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Abstract. 3-D non-rigid brain image registration aims at estimating
consistently long-distance and highly nonlinear deformations correspond-
ing to anatomical variability between individuals. A consistent mapping
is expected to preserve the integrity of warped structures and not to be
dependent on the arbitrary choice of a reference image: the estimated
transformation from A to B should be equal to the inverse transforma-
tion from B to A. This paper addresses these two issues in the context
of a hierarchical parametric modeling of the mapping, based on B-spline
functions. The parameters of the model are estimated by minimizing
a symmetric form of the standard sum of squared differences criterion.
Topology preservation is ensured by constraining the Jacobian of the
transformation to remain positive on the whole continuous domain of
the image as a non trivial 3-D extension of a previous work [1] dealing
with the 2-D case. Results on synthetic and real-world data are shown to
illustrate the contribution of preserving topology and using a symmetric
similarity function.

1 Introduction

Deformable – inter-subject – registration of 3-D medical images has received
considerable attention during the last decade, as a key step for the construction
and use of individualized or probabilistic anatomical atlases [2]. In this context,
the goal of non-rigid image registration is to estimate the long-distance and
highly nonlinear deformations corresponding to anatomical variability between
individuals. To ensure the consistency of registration, the mapping should be
continuous one-to-one in order to preserve the integrity of warped structures.
This property, which also named topology preservation, is enforced by the posi-
tivity of the Jacobian of the transformation: it ensures that connected structures
remain connected and that the neighborhood relationships between structures
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is maintained. It also prevents the disappearance or appearance of existing or
new structures. As often noticed, the topology preservation assumption may not
be valid in pathological cases, for example when registering brain images with
tumor appearance or when registering images before and after surgery. Although
in these cases no homeomorphic transformation exists between the two images,
we show here that a topology preserving registration algorithm may be used
with profit to detect topology violation. Another desirable property of the reg-
istration is that the estimated transformation from image A to B should equal
the inverse of the transformation from B to A. When using a standard asym-
metric cost function such as the sum of squared differences (SSD), this property
is seldom fulfilled, and the resulting estimated transformation depends on the
arbitrary choice of the reference image.

In [3], Cachier explains why most non-rigid registration methods are asym-
metric and proposes some inversion-invariant energy to symmetrize the registra-
tion problem. Ashburner also raised the problem of symmetrization in [4], but the
symmetrization concerns only the prior of the Bayesian model and not the simi-
larity criterion. Thirion [5] forces the symmetry of the registration by computing
the direct deformation T12 (from image 1 to image 2), the reverse deformation
T21 (from image 2 to image 1) and the residual deformation R = T21 ◦ T12,
and then by redistributing equally the residual deformation between T12 and
T21 to obtain R � Id. By this way, the bijectivity of the deformation is en-
forced, but preservation of the topology on the continuous image domain is not
ensured. Christensen [6] presents a consistent registration scheme by jointly esti-
mating the forward and reverse transformations, constraining them to be inverse
of each other, and restricting them to preserve topology by constraining them
to obey the laws of continuum mechanics. In this paper, we present an alterna-
tive to Christensen’s non-parametric continuum model, enabling fast symmetric
and topology preserving registration of 3-D images on the continuous image do-
main. A typical warp on 1283 images, with “good” accuracy, is computed in less
than 30 minutes on a standard 2.4 GHz PC workstation. Our approach is based
on a 3-D hierarchical parametric model of the deformation field using B-spline
representations. The parameters of the model are estimated by minimizing a
symmetric form of the SSD criterion, under the constraint of positivity of the
Jacobian. This paper is a non-trivial extension of [1], which addresses the case
of 2-D topology preserving mappings using asymmetric cost functions.

This paper is organized as follows. In section 2, we present the hierarchical
parametric deformation model, and we detail the optimization method used to
minimize a symmetric similarity criterion, subject to the positivity constraint on
the Jacobian. In section 3, we illustrate the contribution of topology preservation
and of a symmetric objective function on synthetic and real-world data.

