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Abstract. Multisensor signal-level image fusion has attracted considerable 
research attention recently. Whereas it is relatively straightforward to obtain a 
fused image, e.g. a simple but crude method is to average the input signals, 
assessing the performance of fusion algorithms is much harder in practice. This 
is particularly true in widespread “fusion for display” applications where 
multisensor images are fused and the resulting image is presented to a human 
operator. As recent studies have shown, the most direct and reliable image 
fusion evaluation method, subjective tests with a representative sample of 
potential users are expensive in terms of both time/effort and equipment 
required. This paper presents an investigation into the application of the Visible 
signal Differences Prediction modelling, to the objective evaluation of the 
performance of fusion algorithms. Thus given a pair of input images and a 
resulting fused image, the Visual Difference Prediction process evaluates the 
probability that a signal difference between each of the inputs and the fused 
image can be detected by the human visual system. The resulting probability 
maps are used to form objective fusion performance metrics and are also 
integrated with more complex fusion performance measures. Experimental 
results indicate that the inclusion of visible differences information in fusion 
assessment yields metrics whose accuracy, with reference to subjective results, 
is superior to that obtained from the state of the art objective fusion 
performance measures. 

1   Introduction 

Multisensor imaging arrays have become reliable sources of information in a growing 
range of applications. However, in order to fully exploit additional information in 
scene representations of different sensors, considerable processing effort is required. 
Furthermore, displaying multiple image modalities to a human operator 
simultaneously leads to confusion and overload, while integrating information across 
a group of users is almost impossible [6]. Signal-level image fusion deals with this 
problem by reducing the physical amount of multisensor (image) data while 
preserving its information content value [1-5]. Whereas it is relatively straightforward 
to obtain a fused image, e.g. simply average the inputs, assessing the performance of 
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fusion algorithms, particularly those intended to produce a visual display is much 
harder in practice. The most reliable and direct method of evaluating fusion for 
display are subjective tests in which audiences of intended users evaluate fused 
images under tightly controlled conditions either by comparing them to each other or 
by performing specific visually oriented tasks. Subject responses or task performance 
are logged and need to be processed further to obtain a meaningful performance 
evaluation making the whole process expensive both in terms of time, effort and 
equipment required [5-8]. Alternatively objective fusion evaluation metrics require no 
display equipment or complex organisation of an audience and their advantage is 
obvious in terms of effort and time expended on the evaluation process. 
Implementation of such algorithms in computer code and simulation experiments 
reduces the assessment time from days or weeks to often a few minutes. A significant 
advantage is also the ability to use objective metrics within the process of fusion 
system development. Hence a fully computational evaluation metric is able to provide 
irreplaceable performance change information and thus drive, for example, the 
process of fusion system parameter optimization in a way that is impossible to 
achieve using human subjects and complex visual testing procedures. 

So far, only a limited number of relatively application dependent objective image 
fusion performance metrics has been published in the literature [3,4,9,10,12]. Target 
signature consistency as an evaluation criterion for detection/recognition applications 
is proposed in [10]. The idea of comparing the fused image to an “ideally” fused 
image and estimating performance from their difference was used in [3,4]. In both 
cases images with different focus points were fused manually (cut and paste) to 
produce the ideal fusion reference. In general however, this method is not generally 
applicable as in the majority of fusion applications the ideal fused image is “ill” 
defined and cannot be obtained manually [3,4]. Meanwhile, [2,12] proposed metrics 
based on mutual information for image sequence and still image fusion performance, 
respectively. 

This paper addresses the issue of objectively predicting the results of subjective 
image fusion performance tests using Visible Differences (VD). VD is a concept 
widely used in image fidelity assessment that determines the probability of an 
observer noticing a difference between the appearances of two signals [14]. In the 
context of objective fusion assessment VD probability maps are derived from input 
and fused images and used to form several image fusion metrics. Importantly, VD 
information is also used to gauge the behaviour and the internal processes involved in 
subjective fusion evaluation. In the following, detailed description of the approach is 
provided as well as experimental results of the proposed metrics compared with data 
obtained from real subjective fusion evaluation tests that demonstrate its subjective 
relevance and relative advantage compared to the current state of the art.  

