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Abstract. In this paper, we aim to recover the 3D shape of a human
face using a single image. We use a combination of symmetric shape from
shading by Zhao and Chellappa and statistical approach for facial shape
reconstruction by Atick, Griffin and Redlich. Given a single frontal image
of a human face under a known directional illumination from a side,
we represent the solution as a linear combination of basis shapes and
recover the coefficients using a symmetry constraint on a facial shape
and albedo. By solving a single least-squares system of equations, our
algorithm provides a closed-form solution which satisfies both symmetry
and statistical constraints in the best possible way. Our procedure takes
only a few seconds, accounts for varying facial albedo, and is simpler
than the previous methods. In the special case of horizontal illuminant
direction, our algorithm runs even as fast as matrix-vector multiplication.

1 Introduction

The problem of estimating the shape of an object from its shading was first
introduced by Horn [1]. He defined the mapping between the shading and surface
shape in terms of the reflectance function Ix,y = R(p, q) where Ix,y denotes
image intensity, p

.= zx and q
.= zy, z being the depth of the object and (x, y)

are projected spatial coordinates of the 3D object. In this paper we will assume
orthographic projection and Lambertian reflectance model, thus obtaining the
following brightness constraint:

Ix,y ∝ ρx,y
1 − pl − qk

√
p2 + q2 + 1

√
l2 + k2 + 1

, (1)

where (l,k,1)
||(l,k,1)|| is the illuminant direction (we have here proportion, instead of

equality, because of the light source intensity). The task of a shape from shading
algorithm is to estimate the unknowns of Eq. (1), which are the surface albedos
ρx,y, and the surface depths zx,y. With only image intensities known, estimating
both the depths and the albedos is ill-posed. A common practice is to assume a
constant surface albedo, but in a survey [2] it is concluded that depth estimates
for real images come out to be very poor with this simplistic assumption.
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In this paper, we aim to recover the 3D shape of a human face using a single
image. In this case there are some other constraints, that can be imposed on
the unknown variables ρx,y and zx,y in Eq. (1). Shimshoni et al. [3] and Zhao
and Chelloppa [4,5] presented shape from shading approaches for symmetric
objects, which are applicable to human faces. In [3], geometric and photometric
stereo are combined to obtain a 3D reconstruction of quasi-frontal face images.
In [4,5] symmetry constraints on depth and albedo are used to obtain another,
albedo-free brightness constraint. Using this constraint and Eq. (1) they find a
depth value at every point. Lee and Rosenfeld [6] presented an approximate
albedo estimation method for scene segmentation. Using this albedo estimation
method, Tsai and Shah [7] presented a shape from shading algorithm, which
starts with segmenting a scene into a piece-wise constant albedo regions, and
then applies some shape from shading algorithm on each region independently.
Nandy and Ben-Arie [8,9] assume constant facial albedo and recover facial depth
using neural networks. All the methods mentioned above assume either constant
or piece-wise constant albedo, which is not a realistic assumption for real 3D
objects such as human faces. Finally, Ononye and Smith [10] used color images
for 3D recovery and obtained good results for simple objects. Results which
they showed on unrestricted facial images are not so accurate, however, probably
because of the lack of independence of the R, G, B channels in these images.

Atick et al. [11] and Vetter et al. [12,13,14,15] provided statistical shape
from shading algorithms, which attempt to reconstruct the 3D shape of a
human face using statistical knowledge about the shapes and albedos of
human faces in general. In [11], a constant facial albedo is assumed and
a linear constraint on the shape is imposed. The authors of [12,13,14,15],
went a step further and have dropped the constant albedo assumption, im-
posing linear constraint on both texture (albedo map) and shape of the
face. Because facial texture is not as smooth in general as the facial shape,
imposing linear constraint on the texture requires a special preprocessing
stage to align the database facial images to better match each other. Both ap-
proaches use certain optimization methods to find the coefficients of the linear
combinations present in the linear constraints they are using, thus providing no
closed-form solution, and consuming significant computational time.