2 Registration Method

In this section, we first present the parametric hierarchical deformation model.
Then we deal with the mathematical issue of topology preservation and we in-
troduce the symmetric objective function. Finally the optimization strategy for
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minimizing the symmetric objective function under the constraint of topology
preservation is described.

2.1 The Parametric Hierarchical Deformation Model

Let us consider two images Isource (s) and Itarget (s) (s = [x, y, z]t), both defined
on Ω ⊂ R

3. The goal is to find the mapping h (s) = s + u (s) ∈ H, where H is
the Hilbert space of finite energy mappings and u the associated displacement
vector field, so that the warped image Isource (h (s)) is as close as possible to
the target image Itarget (s) in the sense of some similarity criterion E (h). The
vector field u is parameterized at different scales using a decomposition over a
sequence of nested subspaces V0 ⊂ V1 ⊂ ... ⊂ Vl ⊂ Vl+1 ⊂ ... ⊂ H, defining a
multiresolution approximation of u [7,8]. Let Φ be a scaling function. At scale
l (i.e., in space Vl), the displacement field u is parameterized by the vector of
coordinates al = {al

x;i,j,k; al
y;i,j,k; al

z;i,j,k} as:

ul (x, y, z) =




ul
x (x, y, z)

ul
y (x, y, z)

ul
z (x, y, z)


 =




∑
i,j,k

al
x;i,j,k Φl

i,j,k (x, y, z)

∑
i,j,k

al
y;i,j,k Φl

i,j,k (x, y, z)

∑
i,j,k

al
z;i,j,k Φl

i,j,k (x, y, z)




, (1)

where

Φl
i,j,k (x, y, z) = 23l/2 Φ

(
2lx − i

)
Φ
(
2ly − j

)
Φ
(
2lz − k

)
. (2)

Only first degree polynomial spline scaling functions Φ will be addressed in
this paper, but the method may easily be extended to higher degree B-spline
functions [9]. This multiresolution model allows to estimate the deformation field
u in a coarse-to-fine approach. The cost function E (h) is minimized over each
space Vl with respect to parameters al, using as an initialization the parameters
al−1 estimated at the previous scale.

2.2 Topology Preservation Enforcement

As already stated, a desirable property of inter-subject medical image warping
is the preservation of the topology of anatomical structures. By enforcing this
constraint, the space of possible solutions is restricted to deformations satisfying
the real-world property of matter.

Topology preservation is related to the continuity and invertibility of the
transformation, which should be a homeomorphism, i.e. a one-to-one mapping.
This property is enforced by the positivity of the Jacobian of the transformation.
In a more general way, we will enforce the Jacobian to be bracketed between
two user-defined bounds Jm and JM on the whole continuous domain of the
image, i.e.:

∀ [x, y, z]t ∈ Ω J (x, y, z) ∈ [Jm, JM ] . (3)
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In this framework, topology preservation becomes a particular case by setting
Jm = 0 and JM = +∞.

Let Ωl
i,j,k denote the 3-D support of the first degree spline scaling function

Φl
i,j,k (x, y, z). Ωl

i,j,k is partitioned into eight identical subboxes denoted Sl
p,q,r,

where p ∈ {i − 1; i} ; q ∈ {j − 1; j} ; r ∈ {k − 1; k}. The following expression of
the Jacobian may be obtained on each Sl

p,q,r (the reader is referred to [9] for
details):

J(x, y, z, α) = α1 + α2 x + α3 y + α4 z + α5 x2 + α6 x y + α7 x z
+ α8 y2 + α9 y z + α10 z2 + α11 x2 y + α12 x2 z + α13 x y2

+ α14 x y z + α15 x z2 + α16 y2 z + α17 y z2 + α18 x2 y z
+ α19 x y2 z + α20 x y z2,

(4)

where α is a Sl
p,q,r-dependent function of the al’s.

