
Parallel Variational Motion Estimation by Domain
Decomposition and Cluster Computing

Timo Kohlberger1, Christoph Schnörr1, Andrés Bruhn2, and Joachim Weickert2

1 University of Mannheim, Dept. of Mathematics and Computer Science,
D-68131 Mannheim, Germany

{kohlberger,schnoerr}@uni-mannheim.de
http://www.cvgpr.uni-mannheim.de

2 Saarland University, Dept. of Mathematics and Computer Science,
D-66041 Saarbrücken, Germany

{bruhn,weickert}@mia.uni-saarland.de
http://www.mia.uni-saarland.de

Abstract. We present an approach to parallel variational optical flow computation
on standard hardware by domain decomposition. Using an arbitrary partition of
the image plane into rectangular subdomains, the global solution to the variational
approach is obtained by iteratively combining local solutions which can be effi-
ciently computed in parallel by separate multi-grid iterations for each subdomain.
The approach is particularly suited for implementations on PC-clusters because
inter-process communication between subdomains (i.e. processors) is minimized
by restricting the exchange of data to a lower-dimensional interface. By applying
a dedicated interface preconditioner, the necessary number of iterations between
subdomains to achieve a fixed error is bounded independently of the number of
subdomains. Our approach provides a major step towards real-time 2D image pro-
cessing using off-the-shelf PC-hardware and facilitates the efficient application of
variational approaches to large-scale image processing problems.

1 Introduction

1.1 Overview and Motivation

Motion estimation in terms of optical flow [3,25] is an important prerequisite for many
applications of computer vision including surveillance, robot navigation, and dynamic
event recognition. Since real-time computation is required in many cases, much work has
been done on parallel implementations of local motion estimation schemes (differential-,
correlation-, or phase-based methods) [31,14]).

In contrast to local estimation schemes, less work has been done on the parallelization
of non-local variational schemes for motion estimation, despite considerable progress
during the last years related to robustness, non-linear regularization schemes, preserva-
tion of motion boundaries, and corresponding successful applications [27,26,13,1,1,21,
5,28,20,18,4,15,23,32,11,24]. It is precisely the non-local nature of these approaches
which on the one hand allows to impose structural constraints on motion fields during
estimation but, on the other hand, hampers a straightforward parallel implementation by
simply partitioning the image domain into disjoint subdomains (see Figure 1).

T. Pajdla and J. Matas (Eds.): ECCV 2004, LNCS 3024, pp. 205–216, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

http://www.cvgpr.uni-mannheim.de
http://www.mia.uni-saarland.de

206 T. Kohlberger et al.

ΩΓ

Ωi

Fig. 1. Top: A partition of the image domain Ω into subdomains {Ωi} and a lower-dimensional
interface Γ . Bottom, left: Motion field estimated with a non-local variational approach. Bottom,
center: Naive parallelization by estimating motion independently in each subdomain leads to
boundary effects (a coarse 3 × 3 partition was used for better visibility). Bottom, right: The
l2-error caused by naive parallelization as grayvalue plot. The global relative error is 11.3%. The
local error near boundaries of subdomains is much higher!

This motivates to investigate computational approaches for the parallelization of
variational motion estimation by means of domain decompositions as shown in Figure
1, top. Ideally, any of the approaches cited above should be applicable independently in
each subdomain. In addition to that, however, a mechanism is needed which fits together
the subdomain solutions so as to yield the same global solution which is obtained when
applying the respective approach in the usual non-parallel way to the entire image domain
Ω. The investigation of such a scheme is the objective of this paper.

1.2 Contribution and Organization

We present an approach to the parallelization of variational optical flow computation
which fulfils the following requirements:

(i) Suitability for the implementation on PC-clusters through the minimization of inter-
process communication,

(ii) use of a mathematical framework which allows for applications to a large class of
variational models.

In order to meet requirement (ii), our approach draws upon the general mathematical
theory on domain decomposition in connection with the solution of partial differen-
tial equations [9,30,29]. Requirement (i) addresses a major source for degrading the
performance of message-passing based parallel architectures. To this end, we focus on

Parallel Variational Motion Estimation 207

the subclass of substructuring methods because inter-process communication is mini-
mized by restricting the exchange of data to a lower-dimensional interface between the
subdomains.