We present an algorithm which accounts for varying facial albedo. Our me-
thod provides a closed-form solution to the problem by solving a single least-
squares system of equations, obtained by combining albedo-free brightness and
class linearity constraints. Our approach requires a restrictive setup: frontal face
view, known directional illumination (that can be estimated for example by
Pentland’s method [16]) and Lambertian assumption about the face. We also
get some inaccuracies in the reconstructed faces because human faces are not
perfectly symmetric [17]. However, this is the first algorithm for 3D face recon-
struction from a single image, which provides a closed-form solution within a
few seconds.

The organization of the paper is as follows. In Sect. 2, we describe in detail
previous work that is relevant to our approach, mainly symmetric and statistical
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shape from shading algorithms. Later, we present our algorithm in Sect. 3, and
give experimental results in Sect. 4. Finally, we draw conclusions in Sect. 5.

2 Previous Work

2.1 Symmetric Shape from Shading

Zhao and Chellappa [4,5] introduced symmetric shape from shading algorithm
which uses the following symmetry constraint:

ρx,y = ρ−x,y, zx,y = z−x,y (2)

to recover the shape of bilaterally symmetric objects, e.g. human faces. From
brightness and symmetry constraints together the following equations follow:

I−x,y ∝ ρx,y
1 + pl − qk

√
p2 + q2 + 1

√
l2 + k2 + 1

(3)

I−x,y − Ix,y

I−x,y + Ix,y
=

pl

1 − qk
(4)

Denoting Dx,y
.= I−x,y − Ix,y and Sx,y

.= I−x,y + Ix,y we obtain the following
albedo free brightness constraint:

Slp + Dkq = D. (5)

Using Eq. (5), Zhao and Chellappa write p as a function of q, and substitute
it into Eq. (1), obtaining equation in two unknowns, q and the albedo. They
approximate the albedo by a piece-wise constant function and solve the equation
for q. After recovering q and then p, the surface depth z can be recovered by any
surface integration method, e.g., the one used in [18].

Yilmaz and Shah [19] tried to abandon the albedo piece-wise constancy as-
sumption by solving Eq. (5) directly. They wrote Eq. (5) as an equation in zx,y,
instead of p and q, and tried to solve it iteratively. A linear partial differential
equation

ax,yzx + bx,yzy = cx,y, (6)

of the same type in z, in different context, appears in the linear shape from
shading method of Pentland [20], and was used also in [21].

Pentland tried to solve Eq. (6) by taking the Fourier transform of both sides,
obtaining

Au,v(−iu)Zu,v + Bu,v(−iv)Zu,v = Cu,v, (7)

where A, B, C and Z stand for the Fourier transforms of a, b, c and z, respectively.
It was stated in [20], that Zu,v can be computed by rearranging terms in Eq. (7)
and taking the inverse Fourier transform. However, rearranging terms in Eq. (7)
results in Zu,v = iCu,v/(Au,vu+Bu,vv). This equation is undefined when Au,vu+
Bu,vv vanishes, and thus it leaves ambiguities in Zu,v, and therefore also in zx,y.
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As was noted in [22], but was noticed neither in [19] nor in [20,21], Eq. (6),
being a linear partial differential equation in z, can be solved only up to a one
dimensional ambiguity (hidden in the initial conditions), for example via the
characteristic strip method [23]. Hence, Eq. (5) cannot be solved alone, without
leaving large ambiguities in the solution.

2.2 Statistical Shape from Shading

Atick et al. [11] took a collection of 200 heads where each head was scanned
using a CyberWare Laser scanner. Each surface was represented in cylindrical
coordinates as rt(θ, h), 1 ≤ t ≤ 200 with 512 units of resolution for θ and 256
units of resolution for h. After cropping the data to a 256 × 200 (angular ×
height) grid around the nose, it was used to build eigenhead decomposition as
explained below. They took r0(θ, h) to be the average of 200 heads and then
performed principal component analysis [24] obtaining the eigenfunctions Ψi,
such that any other human head could be represented by a linear combination
r(θ, h) = r0(θ, h) +

∑199
i=1 βiΨi(θ, h). After that they applied conjugate gradient

optimization method to find the coefficients βi, such that the resulting r(θ, h)
will satisfy the brightness constraint in Eq. (1), assuming constant albedo.