2   Visible Differences Predictor 

The Visual Difference Predictor (VDP) used in the proposed metrics is based on a 
scheme by Daly [14] that describes the visibility near the visual threshold of the 
differences between two versions A and B of an image. Figure 1 shows a block 
diagram of the VDP system that employs a model of the human visual system (HVS) 
and operates the input images A and B. The output of the VDP is a 2-dimensional  
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Fig. 1. Structure of the VDP 

map P, whose elements 0 ≤ Pm,n ≤ 1 indicate the probability of detecting visual 
differences between the two images at every pixel location (m,n). Pm,n=1 indicates that 
differences are suprathreshold and completely detectable whereas Pm,n=0  indicates 
that the difference between the two images at this location can not be detected. Notice 
that the VDP output map does not discriminate between different suprathreshold 
visual distortions, which can be “fully” detected. According to [14], VDP has been 
successfully tested for many types of image distortion including compression 
artefacts, blurring, noise, banding, blocking, etc. 

The HVS model accounts for three main visual sensitivity variations. These are 
modelled by the three sequentially cascaded components shown in Fig. 1, i.e. the 
amplitude nonlinearity, the contrast sensitivity function (CSF) and the detection 
mechanisms. These variations are functions of light intensity, spatial frequency and 
image content respectively. The sensitivity variation with respect to light intensity is 
primarily due to the light adaptive properties of the retina, and it is referred as the 
amplitude nonlinearity of the HVS. The variation in sensitivity with respect to spatial 
frequency is due to the combined effect of the eye optics and neural circuitry, and is 
referred as the contrast sensitivity function (CSF). Finally, the variation in sensitivity 
with image content is due to the post-receptor neural circuitry. This effect is referred 
as masking and is modelled by the detection mechanisms. A detailed description of an 
efficient implementation of the VDP system can be found in [13,14]. 

3   VD Image Fusion Performance Evaluation 

The theoretic goal of signal-level image fusion process is to represent all the visual 
information from a number of images of a scene taken by disparate sensors into a 
single fused image without distortion or loss of information. In practice however, 
displaying all the information in one image is almost impossible and most algorithms 
concentrate on faithfully representing only the most important input information. In 
fusion for display [1-9] systems, this is perceptually important information and the 
fused image should therefore contain all, important input information detectable by an 
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observer. Additionally, the fusion must not result in distortions or other "false" 
information appearing in the fused image. The concept of visible differences can be 
used effectively in fusion performance evaluation through: i) detection of changes in 
the appearance of visual information transferred (fused) from the input into the fused 
image and ii) detection of fusion artefacts appearing in the fused image but not being 
present in the inputs. 

In this context, VD relationships are defined between each of the input images and 
the output fused image (differences that exist between inputs are caused by the 
physical processes of image acquisition and not by the fusion process). Fig. 2 
illustrates these relationships on a real image fusion example where two multisensor 
images (A and B) are fused to produce image F. Probability of visible differences 
maps between A and B, and F: PAF and PBF (middle column) show white where the 
probability of a difference being detected is high. They clearly highlight the effects of 
the information fusion process: areas taken from A are light in PAF and dark in PBF and 
vice versa. 

