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Abstract. A novel generalization of linear scale space is presented. The
generalization allows for a sparse approximation of the function at a
certain scale.
To start with, we first consider the Tikhonov regularization viewpoint on
scale space theory [15]. The sparsification is then obtained using ideas
from support vector machines [22] and based on the link between sparse
approximation and support vector regression as described in [4] and [19].
In regularization theory, an ill-posed problem is solved by searching for
a solution having a certain differentiability while in some precise sense
the final solution is close to the initial signal. To obtain scale space, a
quadratic loss function is used to measure the closeness of the initial
function to its scale σ image.
We propose to alter this loss function thus obtaining our generalization
of linear scale space. Comparable to the linear ε-insensitive loss func-
tion introduced in support vector regression [22], we use a quadratic
ε-insensitive loss function instead of the original quadratic measure. The
ε-insensitivity loss allows errors in the approximating function without
actual increase in loss. It penalizes errors only when they become larger
than the a priory specified constant ε. The quadratic form is mainly
maintained for consistency with linear scale space.
Although the main concern of the article is the theoretical connection
between the foregoing theories, the proposed approach is tested and ex-
emplified in a small experiment on a single image.

1 Introduction

There are many extensions, variations, perturbations, and generalizations of lin-
ear scale space [10,24]. E.g. anisotropic, curvature, morphological, α, pseudo,
Poisson, i, torsion, geometry driven and edge preserving scale spaces [1,2,3,7,9,
13,14,16,17,23]. All these approaches serve one or more purposes in image pro-
cessing, general signal processing or computer vision, as a whole covering a large
area of applications. This paper presents another interesting possibility for gen-
eralization of linear scale space that has not been explored up to now. I.e., those
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that allow for a sparse scale space representation of the function under consid-
eration. Being sparse means that the approximation can be obtained using only
a small collection of building block or basis functions. This sparseness is being
enforced by setting certain constraints to the solution.

The proposed technique exploits links between scale space and support vector
machines. The sparsified representation thus obtained is called the support blob
machine (SBM), as blobs are the main building blocks used in the representation.
The principal observation that leads to the notion of SBMs is that both support
vector regression (SVR) [22,19] and scale space can be related to Tikhonov’s
regularization theory [21] (see [4], [15], and [20]). For more on the connection
between scale spaces and regularization see [18].

Regularization is a technique typically used for solving ill-posed problems in
a principled way. While scale space offers a solution to the problem of defining
derivatives of a multidimensional (digital) signal in a well-posed way, the goal in
regression is mainly to recover a function from a finite, possibly noisy, sampling
of this function, which is also clearly ill-posed. Support vector regression (SVR)
not only offers a well-posed solution to the regression problem but has the addi-
tional advantage that it can be used to give a sparse solution to the problem at
hand. The sparse representation is acquired by allowing the regressed function
to deviate from the initial data without directly penalizing such deviations. This
sparseness behavior is accommodated for through the so-called ε-insensitive loss.
The resulting behavior is clearly different from, for example, standard linear re-
gression in which, using a quadratic loss function, only the slightest deviation
from the given data is penalized immediately.

This article focuses on the relationships mentioned above, deriving the SBMs,
providing a computational scheme to determine these scale spaces, and finally
exemplifying the scale spaces obtained. However, before doing so, we mention
several reasons why the kind of scale spaces proposed are of interest.

First of all, the approach may lead to improved image feature detectors.
SVR, like support vector classifiers, has proven to be very successful in many
applications which is partly due to the relation with robust statistics [8]. But not
only may certain forms of sparsified scale space lead to more robust detection of
edges, blobs and other visual cues, another advantage is that one could build on
the structural risk minimization framework as proposed by Vapnik [22] and con-
sequently one may be able to theoretically underpin the practical performance
of these detectors in real-world applications.

Another useful application is in the area of feature-based image analysis and
the related research into metamery classes and image reconstruction [6,11,12].
E.g., in [12], certain greedy methods are discussed for the selection of points
of interest in an image, i.e., based on a certain form of reconstruction energy
(that can be calculated for every point individually), the representing points are
chosen starting with the one with the highest energy and going down gradually.
These points, together with their associated receptive field weighting function
are then taken as image representation. A greedy approach to the point selection
problem was considered appropriate by the authors, because features must be
detected and represented individually in early vision. However, they also note
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that this approach is not necessarily optimal for image representation purposes
as the reconstruction information mutually conveyed by two or more points is
not taken into account, leading to only a suboptimal solution for the image
reconstruction task. The SBM does take the global information into account
and can therefore obtain an improved selection of points of interest, which all in
all could prove useful for, e.g., image compression.