In [12,13,14,15], the authors went a step further and have dropped the con-
stant albedo assumption, imposing linear constraint on both texture (albedo
map) and shape of the face. In order to achieve shape and texture coordinate
alignment between the basis faces, they parameterized each basis face by a fixed
collection of 3D vertices (Xj , Yj , Zj), called a point distribution model, with as-
sociated color (Rj , Bj , Gj) for each vertex. Enumeration of the vertices was the
same for each basis face. They modelled the texture of a human face by eigenfa-
ces [25] and its shape by eigenheads, as described above. They recovered sets of
texture and shape coefficients via complex multi-scale optimization techniques.
These papers also treated non-Lambertian reflectance, which we do not treat
here.

Both statistical shape from shading approaches described above do not use
the simple Cartesian (x, y) �→ z(x, y) parameterization for the eigenhead sur-
faces. While the parameterizations described above are more appropriate for
capturing linear relations among the basis heads, they have the drawback of
projecting the same head vertex onto different image locations, depending on
the shape coefficients. Thus, image intensity depends on the shape coefficients.
To make this dependence linear, the authors in [11] used Taylor expansion of
the image I, with approximation error consequences. In [12,13,14,15], this depen-
dence is taken into account in each iteration, thus slowing down the convergence
speed.

3 Statistical Symmetric Shape from Shading

We use in this paper a database of 138 human heads from the USF Human-ID
3D Face Database [26] scanned with a CyberWare Laser scanner. Every head,
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Fig. 1. (a) Standard deviation surface zstd. Note high values of zstd around the nose
for example: this is problem of Cartesian representation - high z variance in areas
with high spatial variance, like area around the nose. (b)-(f) The five most significant
eigenheads z1, . . . , z5, out of the 130 eigenheads.

originally represented in the database in cylindrical coordinates, is resampled
to a Cartesian grid of resolution 142 × 125. Then, we have used a threshold on
the standard deviation zstd of the facial depths, in order to mask out pixels
(x, y) which are not present in all the basis faces, or alternatively are unreliable
(see Fig. 1 (a) for the masked standard deviation map). After that we perform
PCA on the first 130 heads, obtaining the 130 eigenheads zi (first five of which
are shown in Fig. 1 (b)-(f)), and keeping the remaining eight heads for testing
purposes. We then constrain the shape of a face to be reconstructed, zx,y, to the
form:

zx,y =
130∑

i=1

αiz
i
x,y, (8)

for some choice of coefficients {αi}.
Since our face space constraint (8) is written in a Cartesian form, we can take

derivatives w.r.t. x and y of both sides to obtain face space constraints on p, q:

p =
130∑

i=1

αip
i, q =

130∑

i=1

αiq
i, (9)

where pi .= zi
x and qi .= zi

y. The two equations above, together with the albedo
free brightness constraint (5) result in the following equation chain:

D = Slp + Dkq = Sl

130∑

i=1

αip
i + Dk

130∑

i=1

αiq
i =

130∑

i=1

(Slpi + Dkqi)αi. (10)
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This equation is linear in the only unknowns αi, 1 ≤ i ≤ 130. We find a least-
squares solution, and then recover z using Eq. (8). One can speed up calculations
by using less than 130 eigenheads in the face space constraint (8).

Fig. 2. Testing of generalization ability of our eigenhead decomposition. (a) One of the
eight out-of-sample heads not used to construct the face space. (b) Projection of surface
in (a) onto the 130-dimensional face space. (c) Error surface. Note some correlation with
standard deviation surface from Fig. 1. (d) Plot of dependance of the reconstruction
error on the number of modes used in the representation. The error is defined as
|zactual − zestimated| · cos σslant(zactual) averaged over all points on the surface and over
eight out-of-sample heads, and is displayed as a percentage from the whole dynamic
range of z. Error is normalized by the cosine of the slant angle, to account for the fact
that the actual distance between two surfaces zactual and zestimated is approximately
the distance along the z-axis times the cosine of the slant angle of the ground truth
surface.