3.1   Visible Difference Fusion Performance Measures 

The VDP-maps PAF and PBF can be used directly to evaluate fusion. A simple measure 
of fusion performance is the average probability of noticing a difference between the 
inputs and the fused image. If the fusion process is successful, input image 
information will be faithfully represented in the fused image resulting in a small 
probability that observers will notice differences. Fusion systems that produce low 

AF
nmP ,  and BF

nmP ,  values therefore perform well. Thus a VD fusion metric VDF∈[0,1] 

with 1 being ideal fusion and 0 being the “worst” possible fusion performance is 
defined for an M×N image in equation (1): 
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Now, image fusion is a data reduction process and lossless overlay of visual 
information is almost impossible in practice. In recognition of this fact many fusion 
algorithms rely on some form of spatial feature selection to resolve the problem of 
superposition by choosing to faithfully represent, at every location only one of the 
input images. In terms of visible differences, one would expect that at any one 
location a successfully fused image is similar to at least one of the inputs, resulting in 

one of the AF
nmP ,  , BF

nmP , values being small. Accordingly, a VDmin∈[0,1] metric is 

formulated as: 
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Finally, if one is to consider the fact that during subjective fusion evaluation trials the 
observers’ attention is captured by only the most significant differences between the 
input and fused images, there is a rationale to restrict the measurement to such areas 

only. Applying a visual detection threshold Td to AF
nmP ,  and BF

nmP ,  simulates such  
 



384         V. Petrović and C. Xydeas 

 

 

Fig. 2. Visible differences between two input images and the fused image 

behaviour and a Visible Differences Area (VDA) metric can be defined which 
employs only those input image locations that exhibit significant changes between the 
input and fused images, equation (3). Td effectively determines the probability level at 
which image differences are likely to be noticed and thus effect perceived fusion 
performance. Again, VDA∈[0,1], while all three metric scores for the fusion example 
in Fig.2 are VF= 0.12, VDmin= 0.23 and VDA= 0.31. 
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3.2   VD Information in Edge Based Fusion Assessment 

In addition to the above metrics, the concept of visible differences can be applied to 
enrich an existing fusion performance evaluation framework. The QAB/F metric [15] 
evaluates fusion performance by measuring success in preserving input image 
gradient information in the fused image (see Appendix A). The rationale for 
combining the VD and QAB/F evaluation approaches lies in the disparate nature of their 
approaches promising a more comprehensive assessment. Visual differences 
information is combined with QAB/F in two useful ways: i) VDP maps are used within 
the QAB/F framework in a hybrid QVD

 metric and ii) both types of metric are 
independently evaluated and combined a-posteriori. 

VDP takes into account a whole host of factors that influence attention distribution 
and the HVS and is introduced into a hybrid QVD metric by defining the relative 
importance of each pixel in the input images as PAFwA and PBFwB instead of simply wA 
and wB, equation (8). In this manner more importance is assigned to locations that are 
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generally salient (high wA) and exhibit significant changes between the fused and 
input images (high PAF). Consequently fusion performance at these locations has more 
influence on the final fusion performance score. The other, more ad hoc, alternative is 
a simple linear combination (VD+Q) of independently evaluated VD and QAB/F metrics 
through a weighted sum, equation (4) MVD∈{VDF, VDmin, VDA}. Coefficient b∈[0,1] 
determines the relative emphasis of the two metrics on the final score. A higher value 
of b indicates that gradient information (QAB/F) dominates the visual information fusion 
assessment process. 

VD
F/AB M)b1(bQQ −+= . (4) 

4   Results 

The aim of the proposed objective fusion performance metrics is subjective relevance, 
the highest possible level of correspondence with subjective performance scores. This 
is examined using results of eight different subjective fusion assessment tests [5,15]. 
In the tests, groups of images (two inputs and two different fused images), Fig. 3, 
were shown to test participants (observers) who scrutinised them and decided which 
of the two fused images, if any, better represents the input scene. Subject votes were 
aggregated and a preference score∈{0,1} evaluated for each of the fused images (or 
equal preference). In all, subjective preferences for 120 different fused image pairs of 
various scenes (Figs 2,3 and 6), fused using 9 different schemes were recorded. 
Audiences of both expert and non-expert viewers performed the tests in controlled 
standard conditions [6,7-11,16]. A perceptually (subjectively) relevant fusion 
performance metric should be able to predict, with reasonable accuracy, the subjects’ 
preference. 

