transfer is done at different
information scales, ranging from the entire image to small image windows.
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(a) Input sequence (b) Recovered Layer 1 (c) Recovered Layer 2

Fig. 7. Separating non-rigid transparencies in video (a) Three frames from a
real video sequence of the entrance hall of a building recorded through the build-
ing’s swivelling glass door. The outdoor scene (including a running man and the
camera tripod) are reflected from the swivelling door. The indoor scene includes
a statue and a plant. (b) The first recovered layer (the outside scene). (c)
The recovered interior hall with the statue. The video sequences can be viewed at
http://www.wisdom.weizmann.ac.il/∼vision/TrasnparentLayers.html.

We showed the applicability of this approach to various real-world scenarios,
including image and video transparency separation. To our best knowledge, this
is the first time that complex non-rigid transparent motions in video have been
separated, without any prior knowledge of the layer mixing model, and under
unknown complex temporal changes. We further showed that our approach to
layer separation does equally well to ICA (Independent Component Analysis)
when the mixing functions are spatially fixed (i.e., independent of the pixel po-
sition). However, when the mixing functions are more realistic spatially varying
functions (i.e., vary as a function of pixel position), then our approach performs
better than ICA. We believe that the applicability of this approach goes be-
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yond analysis and separation of image layers, and can possibly be applied to
separating other types of signals (such as acoustic signals, radar signals, etc.)
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