The choice of Cartesian coordinates was necessary for obtaining face space
constraints on p and q in Eq. (9). Although Cartesian parameterization is less
appropriate for eigenhead decomposition than cylindrical or point distribution
model parameterizations, it provides eigenhead decomposition with sufficient ge-
neralization ability as is shown in Fig. 2 - in reconstruction example (a)-(c) we
see relatively unnoticeable error, and in (d) we see a rather fast decay of the
generalization error when the number of basis heads increases. Dividing the ge-
neralization error with the first eigenhead only (which is just the average head)
by the generalization error with 130 eigenheads we obtain the generalization qua-
lity ||zactual−zm||

||zactual−zestimated|| = 5.97 (here zm stands for the average of the first 130 heads,
and zactual with zestimated stand for the true and estimated depths, respectively),
while [11] achieves with cylindrical coordinates a generalization quality of about
10. We provide in Sect. 3.3 a recipe for improving the generalization ability of the
model, albeit without giving empirical evidence for it. The generalization errors
we have right now are insignificant, comparing to errors in the reconstructions
themselves, so that they do not play a major role in the accuracy of the results.
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3.1 Special Case of k = 0

In the case of k = 0, Eq. (10) has a simpler form,

D

Sl
=

130∑

i=1

piαi. (11)

Setting {pi} to be the principal components of the x derivatives of the facial
depths, and zi accordingly to be the linear combinations of the original depths
with the same coefficients which are used in pi, one could solve for α’s by setting
αi =

〈
D
Sl , p

i
〉

(this is ≈ 150 times faster than in our general method; in fact, this
is as fast as a matrix-vector multiplication), and for z via Eq. (8). This could be
done up to a scaling factor, even without knowledge of light source direction.

Because different heads, which were used to build the face space, have face
parts with different y coordinates, the face space has some vertical ambiguities.
This means that for a given face in the face space, also some face with y shifts
of a face components is also in the face space. In contrast to the general case,
where ambiguity is driven by PDE’s characteristic curves, and therefore is pretty
random, in the case of k = 0 ambiguity is in vertical direction and thus is going in
resonance with ambiguity in the face space. So, in the case of k = 0, final solution
also will contain vertical ambiguities of the type zx,y = z0

x,y+A(y) (where A(y) is
the ambiguity itself). We will show empirically, that due to vertical ambiguities
in the the face space, results turn out to be quite inaccurate in this special case.

3.2 Extending Solution’s Spatial Support

All basis heads used in build-up of the face space have different x, y support, and
spatial support of the eigenheads is basically limited to the intersection of their
supports. Therefore spatial support of the reconstructed face area is also limited.
To overcome this shortcoming of our algorithm, one can fit surface parameterized
via a point distribution model (PDM) [12,13,14,15] to our solution surface z =
zx,y. This fitting uses our partial solution surface for 3D reconstruction of the
whole face, and is straightforward, as opposed to fitting of PDM to a 2D image.

3.3 Improving Generalization Ability

In the Cartesian version of the face space (8) eigenheads do not match each other
perfectly. For example noses of different people have different sizes in both x, y
and z directions. A linear combination of two noses with different x, y support
produces something which is not a nose. Suppose now that we have a certain
face with certain x, y support for its nose. In order to get this nose we need basis
faces with noses of similar x, y support to this nose. This means that only a few
basic faces will be used in a linear combination to produce this particular nose.
This observation explains why a Cartesian version of face space has the highest
generalization error among all face space representations: other representations
have a better ability to match the supports of different face parts such as noses.
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In order to overcome the drawbacks mentioned above, of the Cartesian prin-
ciple component decomposition, we suggest another Cartesian decomposition for
the shape space of human faces. Using NMF [27] or ICA [28,29], it is possible to
decompose the shape of a human face as a sum of its basic parts zi, 1 ≤ i ≤ 130.
In contrast to the principal component analysis, each zi will have a compact x, y
support. Therefore, from each zi several zi

j can be derived, which are just slightly
shifted and/or scaled copies of the original zi, in the x, y plane, in random di-
rections. Using these shifted (and/or scaled) copies of original zi, 1 ≤ i ≤ 130, a
broader class of face shapes can be obtained by a linear combination.