 

Fig. 3. Input images, a and b, and two different fused images c and d 

4.1   Subjective-Objective Correspondence Evaluation 

In order to measure the subjective relevance of the proposed metrics, fusion 
performance was evaluated for each fused image used in the tests with each metric. 
An objective preference was then recorded for the fused image with the higher score 
in each pair or, if the scores were within 1.5% of each other, an equal preference was 
recorded. Although similarity of 1.5% seems small, it was found to be sufficient due 
to the limited practical range of the values produced by the metrics [15].  



386         V. Petrović and C. Xydeas 

 

From subjective and objective preference scores two distinct correspondence 
measures can be evaluated. The Correct Ranking (CR) measure is the proportion of 
all image pairs in which the subjective and objective ranking of offered fused images 
correspond. A value close to 1 (or 100%) is desirable while the minimum is the 
random guess rate for 3 options of 33%. The relevance measure (r) takes into account 
the relative certainty of the subjective scores. When the subjects are unanimous in 
their choice, subjective preference is 1 and so is the certainty. Alternatively, when 
each option receives an equal number of votes, the subjective preferences and 
certainty are 0.33. Relevance r is thus, the sum of subjective preferences of all the 
images with a higher objective metric score in each pair. The sum is further 
normalised to a range [0,1] between the smallest and largest possible relevance scores 
given by the subjective test results. An r of 1 therefore means that the metric 
predicted the subject’s preferred choice in all image pairs. Globally, compared to CR, 
relevance r places more emphasis on cases where subjects are more unanimous. 

4.2   Objective Metric Optimisation 

Prior to testing, the VDA and VD+Q metrics were optimised with respect to the visual 
detection threshold Td and the linear combination factor b respectively. The disparity 
of the types of images (120 input pairs) used further ensure that the optimisation 
process does not reach a local minima fit for a particular image type or content but a 
truly global optimum that is applicable to any type of input data. This optimisation 
process, besides determining an optimal operating point for each metric, provides a 
useful insight into the nature and robustness of the proposed metrics but also the 
behaviour and criteria used by subjects during fusion evaluation trials. The 
performance of VDA (in terms of r and CR) for various values of Td is illustrated on 
Figure 4a. There is a clear trend in performance that improves as the detection 
threshold increases. For Td>0.9, performance is relatively robust while overall r>0.73 
and CR>0.61. For higher values of Td the metric considers progressively smaller areas 
and at Td=0.95 approximately 43% of the image area is affected by visible changes 
considered in the evaluation. Practically, this means that subjects form their decisions 
by considering relatively small proportions of the displayed images. These areas are 
illustrated on the fusion example from Fig. 3 in Fig. 5. The input images 3a and 3b 
provide two views of an outdoor scene through a visible and an infrared range sensor 
and are fused into two further different versions of the scene 3c and 3d. Image 3c 
suffers from reduced contrast and significant fusion artifacts while image 3d provides 
a much clearer view of the scene. Appropriately, image 3d results in fewer visible 
differences (white pixels) compared to both inputs (Fig.5c and d). A high level of 
relevance (r) for this value of Td (0.95) also indicates that the highlighted areas 
correspond to the areas of importance when subjects evaluate fusion. 