After sketching a prototypical variational approach to motion estimation in section 2,
we develope a corresponding domain decomposition framework in section 3. In section 4,
we describe features of our parallel implementation, the crucial design of an interface-
preconditioner, and report the influence of both preconditioning and the number of
subdomains on the convergence rate. Finally, we report measurements for experiments
on a PC-cluster with nodes in section 5.

2 Variational Motion Estimation

In this section, we sketch the prototypical variational approach of Horn and Schunck
[19] and its discretization as a basis for domain decomposition. Note that our formula-
tion suffiently abstracts for this particular approach. As a consequence, the framework
developed in section 3 can be applied to more general variational approaches to motion
estimation, as discussed in section 1.1.

2.1 Variational Problem

Throughout this section, g(x) = g(x1, x2) is the grayvalue function, ∇ = (∂x1 , ∂x2)
�

denotes the gradient with respect to spatial variables, ∂t the partial derivative with respect
to time, and u = (u1, u2)�, v = (v1, v2)� denote vector fields in the linear space
V = H1(Ω) × H1.

With this notational convention, the variational problem to be solved reads [19]:

J(u) = inf
v∈V

∫
Ω

{
(∇g · v + ∂tg)2 + λ

(|∇v1|2 + |∇v2|2
)}

dx (1)

Vanishing of the first variation of the functional J in (1) yields the variational equa-
tion:

a(u, v) = f(v) , ∀v ∈ V , (2)

where

a(u, v) =
∫

Ω

{
(∇g · u)(∇g · v) + λ(∇u1 · ∇v1 + ∇u2 · ∇v2)

}
dx (3)

f(v) = −
∫

Ω

∂tg∇g · vdx (4)

Under weak conditions with respect to the image data g (i.e. ∂x1g and ∂x2g have to
be independent in the L2-sense, there exists a constant c > 0 such that:

a(v, v) ≥ c‖v‖2
V , ∀v ∈ V (5)

208 T. Kohlberger et al.

As a consequence, J in (1) is strictly convex and its global minimum u is the unique
solution to the variational equation (2). Partially integrating in (2), we derive the system
of Euler-Lagrange equations:

Lu = f in Ω , ∂nu = 0 on ∂Ω , (6)

where

Lu = −λ∆u + (∇g · u)∇g

2.2 Discretization

To approximate the vector field u numerically, equation (2) is discretized by piecewise
linear finite elements over the triangulated section Ω of the image plane [10]. We arrange
the vectors of nodal variables u1, u2 corresponding to the finite element discretizations
of u1(x), u2(x) as follows1: u = (u�

1 , u�
2)�. Taking into consideration the symmetry

of the bilinear form (3), this induces the following block structure of the discretized
version Au = f of (2): (

A11 A12
A21 A22

)(
u1
u2

)
=
(

f1
f2

)
, (7)

where ∀i, j = 1, . . . , N :

(A11)ij = a
(
(φi, 0)�, (φj , 0)�)

(A12)ij = a
(
(φi, 0)�, (0, φj)�)

(A21)ij = (A12)ji

(A22)ij = a
(
(0, φi)�, (0, φj)�)

(f1)i = f
(
(φi, 0)�)

(f2)i = f
(
(0, φi)�)

Here, φk denotes the linear basis function corresponding to the nodal variable (u1)k or
(u2)k, respectively.

3 Domain Decomposition

3.1 Two Subdomains

Let Ω1 ∪ Ω2 be a partition of Ω with a common boundary Γ = Ω1 ∩ Ω2. We denote
the corresponding function spaces with V 1, V 2. In the following, superscripts refer to
subdomains.

We wish to represent u from (6) by two functions u1 ∈ V 1, u2 ∈ V 2 which are
computed by solving two related problems in Ω1, Ω2, respectively. The relation:

u(x) =

{
u1(x) x ∈ Ω1

u2(x) x ∈ Ω2 (8)

1 With slight abuse of notation, we use the same symbols u1, u2, for simplicity.

Parallel Variational Motion Estimation 209

obviously holds iff the following is true:

Lu1 = f1 in Ω1 ∂n1u1 = 0 on ∂Ω1 ∩ ∂Ω (9)

Lu2 = f2 in Ω2 ∂n2u2 = 0 on ∂Ω2 ∩ ∂Ω (10)

u1 = u2 on Γ (11)

∂n1u1 = −∂n2u2 on Γ (12)

We observe that (6) cannot simply be solved by separately computing u1 and u2 in each
domain Ω1, Ω2 (see also Fig. 1!) because the natural boundary conditions have to be
changed on Γ , due to (11) and (12).