2.3 Definition of the Objective Function

A standard approach for estimating the parameters of the transformation ad-
dressing single modal non-rigid registration is to minimize the sum of squared
differences (SSD) criterion:

E (h) =
∫

Ω

|Itarget (s) − Isource (h(s))|2 ds.

Using this similarity function requires that a reference (target) image be chosen
since both images do not play symmetric roles. The choice of the reference is
arbitrary. As a consequence, the estimated transformation from Itarget to Isource

will not be equal to the inverse of the transformation from Isource to Itarget, which
should be the case ideally. We introduce a modified form of the SSD criterion
where both images play a symmetric role (see also [3]):

Esym (h) =
1
2

∫

Ω

|Itarget (s) − Isource (h(s))|2 ds

+
1
2

∫

Ω

∣∣Itarget

(
h−1(s)

)− Isource (s)
∣∣2 ds.

Thanks to the change of variable v = h−1(s) in the second integral term, and
reminding that ds = |J(v)| dv where J is the Jacobian of h, we derive the
following expression:

Esym (h) =
1
2

∫

Ω

(1 + |J(s)|) |Itarget (s) − Isource (h (s))|2 ds. (5)
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2.4 Optimization Strategy

The parameters al of u are updated blockwise in a Gauss-Seidel scheme: [al
x;i,j,k;

al
y;i,j,k; al

z;i,j,k], which affects only Ωl
i,j,k, are updated jointly. This strategy en-

ables constraint (3) on the Jacobian to be handled at an acceptable computa-
tional cost. Thanks to our spline model, the partial derivatives of E with respect
to the updated parameters may be expressed as:

∂Esym

∂al
w;i,j,k

=
∫

Ω

(1 + |J(s)|) (Isource (h (s)) − Itarget (s))
∂Isource (v)

∂w

∣∣∣∣
v=h(s)

∂hw (s)
∂al

w;i,j,k
+

1
2

∂|J(s)|
∂al

w;i,j,k
|Itarget (s) − Isource (h(s))|2 ds

where w stands for x, y or z. A more intricate expression is also obtained for
the Hessian components (not presented here for the sake of conciseness). There-
fore we implemented two methods of optimization: gradient descent and the
Levenberg-Marquardt algorithm [10].

In the case of a blockwise descent scheme, condition (3) needs only be checked
on the box Ωl

i,j,k since the coordinates to be modified do not affect Ω \ Ωl
i,j,k.

Considering that the blockwise descent takes place along direction d (d is a
coordinate vector defined on the space

[
al

x;n1,n2,n3
al

y;n1,n2,n3
al

z;n1,n2,n3

]
) with

a step δ, the expression of the Jacobian (4) on each Sl
p,q,r may be expressed as:

J(x, y, z, δ) = A(x, y, z)δ + B(x, y, z),

where A(x, y, z) and B(x, y, z) are polynomial forms similar to (4). As a con-
sequence, for each point [x, y, z] ∈ Sl

p,q,r, the Jacobian is an affine function of
δ. Notice that this remains true for higher order spline functions, up to the
difference that A(x, y, z) and B(x, y, z) are higher order polynomials [9].

Let us define:




Jm (δ) = inf
[x,y,z]t∈Sl

p,q,r

J (x, y, z, δ) ,

JM (δ) = sup
[x,y,z]t∈Sl

p,q,r

J (x, y, z, δ) .

It can easily be shown that Jm(δ) is concave and JM (δ) is convex as the infimum
and supremum of a set of affine functions. Moreover the Jacobian values Jm (0)
and JM (0) also match condition (3), since they are the result of a previous
optimization step enforcing this very condition. Hence, the set of admissible
values of δ on box Sl

p,q,r will be bracketed between zero and an upper bound as
shown on Fig. 1. For obtaining the maximum admissible step δ+ along d, we have
to take the minimum of all bounds computed on each Sl

p,q,r. But computing the
bound on Sl

p,q,r at an acceptable computational burden is tricky as the Jacobian
J(x, y, z) has no nice property of convexity and may have several local minima
and maxima. Interval analysis techniques provide a good way of quickly finding a
bracketing of the global minimum and maximum of the Jacobian for a given step
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Fig. 1. The upper bound of δ on Sl
p,q,r is computed as inf{δ+

M , δ+
m}.

