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Abstract. We investigate the camera geometry of lines parallel in the
world. In particular, we formalize the known rotational constraints and
add new linear constraints on camera position. The constraints on camera
position do not require the cameras to be viewing the same lines, thus
providing applications for occluded scenes and calibration of cameras for
which fields of view do not intersect. The constraints can also be viewed
as constraints of camera geometry with planar patch coordinate systems,
and provide a way to investigate texture in a deeper way than has been
done to date.

1 Introduction

The geometry of parallel lines has been used extensively in computer vision, but
to our knowledge only by way of the plane at infinity using the computation
of vanishing points. The two main applications are calibration and shape from
texture, and both are based on the principle that the vanishing point of a set
of parallel lines is not affected by translation, as it lies on the plane at infinity.
While these are important applications, there are geometric relations on sets
of parallel lines embedded in a planar patch, which take into account distances
between the lines rather than just their vanishing point.

Vanishing points have been used by many in computer vision, mostly for the
determination of rotation and calibration for which they are particularly well
suited, since they are unaffected by translation. There are numerous examples
[1,3]. These methods have not looked further into the lines of which the vanishing
points are composed, but it is helpful to look at the individual lines.

Lines have been used extensively in computer vision [5,7,4], but in general
have not been as prominent as points, probably because they are difficult to
work with. However, the use of of Plücker coordinates [6,2,8] can make many
reconstruction and constraint derivations easier. In this paper we introduce an
extension of the Plücker coordinates for lines in order to investigate lines em-
bedded in a plane.
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2 Notation and Reconstruction

Our use of parallelism restricts our world points to be represented by 3-vectors
P. We use homogeneous coordinates for image points p, so they are also 3-
vectors. Image lines are also represented by homogeneous 3-vectors �. If a point
p is on a line �, then their coordinates are perpendicular pT� = 0. We use the
general linear B = KR to encapsulate a rotation followed by a calibration. For
a matrix B, we use B−T to denote the inverse transpose of that matrix. Points
and lines that we actually measure in an image we denote by p̂ and �̂. Note
that if p̂ = B(�1×�2), then p̂ = (B−T�1)×(B−T�2). For clarity, in equations
we often use p and �, which denote the calibrated and derotated coordinates for
those points and lines.

2.1 Lines

We use the Plücker coordinate system for world lines, which is particularly well
suited for rigid motions of lines.

Definition 1. A world line L is the set of all the points P ∈ R
3 such that

P = (1 − λ)Q1 + λQ2 for two points Qi, and some scalar λ. The Plücker
coordinates of this line are L =

[ Ld

Lm

]
, where:

Ld = Q2 − Q1 direction of L (1)
Lm = Ld×P moment of L (2)

If we have a line L and a camera (B,T), then the image line associated with
L is

�̂ = B−T(Lm − T×Ld) (3)

where �̂ is perpendicular to the plane containing the line in the image. If B is the
rotation/calibration matrix for a point P, then B−T is the rotation/calibration
matrix for a line L.

Lines are easier to reconstruct than points because the reconstruction always
exists. It is easily proved that:

Proposition 1. If we have a line L in space which projects to two image lines
�̂1 and �̂2 in distinct cameras (B1,T1), and (B2,T2), then we can calculate the
coordinates for L if |�1×�2| �= 0, if �i = BT

i �̂i:

L =
[

�1×�2
�1TT

2�2 − �2TT
1�1

]
(4)

It is possible that the cross product above will be zero. In this case the line exists
in the plane at infinity.
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2.2 Singly Textured Planes

We introduce a new object to computer vision to encapsulate a set of parallel
lines embedded in a plane. We motivate our definition as follows. Consider one
line from the set of equally spaced lines in the plane, call it L0. We may represent
this line using Plücker coordinates as L0 =

[ Ld

Lm

]
. We take Q0 to be a point on

L0, and the point Qx = Q0 + xd to be on the line at distance x in the texture
for some direction d. We can easily show that:

Ld×Q0 = Lm,0 (5)

so that to get Lm,n

Lm,n = Ld×Qx (6)
= Ld×Q0 + xLd×d (7)
= Lm + xLλ (8)

where Lλ = Ld×d. Note that since both Ld and d are vectors which lie inside
the plane, we must have that Lλ is normal to the textured plane. This leads us
to the following definition, as shown in figure 1

Definition 2. A singly textured plane H is a set of lines, equally spaced,
embedded in a world plane. We give the textured plane coordinates

H =




Ld

Lm

Lλ



 (9)

with LT
dLm = 0 and LT

dLλ = 0. The coordinates of each line in the plane, indexed
by n are:

Ln =
[

Ld

Lm + nLλ

]
(10)

Our constraints are all based on intersection conditions between two textured
planes.