As a consequence, in order to solve the system of equations (9)-(12), we equate the
restriction to the interface Γ of the two solutions u1, u2 to (9) and (10), due to equation
(11), uΓ := u1|Γ = u2|Γ , and substitute uΓ into equation (12) (see Eqn. (19) below).

To this end, we solve

Lu = f in Ω , ∂nu = 0 on ∂Ω \ Γ , u = uΓ on Γ (13)

and decompose u into two functions,

u = u0 + uf ,

which are the unique solutions to the following problems:

Lu0 = 0 in Ω , ∂nu0 = 0 on ∂Ω \ Γ , u0 = uΓ on Γ (14)

Luf = f in Ω , ∂nuf = 0 on ∂Ω \ Γ , uf = 0 on Γ (15)

Clearly, the restriction of uf to the interface Γ is zero, uf |Γ = 0, and:

u|Γ = u0|Γ (16)

∂nu = ∂nu0 + ∂nuf (17)

The definition of the Steklov-Poincaré operator S is:

S : uΓ → ∂nu0|Γ (18)

Applying this mapping to the solutions u1, u2 of equations (9) and (10) in the domains
Ω1 and Ω2, respectively, equation (12) becomes with uΓ = u1|Γ = u2|Γ due to (11):

(S1 + S2)uΓ + ∂n1u1
f |Γ + ∂n2u2

f |Γ = 0 (19)

It remains to discretize this equation in order to solve for uΓ . This will be done in the
following section.

3.2 Discretizing the Interface Equation

By virtue of definitions (14) and (15) and standard results [2], we obtain in each domain
respective the linear systems:(

Ai
II Ai

IΓ

Ai
ΓI Ai

ΓΓ

)(
(ui

0)I

ui
Γ

)
=
(

0
∂nui

0|Γ
)

, i = 1, 2 (20)

210 T. Kohlberger et al.

and
(

Ai
II Ai

IΓ

Ai
ΓI Ai

ΓΓ

)(
ui

f

0

)
=
(

f i
I

f i
Γ + ∂niui

f |Γ
)

, i = 1, 2 (21)

Due to the system (9)-(12), we have to solve simultaneously (20) and (21) in both
domains. Since ui = ui

0+ui
f , summation of (20) and (21) for each domain, respectively,

gives:

(
Ai

II Ai
IΓ

Ai
ΓI Ai

ΓΓ

)(
ui

I

ui
Γ

)
=
(

f i
I

f i
Γ + ∂niui|Γ

)
, i = 1, 2

We combine these equations into a single system:

A1

II 0 A1
IΓ

0 A2
II A2

IΓ

A1
ΓI A2

ΓI A1
ΓΓ + A2

ΓΓ

u1

I

u2
I

uΓ

 =

 f1

I

f2
I

fΓ + ∂n1u1|Γ + ∂n2u2|Γ

 , (22)

where

fΓ = f1
Γ + f2

Γ .

By solving the first two equations for u1
I , u

2
I and substitution into the third equation of

(22), we conclude that (12) holds iff:

A1
ΓI(A

1
II)

−1(f1
I − A1

IΓ uΓ) + A2
ΓI(A

2
II)

−1(f2
I − A2

IΓ uΓ) + (A1
ΓΓ + A2

ΓΓ)uΓ = fΓ

(23)

This is just the discretized counterpart of (19):

(S1 + S2)uΓ = fΓ − A1
ΓI(A

1
II)

−1f1
I − A2

ΓI(A
2
II)

−1f2
I (24)

SiuΓ = (Ai
ΓΓ − Ai

ΓI(A
i
II)

−1Ai
IΓ)uΓ , i = 1, 2 (25)

Once uΓ is computed by solving (24), u1 and u2 follow from (9), (10) with boundary
values uΓ on the common interface Γ .