Finally, a little more speculative, the data reduction that is achieved by the
sparse representation of the data may facilitate the use of otherwise prohibitively
computer intensive techniques in computer vision or image analysis. As an ex-
ample one could think of the registration of two large 3D data volumes based
on their sparse representation instead of all of the voxels.

The remainder of the paper is organized as follows. Subsection 2.1 gives the
regularization formulation of scale space after which Subsection 2.2 discusses a
more general formulation of regularized regularization taken from the SVR litera-
ture. Section 2.3 links the aforementioned techniques. The quadratic ε-insensitive
loss functions is then introduced in Subsection 2.4 on which our principal gener-
alizations is based. Section 3 describes some experiments to exemplify the novel
scale space. Section 4 contains the discussions and concludes the article.

2 The Sparsification of Scale Space

2.1 Scale Space Regularization Formulation

This subsection recapitulates one of the principle contributions of [15] in which
scale space is related to a specific instance of Tikhonov regularization. The au-
thors consider the general regularization formulation given by Tikhonov [21]:
The regularized function f associated to the function g on R

n minimizes the
functional E defined as

E [h] := 1
2

∫
(h(x) − g(x))2 +

∞∑
j=1

∑
|J|=j

λJ

(
∂|J|h(x)

∂xJ

)2

dx . (1)

All λJ are nonnegative and J is an n-index used for denoting derivatives of order
|J |. The first term of the right hand side penalizes any deviation of the function
h from the given function (the data) g. The second part does not involve g and
is the regularization term on h, which, in a certain way controls the smoothness.

It can be shown in this setting, that the solution to the problem, f , can be
obtained by a linear convolution of g. Moreover, the authors prove that f equals
g ∗ Gt, where the latter is the Gaussian kernel

Gt(x) :=
1

(2
√

πt)n
e− ‖x‖2

4t , (2)

if and only if

λJ =
t|J|

|J |! =
tj

j!
(3)
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for all J , thus relating scale space at scale
√

2t to a specific form of Tikhonov
regularization.

2.2 Regression and Regularization

The regression problem is generally formulated in terms of a discrete data set
of � (noisy) samples ĝ(xi) from the function g and the goal is to recover this
underlying function g merely based on these � samples [4,19,22]. To this end,
an underlying functional form of g based on a set of linearly independent basis
functions ϕi is assumed, i.e., g can be represented as

g(x) :=
∞∑

i=1

ciϕi(x) + c0 . (4)

The constant term c0 and the parameters ci have to be estimated from the
data. This is clearly an ill-posed task since the problem as such has an infinite
number of solutions. Again, regularization can be used to turn it into a well-
posed problem by imposing smoothness constraints on the final solution. The
regularized solution f minimizes the functional R

R[h] := C
�∑

i=1

L(ĝ(xi) − h(xi)) + 1
2Λ[h] , (5)

where L is the loss function penalizing deviation of f from the measurement data
ĝ, Λ is a general constraint that enforces smoothness of the optimal solution f ,
and C is a positive constant that controls the tradeoff between the two previous
data terms.

An important result is the following (see [4]). If the functional Λ has the form
Λ[h] =

∑∞
i=1

c2
i

λi
, where all λi are positive and {λi}∞

i=1 is a decreasing sequence,
then the solution f to the regularization problem (5) takes on the form

f(x) =
�∑

i=1

aiK(x, xi) + c0 , (6)

with the kernel function K being defined as

K(x, xi) =
∞∑

i=1

λiϕi(x)ϕi(xi) . (7)

A large class of regularizations can be defined based on the foregoing class of
smoothing functionals and in the remainder of the article, only these kind of
smoothness constraints are considered.

Note that if the cost function L is quadratic, the unknown parameters in
Equation (6) can be determined by solving a linear system comparable to stan-
dard regression. When the cost function is not quadratic, the ai can not be
readily obtained by solving a linear system and one has to resort to different op-
timization methods. For particular loss functions, as the main one considered in
this article, R[h] can be optimized using quadratic programming (QP), allowing
the optimization to be done in a fairly straightforward way (see Subsection 2.4).
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2.3 Kernel Formulation of Scale Space

Before formulating the sparsified version of scale space, first the regularizations
in (1) and (5) are related to each other. That is, in the functional R, the ‘free
parameters’ are chosen such that a solution f that minimizes this functional is
equal to the minimizing solution of E with the λJ as given in Equation (3). In
this case

E [h] = 1
2

∫
(h(x) − g(x))2 +

∞∑
j=1

tj

j!