Fact 1. If we have two textured planes H1 and H2, then they lie on the same
world plane if and only if:

LT
d,1Lm,2 + LT

d,2Lm,1 = 0 (11)

and

LT
d,1Lλ,2 = 0 LT

d,2Lλ,1 = 0 (12)

We now turn to the reconstruction of a textured plane from image lines in
four cameras. This reconstruction is non-intuitive in a sense because we do not
require that the cameras be looking at the same lines. Each of the four cameras
can look at a different line. We only require that we know which line has been
imaged, that is, its index n. Given these four lines we can reconstruct a textured
plane, as in figure 2, with the following multilinear equation.
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Fig. 1. The Parameters of a Textured Plane

Fig. 2. Reconstructing a Textured Plane

Fact 2. If we have a textured plane H which is imaged by four cameras into
image lines �̂i, and we know that our cameras have parameters (Bi,Ti), and
further, we know that the image lines have indices ni, then we may reconstruct
the textured plane as:

H =




Ld

Lm

Lλ



 =
∑

[i1 i2 i3 i4]∈perm+(1 2 3 4)




ni1ni2 |�i3 ×�i4 |(�i1 ×�i2)
2ni1ni2 |�i1 ×�i2 |�i3T

T
i4

�i4

2ni1 |�i2 ×�i3 |�i1T
T
i4

�i4



 (13)

Note that |·| is the signed magnitude, and since the coordinates are homogeneous,
it does not matter which sign is chosen. The same result could be obtained by
defining

|�i×�j | = |�j v �i| (14)

where v is any arbitrary vector not in the plane of �i×�j.

The proof of this is in the supplement.
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3 Rotational Constraints

If we have three image lines �̂i, each of which are images of one of a set of parallel
world lines, then using two of the cameras we may reconstruct the direction Ld

of the world lines. From the construction of the Plücker lines, we know that any
line with direction Ld must have moment vector perpendicular to Ld. Putting
these two facts together, we obtain

Proposition 2. If we have one, two, or three parallel world lines, and three
cameras with rotation/calibration matrices Bi, then if these three cameras view
images of one of our world lines as �̂i, with the lines not necessarily the same in
all cameras, then we obtain the prismatic line constraint.

�̂
T

2B2(BT
1 �̂1×BT

3 �̂3) = 0 (15)

If we identify cameras 2 and 1 by setting B2 = B1, which corresponds to the
case where both �1 and �2 are taken from the same camera. If these are different
parallel lines, then we obtain the vanishing point constraint, noted by many, for
example [9]

Proposition 3. We have two or three parallel world lines, and two cameras
with rotation/calibration matrices Bi. If camera 1 views image lines �̂1 and �̂3

and camera 2 views image line �̂2 we obtain the vanishing point constraint.

�̂
T

2B2B
−1
1 (�̂1×�̂3) = 0 (16)

�̂
T

2B2B
−1
1 p̂ = 0 (17)

The quantity p̂ = �̂1×�̂3 is called a vanishing point, and it is the point through
which all images of world lines of direction Ld will pass. The constraint says that
if we have a vanishing point in one image and a line in another image which we
know is parallel to the lines in the first camera, then we have a constraint on
the Bi.

If we further identify cameras 2 and 1, then given an image of a set of parallel
lines in one camera, we know that we must still have a zero triple product.

Proposition 4. We have three parallel world lines, and a camera with rota-
tion/calibration nonlinear function B : R

3 → R
3. Given images of these three

world lines �̂i, i ∈ [1, . . . , 3]. We obtain the the vanishing point existence
constraint.

|BT�̂1 BT�̂2 BT�̂3| = 0 (18)

This last constraint means nothing if B is a linear function, since the constraint
would be trivally satisfied. However, in the case where there is some nonlinear
distortion in the projection equation, there will be a constraint on B, so we
may say that the prismatic line constraint operates on 1, 2, or 3 cameras. We
next go over the standard multilinear constraints to show how the prismatic line
constraint relates to them.
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4 Translational Constraints

It is as simple to form the texture constraints as it was to form the previous
constraint. There is a line texture constraint a point texture constraint, and a
mixed constraint. Keep in mind that all these constraints can be applied to fewer
cameras by identifying the camera positions associated with various subsets of
lines.