3.3 Multiple Domains

Let Ri denote the restriction of the vector of nodal variables uΓ on the interface Γ to
those on Ωi ∩ Γ . Analogously to the case of two domains detailed above, the interface
equation (19) in the case of multiple domains reads:

(∑
i

(Ri)�SiRi

)
uΓ = fΓ −

∑
i

(Ri)�Ai
ΓI(A

i
II)

−1f i
I , ∀i (26)

Note that all computations restricted to subdomains Ωi can be done in parallel!

Parallel Variational Motion Estimation 211

4 Preconditioning, Parallel Implementation, and Convergence
Rates

4.1 Interface Preconditioner

While a fine partition of Ω into a large number of subdomains Ωi leads to small-sized
and “computationally cheap” local problems in each subdomain, the condition number
of the Steklov-Poincaré operator S more and more deteriorates [29]. As a consequence,
preconditioning of the interface equation becomes crucial for an efficient parallel im-
plementation.

Among different but provably optimal (“spectrally equivalent”) families of precon-
ditioners (cf. [9,30]), we examined in particular the Balancing-Neumann-Neumann-
preconditioner (BNN) [22,12]:

P−1
BNN := (I − (R0)�(S0)−1R0S)P−1

NN (I − S(R0)�(S0)−1R0) + (R0)�(S0)−1R0 ,
(27)

where

P−1
NN := D

(∑
i

(Ri)� (Si
)−1

Ri

)
D (28)

This preconditioner applied in connection with conjugate gradient iteration [17] preserve
the symmetry of S in (18) and naturally extends to more general problems related to
three-dimensional image sequences or unstructured geometries and/or triangulations.

Preconditioner P−1
BNN carries out a correction step (denoted as “balancing” in liter-

ature) before and after the application of the Neumann-Neumann-preconditioner (NN)
(28) on a coarse grid given by the partition of the domain Ω into subdomains (see Figure
1).

The restriction operator R0 sums up the weighted values on the boundary of each
subdomain, where the weights are given by the inverse of the number of subdomains
sharing each particular node, i.e.

(R0)ji :=

1
2 : node i is on an edge of Ωj
1
4 : node i is in a vertex of Ωj

0 : else
(29)

Then, S0 is defined by

S0 := R0S(R0)�. (30)

Note that S0 is a dense matrix of small dimension (related to the number of subdo-
mains) which can be efficiently inverted by a standard direct method.

4.2 Parallel Implementation

The preconditioned conjugate gradient iteration for solving the interface equations (19)
and (26) provides several starting points for parallel computation. In the case of the NN-
preconditioner (28) the calculation of (Si)−1, which is done indirectly by calculating

212 T. Kohlberger et al.

(Ai)−1 on the whole subdomain, can be carried out in parallel. Then, the restriction
matrices Ri and (Ri)� amount to scatter-operations and gather-operations from the
point of view of the central process. Furthermore, when calculating S during a conjugate
gradient iteration, parallelization can be employed also. Since S is already written in
decomposed form in (24) and (26) the procedure is done in an analogous manner as
with P−1

NN with the main difference (beneath leaving out the weightening by D) that
here the Dirichlet system (25) has to be solved on each subdomain in order to calculate
the action of Si. Both parallelization procedures are combined in the calculation of the
BNN-preconditioner (27) since both operators are involved here.

The inversion of the coarse operator S0 does not provide any possibilities for par-
allelization since it has been shown to be most practical to calculate S0 numerically in
advance, by carrying out (30), and then computing S−1

0 in the central process by using
again a conjugated gradient method. Since the coarse system is much smaller (the grid is
equivalent to the subdomain partition) the computation time for this inversion has shown
to be very small and can be neglected in practice. Furthermore, the initial computation
of the right hand side in (19) or (26) can be parallelized in an analogous manner.

4.3 Multi-Grid Subdomain Solver

Evaluation of the right hand side in (26) as well as Si and (Si)−1 (cf. (25)) needs in par-
allel for each domain (i.e. processor) the fast solution of the corresponding Dirichlet and
Neumann boundary value problems, respectively. To this end, we implemented a multi-
grid solver. Since domain decomposition methods depend strongly on the performance
and accuracy of their internal solver, we considered the use of multi-grid methods [6,
16]. These methods are well-known to be among the fastest and most accurate numerical
schemes for the solution of systems of linear equations.