An alternative method for improving the generalization quality of the face
space is to perform a spatial alignment of DB faces via image warping using
for example manually selected landmarks [30]. For a progressive alignment it is
possible to use eigenfeatures, which can be computed from the aligned DB faces.

4 Experiments

We have tested our algorithm on the Yale face database B [31]. This database
contains frontal images of ten people from varying illumination angles. Align-
ment in the x, y plane between the faces in the Yale database and the 3D models
is achieved using spatial coordinates of the centers of the eyes. We use eye coor-
dinates of people from the Yale database, which are available. Also we marked
the eye centers for our zm and used it for the alignment with the images.

For every person in the Yale face database B, there are 63 frontal facial views
with different known point illuminations stored. Also for each person its ambient
image is stored. As in this paper we do not deal with the ambient component we
subtract the ambient image from each one of the 63 images, prior to using them.
As we need ground truth depths for these faces for testing purposes, and it is
not given via a laser scanner for example, we first tried to apply photometric
stereo on these images, in order to compute the depths. However, because the 63
light sources have different unknown intensities, performing photometric stereo
is impossible. Hence, we have taken a different strategy for “ground truth” depth
computation.

We took two images, taken under different illumination conditions, for each
one of the ten faces present in the database. A frontal image F with zero azi-
muth Az and elevation El, and image I with azimuth angle Az = 20◦ and
elevation angle El = 10◦. Substituting l = − tan 20◦ and k = tan 10◦/ cos 20◦

into Eq. (1), we obtain a Lambertian equation for the image I. Doing the same
with l = 0 and k = 0 we obtain a Lambertian equation for the image F . Dividing
these two equations, we obtain the following equation, with l = − tan 20◦ and
k = tan 10◦/ cos 20◦ (we have here equality up to scaling factor λ caused by a
difference of light source intensities used to produce the images I and F ):

λ
Ix,y

Fx,y
= 1 − pl − qk. (12)
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Table 1. Quality and computational complexity of our algorithm, applied to all the ten
Yale faces. Ten columns correspond to the ten faces. The first row contains asymmetry
estimates of the faces (we subtract the lowest element). The second row contains the
quality estimates, measured via an inverse normalized distance between the estimated
and actual depths. The third row contains the quality estimates with statistical Carte-
sian shape from shading (assuming constant albedo as in the work of Atick et al. [11]).
The last row contains running times (in seconds) of our algorithm on all ten faces

Asymmetry 0.53 1.08 0 0.52 1.36 0.87 0.75 0.68 0.65 0.38
Quality 1.81 1.78 3.39 1.92 1.91 1.29 1.96 2.59 1.45 2.94

Const Albedo 1.27 1.24 1.76 1.41 1.57 1.10 2.15 2.5 1.5 2.35
Running Time 1.76 1.76 1.76 1.76 2.21 1.76 1.75 1.76 1.75 1.76

Eqs. (12) and (9) together enable us to get the “ground truth” depth, given the
scaling factor λ (which we will show how to calculate, later on):

Fx,y − λIx,y =
130∑

i=1

(Fx,ylpi + Fx,ykqi)αi. (13)

Of coarse such a “ground truth” is less accurate than one obtained with
photometric stereo, because it is based on two, rather than on all 63 images,
and because it uses the face space decomposition, which introduces its own
generalization error. Also small differences between the images I and F cause
small errors in the resulting “ground truth”. Still this “ground truth” has major
advantage over results obtained by our symmetric shape from shading algorithm,
which is that it does not use an inaccurate symmetry assumption about the
faces [17].

Our algorithm estimates the depths of each one of the ten faces by solving
Eq. (10). Then we take the estimated αi’s and plug them into Eq. (13). We find
the best λ satisfying this equation and use it in the “ground truth” calculation.
This mini-algorithm for λ calculation is based on the fact that our estimation,
and the ground truth are supposed to be close, and therefore our estimation can
be used to reduce ambiguity in the “ground truth” solution. As λ has some error,
we need to perform a small additional alignment between the “ground truth”
and the estimated depths. We scale the “ground truth” solution at the end, so
that it will have the same mean as the estimated depth.