Optimisation of the linear combination metrics, VDF+Q, VDmin+Q and VDA+Q, 
with respect to coefficient b is illustrated in Fig. 4b. All three metrics have a peak in 
performance at b ≈ 0.7. This indicates a greater influence of the QAB/F metric and thus 
the appearance of gradient information in the fused image makes over general 
differences in the signal values they may detect. 
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Fig. 4. Optimisation performance VDA a) and Q+VD metrics b) 

 

Fig. 5. VDPs between images 3a, 3b and 3c (a and b) and 3a, 3b and 3d (c and d) 

4.3   Objective Metric Results 

The proposed objective metrics, as well as reference metrics QAB/F [15] and mutual 
information metric (QZY) of Qu et. al. [12] were tested/compared against the 
described set of subjective test results and yield results quoted in Table 1. The VDF 
and VDmin metrics achieve respectable levels of success with r of 0.74 and 0.736 and 
CR of 61.6% and 60.8% respectively, on a par with the QZY mutual information 
metric. The VDA metric on the other hand performs better (r=0.795 and CR=66.7%) 
proving the hypothesis that the subjects consider only sections, and not the whole of 
the displayed images (as in VDF and VDmin) in deciding which of the offered fused 
images represents better the input information. 

From Table 1 it is also obvious that a purely VD evaluation approach in these three 
metrics gives no improvement over the gradient based QAB/F method. At best (VDA) 
VD metrics correctly rank in 80 out of the 120 fused image pairs (CR=66.7%) while 
QAB/F achieves 87. Performance is improved however, when the two approaches are 
combined. The hybrid QVD metric performs significantly better then the purely VD 
metrics and as well as QAB/F (r=0.829, CR=72.5%). The best performance however, is 
achieved using a linear combination of the two evaluation approaches. All three 
linearly combined metrics, VDF+Q, VDmin+Q and VDA+Q, improve on the QAB/F and 
QVD. VDF+Q is the best, correctly ranking 91 of the 120 pairs (CR=75.8%) and 
achieving a relevance of r=0.869. 
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Table 1. Subjective correspondence of different image fusion performance metrics 

Metric VDP VDmin VDA 
 

QVD 
VDmin 

+ Q VDP+ Q VDA+ Q QAB/F QZY 

r 0.740 0.736 0.795 0.829 0.855 0.869 0.868 0.833 0.742 

CR 61.6% 60.8% 66.7% 72.5% 75.0% 75.8% 75.8% 72.5% 62.5% 

Table 2. Fusion performance with different metrics for fused images in Figs 3 and 6 

Fused 
Image VDF VDmin VDA QVD VDmin+Q VDF+Q VDA+Q QZY QAB/F 

3c 0.16 0.27 0.40 0.53 0.42 0.39 0.49 1.03 0.49 

3d 0.31 0.50 0.64 0.68 0.57 0.51 0.63 0.76 0.60 

6c 0.43 0.82 0.57 0.77 0.78 0.66 0.69 1.79 0.76 

6d 0.36 0.68 0.48 0.73 0.71 0.61 0.65 1.27 0.72 

Example metric scores of the fusion example in Fig.3 are given in Table 2. 
Individual metric scores for the two fused images are given in Table 2. For this 
particular image pair, 27 out of the 28 subjects that took part in the tests opted for the 
image 3d. All the VD and combined metrics successfully predict this result by scoring 
higher for the image 3d. The exception is the QZY metric [12], based on a mutual 
information approach that considers histograms rather than actual image features and 
scores higher for image 3c. Another example, showing the case where fused images 
do not differ so significantly is in Figure 6. Subjects opted 9 to 4 for the fused image 
6c as opposed to 6d with 2 indicating equal preference. The reason is fusion artefacts 
that appear as shadowing effects in image 6d and generally lower contrast compared 
to 6c. These effects are especially noticeable in the channel between the island and the 
peninsula. While VDPs between the fused images and input 6b, 6g and 6h, lend no 
useful information to differentiate between them, the effects of fusion artifacts are 
clearly visible on the VDP image between the fused image 6d and input 6a, see 6f, as 
white blotches indicating areas where differences are visible. In comparison the VDPs 
between fused image 6c and input 6a see 6e, exhibit no such effects. In terms of the 
numerical fusion performance scores all the metrics agree with the subjects in this 
case, see Table 2. 