δ. So it becomes possible to quickly find a braketing of the maximum admissible
step δ+. We refer the reader to [11] for a general flavor of interval analysis and to
[9] for more details on the algorithms leading to the determination of the upper
bound δ+.

3 Results

In this section we present results on synthetic and real-world data aiming at
illustrating the contribution of topology preservation and of using a symmetric
similarity criterion with the prospect of detecting tumors. An assessment of
registration accuracy is obtained on simulated deformation fields applied on real
images.

3.1 Contribution of Topology Preservation

To highlight the contribution of topology preservation, we consider the warping
of an anatomical atlas, which is one of the most robust methods for perform-
ing automatic segmentation of anatomical structures. Atlas-based segmentation
consists in registering a patient MRI towards a reference MRI, which is itself
associated to a 3-D reference segmentation map (the atlas). The atlas is then
warped on the patient data, using the estimated deformable mapping. On Fig.
2, we present the matching between two 3-D 1283 MR brain images focusing our
attention on segmented ventricles. Without topology preservation, a tearing 1 of
the ventricle can be observed when the estimated deformation field is applied to
the reference atlas segmentation map (Fig. 2(e)). Enforcing the Jacobian to be
positive is a way of preserving the integrity of anatomical structures during the
registration process (Fig. 2(f)).

1 In fact, no tearing may happen with the transformation at hand since this defor-
mation is necessarily continuous. Only folding is involved when topology is violated.
Folding has the same visual effect as tearing.
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(a)

(b)

(c) (e)

(d) (f)

Fig. 2. 3-D non-rigid matching between two different patients and application to atlas-
based ventricle segmentation: (a) source image (atlas); (b) target image (patient); (c)
result of matching without any constraint; (d) result of matching with the positivity
constraint J > 0; (e) warping of the ventricle from the atlas onto the target image (no
positivity constraint); (f) warping of the ventricle from the atlas onto the target image
(with positivity constraint).

3.2 Contribution of a Symmetric Similarity Criterion

The contribution of using a symmetric similarity criterion is illustrated here on
a 3-D toy example involving a plain cube (Fig. 3(b)) and a second cube with a
spherical hole inside (Fig. 3(a)). The goal is to show the behavior of topology
preserving matching using either asymmetric or symmetric similarity criteria,
when registering two volumes which are not topologically equivalent.

Let us first consider the case of registering Fig. 3(a) on Fig. 3(b). Whatever
the cost function chosen (symmetric or asymmetric), the topology preserving
matching algorithm tends to shrink the hole to one point, as illustrated on Fig.
3(c), which shows the effect of the deformation field applied to a synthetic grid.
This shrinking of the hole yields high values of the Jacobian of the estimated
transformation. This seems to be in contradiction with what we expect since a
Jacobian lower (resp. higher) than 1 represents a contraction (resp. dilatation).
But in the formalism presented in this paper, the warped image is obtained as
Iwarped(s) = Isource (h (s)). This means that the small area (ideally a point)
resulting from the shrinking of the hole is sent by h on the whole hole, corre-
sponding indeed to a dilatation.