In [7,8] such a multi-grid scheme has been proposed for the CLG approach. It
allowed the computation of up to 40 flow fields for sequences of size 200×200 within a
single second. Obviously, an integration of this strategy into our domain decomposition
framework seems desirable. In fact, the only difference between the single and the
multiple domain case is the possible cooccurrence of Neumann and Dirichlet boundary
conditions in the same subdomain. Once this is taken into account, the implementation
is straightforward.

Let us now sketch some technical details of our multi-grid solver. Our strategy is
based on the pointwise coupled Gauß-Seidel method, which is hierarchically applied in
form of a so called full multi-grid strategy. An example of such a full multi-grid scheme
is given in Fig.2. It shows how a coarse version of the original problem is refined step by
step and how correcting multi-grid methods, e.g. W-cycles, are used at each refinement
level for solving. In this context, we chose W-cycles that perform two pointwise cou-
pled Gauß-Seidel iterations in both its pre- and postsmoothing relaxation step. Besides
the traversing strategy, operators have to be defined that handle the information trans-
fer between the grids. For restriction (fine-to-coarse) simple averaging is used, while
prolongation (coarse-to-fine) is performed by means of bilinear interpolation. Finally,
coarser versions of the matrix operator have to be created. To this end we rediscretised
the Euler-Lagrange equations. Such a proceeding is called discretisation coarse grid
approximation (DCA).

Parallel Variational Motion Estimation 213

H”

H’

H

h

COARSE

FINE

FULL MULTIGRID

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����������
���

�������
����������

��
���

�
�
������

���
�������

�
�
��

�
�
������

���
�������

�
�
�

H”→H’ H’→H H→h

c w w c w w c w w

Fig. 2. Example of a full multi-grid implementation for four levels taken from [8]. Vertical solid
lines separate alternating blocks of the two basic strategies : Cascading and correcting multi-grid.
Blocks belonging to the cascading multi-grid strategy are marked with c. Starting from a coarse
scale the original problem is refined step by step. This is visualised by the → symbol. Thereby
the coarser solution serves as an initial approximation for the refined problem. At each refinement
level, a correcting multi-grid solver is used in form of two W-cycles (marked with w). Performing
iterations on the original equation is marked with large black dots, while iterations on residual
equations are marked with smaller ones.

4.4 Convergence Rates

In this section, we examine the influence of both the number of subdomains and the
coarse-grid correction step on the convergence rate of the preconditioned conjugate
gradient iteration.

We first measured the number of outer iterations to reach a relative residual error
||uk

Γ −ûΓ ||S/||ûΓ ||S < 10−3 (ûΓ : exact solution; k: iteration index) of equation (26) for
different number of subdomains. The results are depicted in Figure 3 (1). They clearly
show that the computational costs using the non-balancing preconditioner grow with
the number of subdomains whereas they remain nearly constant for the preconditioner
involving a coarse grid correction step (we neglected the time needed for solving the
coarse small-sized system related to S0). These results are confirmed by Figure 3 (2)
where the residual error for a fixed number of outer PCG-iterations is shown. Thus,
the BNN-preconditioner is much closer to an optimal preconditioner making the con-
vergence rate independent w.r.t. both the pixel meshsize h and the coarse meshsize H
by the number of subdomains. It also follows that the solver using this preconditioner
scales much better with the number of subdomains since the reduced costs for the lo-
cal problems associated with Si by far compensate the additional costs for solving the
coarse-grid system and process communication.

5 Cluster Computing

The algorithm, as described in sections 4.2 and 4.3, was implemented in C/C++ on a
Linux operating system. An implementation of the Message Passing Interface (MPI)
was used for parallelization. Benchmarking was conducted by the MPE library included
in the MPI package. All experiments have been carried out on a dedicated PC-cluster
“HELICS” at the University of Heidelberg, which comprises 256 Dual-Athlon MP

214 T. Kohlberger et al.

100 200 300 400
subdomains

5

10

15

20

25

30

outer iterations

(1)

100 200 300 400
subdomains

0.1

0.2

0.3

0.4

0.5

0.6

0.7

residual error

(2)