∑
|J|=j

(
∂|J|h(x)

∂xJ

)2

dx . (8)

The fact that one formulation is continuous and the other uses discrete observa-
tions is disregarded. Doing so, it is of course immediately clear that in (5), the
loss function L has to be the quadratic loss, i.e.,

L(·) = (·)2 . (9)

So now our main concern is the smoothing term in both functionals.
Starting with the smoothing term from (1)—with the λJ as defined in Equa-

tion (3), based on induction and partial integration, and in addition properly
rearranging terms, it can be shown that the following equivalence holds (cf. [15])

∑
|J|=j

(
∂|J|h(x)

∂xJ

)2

=




(
∇∆

j−1
2 h(x)

)2
if j is odd(

∆
j
2 h(x)

)2
if j is even

. (10)

Where ∆ is the Laplacean and ∇ is the gradient operator.
Setting 2t = σ2 in Equation (8) and substituting the results from Equation

(10), the expression obtained can be related to the result discussed in [20,19] (cf.
[5]) in which Gaussian functions are shown to be the kernel functions associated
to this specific form of regularization. That is, K in (7) should be defined as

K(x, xi) := e
−‖x−xi‖2

2σ2 = e
−‖x−xi‖2

4t , (11)

for the regularized regression (5) to be equivalent to the Tikhonov regularization
resulting in linear scale space of g.

Finally, with the constant C in (5) set to 1
2 , the regularization functionals E

and R become completely equivalent.

2.4 Quadratic εεε-Insensitive Loss and SBMs

Based on the foregoing equivalence, this subsection introduces to the generaliza-
tion of linear scale space within the SVR framework via a quadratic ε-insensitive
loss: The support blob machines (SBMs). The main idea behind using this
quadratic ε-insensitive loss is that the generalization should possess a similar
kind of ability to obtain sparse representations as the (linear) ε-insensitive loss
function exhibits.
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It is formulated for pixel-based discrete images and related to SVR based on
the (linear) ε-insensitive loss. Subsequently, it is demonstrated how to obtain the
minimizing solution under this loss function based on a quadratic programming
(QP) formulation. This is similar to the optimization procedure used in standard
ε-insensitive loss support vector machines [4,22,19].

The loss function originally proposed in the context of SVR [22] is the ε-
insensitive loss | · |ε. It allows for minimization of (5) using QP and is defined
as

|x|ε :=
{

0 if |x| ≤ ε
|x| − ε otherwise . (12)

This loss function bears a resemblance to some loss functions used in statistics
which provide robustness against outliers [8]. In addition to this important prop-
erty, the loss has another distinctive feature: It assigns zero cost to deviations of
h from ĝ that are smaller than ε and therefore, every function h that comes closer
than ε to the � data points ĝ(xi) is considered to be a perfect approximation.

The similar quadratic ε-insensitive loss function, more closely related to the
well-known quadratic loss in Equation (9), can be defined as follows

(x)2ε :=
{

0 if |x| ≤ ε
(|x| − ε)2 otherwise . (13)

Using this loss, deviations form the underlying data are essentially quadratically
penalized. However, the ε allows zero cost deviations from the data points ĝ(xi),
which, for the minimizing solution f , leads to several ai being zero in Equation
(6). The number of ai being equal to zero is dependent on the parameter ε. The
larger ε is, the more ai are zero. If ε = 0, then ai ∝ ĝ(xi) (note that the Gaussian
kernel in (11) is not normalized) and so in general ai will be nonzero. Taking ε
larger than zero, a sparse solution to the problem can be obtained (see [4] and
[22] for the actual underlying mechanisms leading to sparseness).

Taking all of the foregoing into consideration, the regularization functional
Eε for sparse scale space is now readily defined in its discrete form as

Eε[h] := C

�∑
i=1

(h(xi) − g(xi))2ε +
�∑

i=1

∞∑
j=1

tj

j!