The results shown in Table 1 and Table 2 indicate that the VD approach to image 
fusion assessment has validity. Although the accuracy of the VD metrics is only 
reasonable, good scores of the hybrid QVD metric prove the usefulness of the VD 
information in highlighting the areas of interest to subjects during fusion assessment. 
The success of its compound importance evaluation algorithm indicates that subjects’ 
attention distribution is guided by saliency in the displayed signal as well as the 
perceived differences in visual features that should be identical (in input and fused 
images). Equally, the improved performance of QVD with respect to the purely VD 
metrics indicates that absolute probabilities of detection of visible differences present 
a poorer measure of perceived information loss to the gradient approach used in QAB/F 
and QVD. Further justification for this view is the optimal operating point of the 
linearly combined metrics at b≈0.7, which indicates that the underlying QAB/F 
framework still provides for the majority of discrimination. At the same time, the VD 
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information provides an essential ingredient to making the overall fusion evaluation 
more accurate. Furthermore, linear combination measures are more robust than the 
individual VD or QAB/F metrics in terms of the sensitivity to parameter values and 
input data types. 

 
 

 

Fig. 6. Input images a and b, fused images c and d, and visible differences between c, d and a: e 
and f; c, d and b: g and f 

5   Conclusions 

This paper presented an investigation into the use of Visible Differences information 
in the objective assessment of image fusion performance. A Visible Differences 
Predictor was employed, on a pixel-by-pixel basis, to determine the probability that a 
human observer would notice a difference between the fused and each of the input 
images. Such probability maps were then integrated into an existing fusion evaluation 
framework or were used to form independent fusion performance metrics. Finally, the 
proposed metrics were tested against results obtained from real subjective fusion 
evaluation trials. It was found that pure VD metrics achieve respectable performance 
but do not improve on the best existing fusion evaluation algorithm. Hybrid measures 
that use both the VD and gradient evaluation approaches simultaneously however 
outperform all existing metrics. Such results clearly warrant further development of 
this ‘hybrid’ evaluation technology not only in the field of image fusion evaluation 
but also the more general field of image quality assessment. In the context of image 
fusion, the proven usefulness and dispersed nature of the VD information provides an 
exciting opportunity for exploration of the next step of fusion evaluation, which 
would itself provide a much deeper insight into different aspects of the image 
information fusion process, that of fusion performance characterisation. 
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Appendix: Gradient Based Fusion Performance  

Objective image fusion performance metric QAB/F [15] associates important visual 
information with gradient information and assesses fusion by evaluating the success 
of gradient information transfer from the inputs to the fused image. Fusion algorithms 
that transfer more input gradient information into the fused image more accurately are 
said to perform better. Specifically, assuming two input images A and B and a 
resulting fused image F, a Sobel edge operator is applied to yield the strength g(n,m) 
and orientation α(n,m) (∈[0,π]) information for each input and fused image pixel. 
Using these parameters, relative strength and orientation “change” factors G and A, 
between each input and the fused image, are derived, e.g.: 
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These factors are the basis of the edge information preservation measure QAF obtained 
by sigmoidal mapping of strength and orientation change factors. This quantity 
models the perceptual loss of input information in the fused image and constants Γg, 
κg, σ g and Γ , κ , σ  determine the exact shape of the sigmoid mappings: 

)e1)(e1(
Q

)G()G(

gAF
n,m

g
AF

gg
AF

g σκσκ
α

−− ++

ΓΓ
= . 

(7) 

Total fusion performance QAB/F is evaluated as a weighted sum of edge information 
preservation values for both input images QAF and QBF where the weights factors wA 
and wB represent perceptual importance of each input image pixel. The range is 0 ≤ 
QAB/F ≤ 1, where 0 means complete loss of input information has occurred and QAB/F=1 
indicates “ideal fusion” with no loss of input information. In their simplest form, the 
perceptual weights wA and wB take the values of the corresponding gradient strength 
parameters gA and gB. 
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