The first is the five camera constraint, which we call the harmonic trifocal,
as shown in figure 3

Fig. 3. The Harmonic Trifocal Constraint operates on five image lines

Fact 3. If we have five cameras (Bi,Ti), and measure five lines �̂i, which have
indices ni from a textured plane H. We may form the �i using the �̂i and the Bi

and have the following constraint:

0 =
∑

[i1..i5]∈P+
[1..5]

ni1ni2(�i1 ×�i2)
T(�i3 ×�i4)T

T
i5�i5 (19)

Where perm+ denote the even permutations.

Proof. Using fact 2, we may reconstruct the textured plane to obtain the pa-
rameters of the textured plane H using the lines one through four. Using this
reconstruction, we can find the fifth image line as:

�5 = Lm + n5Lλ − T5×Ld (20)

If p5 is a point on �5, we know that p5 is perpendicular to �5, so that pT
5�5 = 0.

We can use this with the above equation to formulate the constraint. Note that
since Ld is perpendicular to �5 that Ld is a point on the line �5, but if we set
p = Ld, all of the right hand side terms disappear and we have no constraint.
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Therefore we know that there is only one equation in our constraint, and we use
p5 = Ld×�5. We can derive

0 =(Ld×�5)T(Lm + n5Lλ − T5×Ld) (21)
=|Ld �5 Lm| + n5|Ld �5 Lλ| − (Ld×�5)T(T5×Ld) (22)

we use vector algebra and the fact that LT
d�5 = 0 to obtain −LT

dLdTT�5 for the
last term

=
∑

[j1..j4]∈P+
[1..4]

[2nj1nj2(�j1 ×�j2)
T(�5×�j3)T

T
j4�j4 (23)

+ 2nj1n5(�j2 ×�j3)
T(�5×�j1)T

T
j4�j4 (24)

+ nj1nj2(�j3 ×�j4)
T(�j1 ×�j2)T

T
5�5 (25)

which we can expand to

=
∑

[j1..j4]∈P+
[1..4]

[nj1nj2(�j1 ×�j2)
T(�5×�j3)T

T
j4�j4 (26)

+ nj2nj1(�j2 ×�j1)
T(�j3 ×�5)TT

j4�j4 (27)

+ n5nj1(�5×�j1)
T(�j2 ×�j3)T

T
j4�j4 (28)

+ nj1n5(�j1 ×�5)T(�j3 ×�j2)T
T
j4�j4 (29)

+ nj1nj2(�j1 ×�j2)
T(�j3 ×�j4)T

T
5�5] (30)

and this is equal to the desiderata.

Next is the mixed constraint, which operates on six cameras, as in figure 4.

Fig. 4. The Hexalinear Constraint operates on six image lines
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Fact 4. If we have six cameras (Bi,Ti) which measure six lines �̂i on a doubly
textured plane, and the first four lines measure one texture with indices ni and
the last four lines measure the other texture with unknown indices, then we may
form the following constraint:

0 =
∑

[i1..i4]∈P+
[1..4]

ni1 |�5 �6 �i1 ||�i2 ×�i3 |Ti4�i4 (31)

Proof. We may reconstruct the Lλ,1 of the singly textured plane from the first
four cameras. We may reconstruct the Ld,2 of the world line using the last two
cameras. Using fact 1 and 2 we may easily obtain the equation.

Last is the harmonic epipolar constraint, which operates on eight cameras,
as in figure 5

Fig. 5. The Harmonic Epipolar Constraint operates on eight image lines

Fact 5. If we have eight cameras (Bi,Ti) which measure eight lines �̂i on a
doubly textured plane, and the first four lines measure one texture with indices
ni i ∈ [1..4] and the last four lines measure the other texture with indices ni

i ∈ [5..8], then we may form the following constraint:

0 =
∑

[i1..i8]∈sP+

ni1ni2ni5ni6 |�i3 ×�i4 | · |�i5 ×�i6 | · |�i1 �i2 �i7 |�T
i8Ti8 (32)

where sP+ indicates the even permutations among the first four and the last four
indices, plus switching the first and last four sets of indices wholesale.

5 Applications

While these constraints seem strange, they are also useful and can solve prob-
lems in computer vision not accesible with current methods. We present a few
examples here.
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5.1 Rotation from Oriented Textures

If we have three cameras, the rotational constraints can be used even if we can’t
find vanishing points, or even lines. If we use a simple autocorrelation metric on
projected textures of wood as in figure 6, we can get a line direction, which is
enough to input into our prismatic line constraint if we have three cameras.