Now let us consider the reverse case of registering Fig. 3(b) on Fig. 3(a). Us-
ing an asymmetric SSD cost function will lead to the estimation of an identity
transformation Fig. 3(d) as there is no way to decrease the value of the objec-
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(a) (b)

(c) (d) (e)

Fig. 3. 2-D slices of a 3-D toy example illustrating the contribution of using a sym-
metric similarity criterion: (a) plain cube with a spherical hole inside; (b) plain cube;
(c) resulting transformation for a registration of (a) on (b) applied to a synthetic grid
(the same result is observed when using either symmetric or asymmetric similarity cri-
teria); (d) resulting transformation for a registration of (b) on (a) using an asymmetric
similarity criterion; (e) resulting transformation for a registration of (b) on (a) using a
symmetric similarity criterion.

tive function. This is not satisfactory as it means that the topology preserving
registration method would be able to cope with disappearance of structures but
not with appearance of new ones. Moreover this means that registering an image
A on an image B and then registering B on A will lead to two transformations
which are not the inverse of each other. This problem does not appear when
using a symmetric cost function as Esym (5). When registering Fig. 3(b) on Fig.
3(a) using Esym, thanks to the term (1 + |J |), the resulting deformation field
tends to send as few points as possible towards the counterpart black hole, in
order to assign less weight to this area in the similarity criterion . The resulting
transformation (Fig. 3(e)) corresponds indeed to the inverse of the transforma-
tion represented on Fig.3(c). Thus, although there is no difference in the warped
image, the use of a symmetric cost function allows to deal with the appearance of
new structures, with significant consequences on the deformation field. In par-
ticular the Jacobian becomes very small at the location corresponding to the
new appearing structure.

3.3 Application to Tumor Detection

The benefit of symmetric and topology preserving warping is finally illustrated
on a simple simulation of tumor (or lesion) detection. To this end, we introduce a
dark inclusion representing a tumor in a real 3-D MRI (Fig. 4(b)) and we register
it with a healthy brain image from another patient (Fig. 4(a)). When register-
ing Fig. 4(b) on Fig. 4(a), the topology preserving transformation matches the
corresponding brain structures by shrinking the tumor to a small area (ideally
a point) (Fig. 4(c)), yielding high values of the Jacobian of h. By this way,
detecting a tumor amounts to finding particularly high values of the Jacobian.

Let us now consider the reverse case of registering Fig. 4(a) on Fig. 4(b).
Without the positivity constraint on the Jacobian and using the SSD criterion,
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(a)

(b)

(c)

(d)

(e)

Fig. 4. Registration of two topologically different brain images: (a) normal - patient 1
- brain; (b) brain of patient 2 with a simulated tumor; (c) result of matching (b) on
(a) with the symmetric similarity criterion and under the constraint of positivity of
the Jacobian; (d) result of matching (a) on (b) with the symmetric similarity criterion
and without the positivity constraint on the Jacobian; (e) result of matching (a) on (b)
under the constraint of positivity of the Jacobian (same result with both symmetric
and asymmetric similarity criteria).
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(a) (b)

(c) (d)

Fig. 5. Jacobian maps computed from the mapping of topologically different brain
images: (a) Jacobian map (source: Fig. 4(a), target: Fig. 4(b), positive Jacobian con-
straint, asymmetric similarity criterion); (b) thresholded Jacobian map (no tumor is
detected); (c) Jacobian map (source: Fig. 4(a), target: Fig. 4(b), positive Jacobian
constraint, symmetric similarity criterion); (d) thresholded Jacobian map (tumor is
detected).

Fig. 6. Histograms of residual vector field errors computed for nine 1283 estimated
deformation fields after deformable matching at scales L = 2, 3, 4 and 5.

a new structure is created by the warping to match the tumor. This new struc-
ture stems from a tearing of the ventricle (Fig. 4(d)). If the positivity constraint
on the Jacobian is enforced, almost nothing can be seen visually on the warped
image (Fig. 4(e)). With an asymmetric similarity criterion, the Jacobian of the
estimated transformation has no abnormal small values, and consequently noth-
ing can be detected when thresholding the Jacobian map (Fig. 5(b)). On the
contrary, when registering Fig. 4(a) on Fig. 4(b) with the symmetric criterion
Esym, very small values of the Jacobian are obtained in the critical area. In
this case, the tumor can be detected by simply thresholding the Jacobian map
(Fig. 5(d)). Detection of tumor may thus be achieved by registering both images
(whatever the choice of the reference image) with a topology preserving mapping
using a symmetric similarity criterion, and then by finding abnormal (high or
low) values of the Jacobian of the estimated transformation.
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3.4 Validation of 3-D Deformable Matching with Simulated Fields