∑
|J|=j

(
∂|J|h(xi)

∂xJ

)2

, (14)

with, in general, C equal to 1
2 . Taking ε equal to zero, results in ordinary linear

scale space.
Exploiting the link with SVR, a dual QP formulation that solves

argminhE [h]ε can be stated (cf. [4,19]):

argmin
α−

i ,α+
i

�∑
i=1

[
ε(α+

i + α−
i ) − ĝ(xi)(α+

i − α−
i )

+ 1
2

�∑
j=1

(α+
i − α−

i )(α+
j − α−

j )(K(xi, xj) +
1
C

+ δij)
] (15)
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Fig. 1. On the right, the original image of Lenin. On the left is his right eye, the 50
by 50 sub-image used to exemplify the SBMs.

subject to
∑�

j=1(α
+
i − α−

i ) = 0 and α−
i , α+

i ≥ 0. After which the α−�
i and α+�

i

that optimize (15) determine the optimal solution to the minimization of the
functional Eε, i.e., (cf. Equation (6))

f(x) =
�∑

i=1

(α+�
i − α−�

i )K(x, xi) + c�
0. (16)

The optimal offset c�
0 can be determined by exploiting the Karush-Kuhn-Tucker

condition, after the solution to the foregoing problem has been obtained. The
condition basically states that at the optimal solution of QP (15), the product
of the dual variables and their constraints should vanish (see [19,22]).

3 An Illustrative Experiment

The SBMs are exemplified on a single, small gray value image. The image is
a 50 by 50 sub-image taken from a larger image of Lenin (see Figure 1). The
sub-image is Lenin’s right eye. The gray values of this image are scaled between
0 and 255 for this experiment. Note that it is important to know the range the
gray values are in, because the function minimizing Eε with ε > 0 is not invariant
under (linear) intensity scalings, which is due to the ε-insensitivity.

For this image, for several settings of the parameters σ (=
√

2t) and ε, the
support vectors are determined using the functional (14). Simultaneously, the op-
timal values for the parameters α+

i and α−
i are obtained. These values, together

with the Gaussian kernels, define the regularized image via Equation (16).
Figure 2 plots the values α+�

i −α−�
i in the position of the blob it supports in

the SBM for varying σ and ε. Figure 3 gives the regularized images, which are
actually blurred versions (as is clear from Equation (16)) of the images in Figure
2. Put differently, the images in Figure 2 can be considered de-blurred images.
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Fig. 2. Plots of the values α+�
i − α−�

i given by the SBMs. On the top of every image
the scale, the value of ε, and the relative number of support vectors is given.

Because it is not immediately clear from Figure 2 when there is actually a
support vector present in a certain position, i.e., when α+�

i − α−�
i is not equal

to zero, Figure 4 indicates in black the positions that contain a support vector.
The additional text added at the top of every images in Figures 2 to 4 gives

information on the scale σ, the ε, and the relative amount of support vectors (as
·| · |·). This last number is simply calculated by dividing the number of support
vectors by 2500 = 502.

4 Discussion and Conclusion

We introduced support blob machines (SBMs) based on a link between scale
space theory and support vector regression, which are connected to each other
via regularization theory. The SBMs give a sparsification of linear scale space by
employing a quadratic ε-insensitive loss function in its regularization functional.
Through the sparseness obtained, the regularized function can be represented
using only a small collection of building block or basis functions.
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Fig. 3. The regularized images associated to a certain scale σ and value of ε. (The
values are given on the top of every image. The relative number of support vectors is
given here also as the last number.)

Some SBM instances were exemplified on a small 50 by 50 image, and it
was shown that the technique indeed obtains sparse representations of images
at a certain scale. However, in our tests, the reduction of information that was
attained is certainly not overwhelming and further research should be conducted
before a definite conclusion about the performance of SBMs can be stated. A
simple suggestion, which could lead to improved sparseness performance is to
increase the parameter C in the functional. In the tests this was set to 1

2 to keep
a close link with standard scale space. A larger value for C leads automatically
to a sparser representation of the underlying signal.

The principal contribution of this article is, however, the formal link between
two interesting techniques: scale space and support vector machines. This link
could now be further exploited and more advanced regularization approaches
may be considered.

Our future research will focus on developing a formulation that gives a sparse
representation while taking all scales into account simultaneously and not merely
one scale at a time. This may, in combination with different types of loss func-
tions, lead to a robust form of scale selection in combination with blob detection
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Fig. 4. In black are the positions that contain a support vector of the SBMs. The last
number on top of every image gives the relative area of the image that is black, i.e., it
gives the relative number of support vectors.

[13]. In addition to this, representations of higher order features may be incorpo-
rated, i.e., not only blobs, which makes a more closer connection to the work in,
for example, [12] (see also Section 1) in which several receptive field weighting
function are to be chosen in such a manner to represent the image in an optimal
way. In this, also anisotropic forms of SBMs may be of interest.
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