Fig. 6. A simple autocorrelation can measure orientation for use with the harmonic
directionality constraint

5.2 Calibration

With the advent of the use of many cameras, the problem of calibrating them
has come to the fore. More and more camera system whose cameras do not
necessarily share fields of view are being created. For cameras which do not share
fields of view, it is certainly possible to calibrate them rotationally together using
bundles of parallel lines, and using the prismatic line constraint. This has been
known.

However, the new constraints, particularly the harmonic epipolar constraint,
allow us to calibrate translationally by showing a grid of boxes, with a couple of
boxes singled out by a different appearance. This allows us to input the known
line indices into our harmonic epipolar equation which then results in the com-
putation of translation for sufficiently numerous and different views of the boxes
in the plane.

5.3 Textures and Correspondence

One of the more interesting applications for these equations lies in the analysis of
the correspondence problem together with our camera geometry. In order obtain
a deeper insight into the correspondence problem, we need to relax our idea of
correspondence. For if we have corresponding points as input there is clearly no
reason to develop constraints on textures. Often obtaining these correspondences
is difficult, so we break up the problem.
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If we have two images, we say that two image regions are in patch cor-
respondence if they are images of the same planar patch with some uniform
texture property. For instance, in figure 7, the amorphous patches of the two
buildings are in patch correspondence, even though we have not corresponded
individual points. We show how to use this idea as a basis for hard geometry
constraints.

Fig. 7. The amorphous regions are in patch correspondence

Somehow, the intuitive notion of the wavelength in some signal has to enter
the consideration. If you have a collection of textured planes, and these planes
do not contain any wavelength greater than λ, then it is clear that if our camera
positions are not known to accuracy at least less than λ, then it is impossible to
compute any sort of correspondence. On the other hand, if we know our camera
positions to within α << λ, and we have many textures with wavelengths greater
than λ, then it should somehow be possible to match with a high degree of
probability. The smaller α is, the higher the probability that we find a match.

The above intuitive notions strongly suggest that the next step in making 3D
models is to formulate a feedback mechanism. Bundle adjustment is some form
of feedback, but it doesn’t utilize any new measurements. Somehow, the feedback
mechanism should work in a way that better measurements are introduced in
the process.

We can use our new constraints in the following way, with some admittedly
broad assumptions. We assume that we have obtained a reasonable estimate of
the camera calibration and rotation. We also assume that we have knowledge
of our cameras positions to within α. If we know that our cameras are looking
at a regular texture, then we can measure the positions of some equally spaced
lines with distance λ >> α. Since we know these lines are equally spaced, then
we know that our line indices n = mλ, for some integer m. So we can use our
approximate camera positions the knowledge that m is an integer to form a
search over the set of integers for the m that give us the least error. These will
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probably be the correct m. We can then use these m to obtain more accurate
translational positions. This feedback loop can continue from larger to smaller
wavelengths.

In order to use these constraints we need to be able to demonstrate that we
can find lines within textures. While in this paper we cannot lay out an entire
theory on finding lines (or peaks in the Fourier domain), we will show a few
examples where we can address textures using geometric constraints where the
standard multilinear constraints would have difficulty.

Obviously there are some textures which actually contain lines, such as in
figure 8. However, there are other textures for which the lines are not readily
apparent but in which we may find “virtual lines” corresponding to strong fre-
quency components, such as in figure 9. We posit that a singly textured plane
corresponds to a particular peak in frequency space, if such a peak exists. A
real texture may have many peaks in frequency space, some of which are more
prominent than others. If we have a few prominent peaks, this means that there
is a strong regular repetition in the texture. This is just the situations where
standard correspondence methods would have trouble. In this way our method
complements the standard structure from motion methods.

Fig. 8. Lines are easy to find in this texture

Fig. 9. We can still find the same lines in affinely transformed textures

We showed above two textures for which it is relatively easy to find lines. We
may apply our multilinear constraints to the lines in these textures.

Many textures are not as regular as the above textures. In this case, we
need the entire patch to be visible in all cameras for the peaks to correspond to
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each other. But if the entire patch is visible from various cameras, we may find
corresponding peaks.

But what if we have textures for which lines are not at all apparent, such
as the beans in figure 10? This picture still has some frequency peaks, which
generate the lines shown in that picture. Indeed, even if we affinely transform
the image of the beans we may still find the same set of lines, as in figure 10.
This allows us to use our constraints on the position of plane containing the
beans and the position of the cameras.

Fig. 10. Even with random textures the lines still exist if we have the whole patch
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