Validation of non-rigid image registration is an intricate problem due to the
lack of ground truth. We propose to assess the relevance of the registration al-
gorithm by generating a ground truth using simulated transformations applied
to real MRIs. To this end, we generate a transformation hsimulated with large
nonlinear deformations while preserving topology, as described in the appendix.
For a given real MR Image I, we register I (hsimulated (s)) on I (s) with the
Levenberg-Marquardt algorithm using the symmetric SSD criterion and under
the positivity constraint of the Jacobian. The resulting transformation hestimated

should be compared with h−1
simulated. The errors between the “true” transforma-

tion and the estimated one have been evaluated using the standard L2 norm:
L2 (s) =

∥∥hestimated (s) − h−1
simulated (s)

∥∥. Fig. 6 shows the mean histograms of
the error vector field computed for three random deformation fields applied on
three different MR images. The histograms are computed at different scales
(L = 2, 3, 4, 5). As can be seen, at scale 5, more than 96% of the voxels are
affected by a quadratic error lower than one voxel.

4 Conclusion

In this paper, we have described a novel parametric modeling approach, enabling
topology preservation in the registration of 3-D brain images. Topology preser-
vation is enforced on the continuous image domain by the way of a positivity
constraint on the Jacobian of the transformation. The registrations of 3-D 1283

MR brain images are performed2 in less than 30 minutes of CPU time on a 2.4
GHz PC workstation. We have also shown that the introduction of a symmetric
form of the similarity criterion leads to a more consistent registration and paves
the way to tumor detection.
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Appendix: Generation of a Topology Preserving
Transformation

First we randomly generate a set of subboxes Ωi, i ∈ [1..N ], defining a partition
of the image Ω. To generate the partition, we randomly draw a point in the
image thus defining 8 subboxes. Then for each subbox, we reiterate the operation
until the size of each subbox is lower than a user-defined value. On each subbox
Ωi = [xi

m, xi
M ] × [yi

m, yi
M ] × [zi

m, zi
M ], we define a transformation hi as follows:

hi (x, y, z)=




x + ai
xsin π

(
x − xi

m

xi
M − xi

m

)
sin π

(
y − yi

m

yi
M − yi

m

)
sin π

(
z − zi

m

zi
M − zi

m

)

y + ai
ysin π

(
x − xi

m

xi
M − xi

m

)
sin π

(
y − yi

m

yi
M − yi

m

)
sin π

(
z − zi

m

zi
M − zi

m

)

z + ai
zsin π

(
x − xi

m

xi
M − xi

m

)
sin π

(
y − yi

m

yi
M − yi

m

)
sin π

(
z − zi

m

zi
M − zi

m

)




.

The resulting transformation leaves the borders of Ωi invariant, so that preserv-
ing topology on Ω is equivalent to ensuring bijectivity of every hi on each Ωi.
The set of parameters [ai

x; ai
y; ai

z] are randomly generated while observing the
following condition:

(∀s ∈ Ωi Jhi
(s) > 0) ⇔

(
|ai

x|
xi

M − xi
m

+
|ai

y|
yi

M − yi
m

+
|ai

z|
zi
M − zi

m

<
1
π

)
.

Hence h is defined as: ∀s ∈ Ωi h(s) = hi(s). In this scheme, many points in the
image are left invariant by h since the borders of each Ωi are invariant. Following
the same approach, we thus generate a second transformation h′ defined on
another random partition of the image, and then we compose h and h′ to obtain
the final transformation hsimulated. Finally, we compute numerically the inverse
transformation h−1

simulated of hsimulated while we register the warped image on
the original one. The inversion is conducted by estimating for each point an
interval containing its antecedent and by iteratively reducing the size of this
interval until reaching the desired accuracy.
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