Fig. 3. Effect of coarse-grid correction. (1) Number of outer PCG-iterations until the residual
error of system (26) is reduced to ||uk − û||S/||u0 − û||S < 10−3 for coarse mesh sizes H ∈
{126, 84, 63, 42, 28, 21, 18, 14, 12} on a 252 × 252 image using the NN-preconditioner (solid
line) and the BNN-preconditioner (stippled line). The corresponding numbers of subdomains are
{22, 32, 42, 62, 92, 122, 142, 182, 212}. The local systems were solved in each subdomain to a
residual error of 10−5. (2) Relative residual error after 10 outer PCG-iterations using the NN-
preconditioner (solid line) and the BNN-preconditioner (stippled line) for the same set of coarse
mesh sizes. The results clearly show the favourable influence of the coarse grid coupling leading
to a nearly constant error and therefore to a nearly constant number of outer PCG-iterations
when using the balancing preconditioner on 4 × 4 subdomains and above. Hence, the balancing
preconditioner is much closer to an optimal preconditioner making the convergence rate nearly
independent of h and H .

1.4 GHz nodes (i.e. 512 processors in total) connected by the interconnect network
Myrinet2000.

As input data an image pair from a real air-flow sequence provided by the Onera
Labs, Rennes, France, has been taken. The reference solutionxref was calculated without
parallelization by the use of the multi-grid solver (full multi-grid, 5 W-cycles, 3 pre- and
post-relaxation-steps per level) and regularization parameter λ = 0.05 (the intensity
values of the input images where normalized to [0, 1]). The objective was to compare the
total computation time of the non-parallel solving (by multi-grid) on the whole image

Parallel Variational Motion Estimation 215

Table 1. Computation times for different partitions. Compared to a dedicated one-processor
multi-grid implementation, domain-decomposition accelerates the computation for 5 × 5 proces-
sors and above. The speed-up for 7 × 7 compared to the computation time on one processor is
nearly 40 %.

Partition Image Outer Run Comm.
(h./v.) size iter. time time

5122 pixels
2 × 2 5112 1 1550 ms 4 %
3 × 3 5112 1 960 ms 5.6%
5 × 5 5132 3 664 ms 10 %
6 × 6 5112 4 593 ms 10 %
7 × 7 5122 4 516 ms 11 %

plane on one machine to the total computation time of the parallel solving on N × N
processors by using Neumann-Neumann preconditioning. Computation was stopped if
an relative error of 1% had been reached, i.e. ||xi − xref ||2/||xref ||2 < 0.01, xi :
solution after i conjugate gradient-iterations.

Comparison to Single-Processor Multi-grid. The time for calculating the vector field
without parallelization on one processor to the given accuracy was 721 ms (full-multi-
grid, 2 W-cycles and 1 pre- and post-relaxations per level). In Table 1 the computation
times of the parallel substructuring method for different partitions are depicted. The
parameters of the local multi-grid solver where optimized by hand to minimize the
total computation time. The results show that parallelization by the use of Neumann-
Neumann preconditioning starts to improve the computation time from 5×5 processors
and above. The speed-up for 7 × 7 compared to the computation time on one processor
is nearly 40%.

Similar experiments for Balancing Neumann-Neumann preconditioning will be con-
ducted in future.

References

1. P. Anandan. A computational framework and an algorithm for the measurement of visual
motion. Int. J. of Comp. Vision, 2:283–310, 1989.

2. J.P. Aubin. Approximation of Elliptic Boundary-Value Problems. Wiley&Sons, New York,
1972.

3. J.L. Beauchemin, S.S. and Barron. The computation of optical flow. ACM Computing Surveys,
27:433–467, Sept. 1995.

4. M.J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and
piecewise–smooth flow fields. Comp. Vis. Image Underst.: CVIU, 63(1):75–104, 1996.

5. P. Bouthemy and E. Francois. Motion segmentation and qualitative dynamic scene analysis
from an image sequence. Int. J. of Comp. Vision, 10(2):157–182, 1993.

6. A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of
Computation, 31(138):333–390, April 1977.

7. A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr. Real-time optic flow
computation with variational methods. In N. Petkov and M. A. Westberg, editors, Computer
Analysis of Images and Patterns, volume 2756 of Lecture Notes in Computer Science, pages
222–229. Springer, Berlin, 2003.

216 T. Kohlberger et al.

8. A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr. Variational optic flow com-
putation in real-time. Technical Report 89/2003, Dpt. of Mathematics, Saarland University,
Germany, June 2003.

9. T.F. Chan and T.P. Mathew. Domain decomposition algorithms. Acta Numerica, pages 61–
143, 1994.

10. P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland Publ. Comp.,
Amsterdam, 1978.

11. T. Corpetti, E. Mémin, and P. Pérez. Dense estimation of fluid flows. IEEE
Trans. Patt. Anal. Mach. Intell., 24(3):365–380, 2002.

12. M. Dryja and O.B. Widlund. Schwarz methods of neumann-neumann type for three-
dimensional elliptic finite element problems. Comm. Pure Appl. Math., 48:121–155, 1995.

13. W. Enkelmann. Investigation of multigrid algorithms for the estimation of optical flow fields
in image sequences. Comp. Vis. Graph. Imag. Proc., 43:150–177, 1987.

14. M. Fleury, A.F. Clark, and A.C. Downton. Evaluating optical-flow algorithms on a parallel
machine. Image and Vision Comp., 19(3):131–143, 2001.

15. S. Ghosal and P. Vaněk. A fast scalable algorithm for discontinuous optical flow estimation.
IEEE Trans. Patt. Anal. Mach. Intell., 18(2):181–194, 1996.

16. W. Hackbusch. Multigrid Methods and Applications. Springer, New York, 1985.
17. W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag,

1993.
18. F. Heitz, P. Perez, and P. Bouthemy. Multiscale minimization of global energy functions in

some visual recovery problems. Comp. Vis. Image Underst.: CVIU, 59(1):125–134, 1994.
19. B.K.P. Horn and B.G. Schunck. Determining optical flow. Artif. Intell., 17:185–203, 1981.
20. S.H. Hwang and S.U. Lee. A hierarchical optical flow estimation algorithm based on the

interlevel motion smoothness constraint. Patt. Recog., 26(6):939–952, 1993.
21. J. Konrad and E. Dubois. Bayesian estimation of motion vector fields. IEEE

Trans. Patt. Anal. Mach. Intell., 14(9):910–927, 1992.
22. J. Mandel. Balancing domain decomposition. Comm. Numer. Meth. Eng., 9:233–241, 1993.
23. E. Mémin and P. Pérez. Optical flow estimation and object–based segmentation with robust

techniques. IEEE Trans. on Image Proc., 7(5):703–719, 1998.
24. E. Mémin and P. Pérez. Hierarchical estimation and segmentation of dense motion fields.

Int. J. of Comp. Vision, 46(2):129–155, 2002.
25. A. Mitiche and P. Bouthemy. Computation and analysis of image motion: A synopsis of

current problems and methods. Int. J. of Comp. Vision, 19(1):29–55, 1996.
26. H.H. Nagel. On the estimation of optical flow: Relations between different approaches and

some new results. Artif. Intell., 33:299–324, 1987.
27. H.H. Nagel and W. Enkelmann. An investigation of smoothness constraints for the estimation

of displacement vector fields from image sequences. IEEE Trans. Patt. Anal. Mach. Intell.,
8(5):565–593, 1986.

28. P. Nesi. Variational approach to optical flow estimation managing discontinuities. Image and
Vis. Comp., 11(7):419–439, 1993.

29. A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equa-
tions. Oxford Univ. Press, 1999.

30. B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods
for the Solution of Elliptic Partial Differential Equations. Cambridge Univ. Press, 1996.

31. F. Valentinotti, G. Dicaro, and B. Crespi. Real-time parallel computation of disparity and
optical flow using phase difference. Machine Vision and Appl., 9(3):87–96, 1996.

32. J. Weickert and C. Schnörr. A theoretical framework for convex regularizers in pde–based
computation of image motion. Int. J. Computer Vision, 45(3):245–264, 2001.

	Introduction
	Overview and Motivation
	Contribution and Organization

	Variational Motion Estimation
	Variational Problem
	Discretization

	Domain Decomposition
	Two Subdomains
	Discretizing the Interface Equation
	Multiple Domains

	Preconditioning, Parallel Implementation, and Convergence Rates
	Interface Preconditioner
	Parallel Implementation
	Multi-Grid Subdomain Solver
	Convergence Rates

	Cluster Computing