In Table 1 we provide asymmetry estimates for all ten Yale DB faces along
with quality and computational complexity estimates of the results. Asymmetry
is measured via a Frobenius distance between normalized (to mean gray level 1)
frontally illuminated face F and its reflect R. Quality is measured by the fraction
||zactual−zm||/||zactual−zestimated||, and computational complexity measured by
a running time, in MATLAB, on a Pentium 4 1600MHz computer. Correlation
coefficient between the facial asymmetry and resulting quality estimates is -0.65,
indicating a relatively strong anti-correlation between quality and asymmetry.
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Table 2. Quality of results of our algorithm for the case that k = 0, on all the ten Yale
faces. The ten columns correspond to the ten faces. We performed quality estimation
for reconstructions from images with Az = −10◦ and Az = −25◦. Prior to estimating
the quality, we shifted and stretched the estimated depths, so that they will have the
same mean and variance as the “ground truth” depths. We estimated quality with and
without, row normalization, in which each depth row to be estimated was normalized
to have the same mean as its counterpart row in the “ground truth” depth

Without normalization (true quality)
Az = −10◦ 0.70 0.96 0.88 1.25 0.76 0.90 1.06 1.63 0.81 1.20
Az = −25◦ 0.86 1.24 1.14 1.21 0.91 0.68 1.29 1.81 0.92 1.50

With normalization (additional test)
Az = −10◦ 1.34 1.63 1.58 1.69 1.52 1.11 1.46 2.92 1.54 2.07
Az = −25◦ 1.70 2.20 2.27 1.93 2.12 0.90 2.08 3.14 1.88 2.27

Results with Cartesian face space, replacing the symmetry with the constant
albedo assumption (thus simulating the work of Atick et al. [11]), are found via
iterative optimization on the αi’s according to Eq. (1), initialized by our solution.
For each database image we chose its best scale to fit into the Lambertian equa-
tion, thus making the statistical shape from shading results as good as possible
for a faithful comparison. Our results are slightly better on most faces (Table 1).

The three best results of our algorithm, with quality at least 2.5 (faces 3,8
and 10 in the Yale ordering), are depicted in Fig. 3 (along with their statistical
SFS counterparts). Also, in the first three rows of Fig. 4, we show textured faces
(with texture being the image of frontally illuminated face), rendered with our
“ground truth”, estimated and average depths. In the first three rows of Fig. 5,
we render these faces as if they were shot using frontal illumination, by taking
images with Az = 20◦ and El = 10◦ and cancelling out side illumination effect
by dividing them by 1 − lp − kq, where p and q are recovered by our algorithm
from the image I and are given directly (without using z) by Eq. (9).

In the last row of Fig. 4, we show results for the face number 6 in the Yale
database, which has the worst reconstruction quality (see Table 1). In the last row
of Fig. 5, we show renderings for this face. One can note a significant asymmetry
of the face, which explains the rather bad reconstruction results in Fig. 4. We
provide, in the additional material, results of the algorithm on all ten Yale faces.

We attribute inaccurate results of our algorithm, on many faces, to facial
asymmetry. Results in Fig. 5 can be compared with similar results by Zhao and
Chellappa [4,5] (see Figs. 14 and 15 in [4]). Note that both are affected by facial
asymmetry. Using some illumination invariant feature matcher [32], features on
two sides of a face, could be matched based solely on the albedo, and warp the
face to one with symmetric shape and texture, but a warped illumination (with
less impact on errors, due to smoothness of the illumination). However, we doubt
whether this approach is feasible, because of the matching errors.
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Fig. 3. Three columns correspond to three different faces from the Yale face database B.
First row contains meshes of the faces with “ground truth” depths. Second row contains
the meshes reconstructed by our algorithm from images with lighting Az = 20◦ and
El = 10◦. Third row contains reconstructions from statistical Cartesian SFS algorithm.

4.1 Results in the Case of k = 0

In the special case of zero light source elevation angle El, we took two images
with different light source azimuth angle Az, for each one of the ten faces present
in the database. One image with El = −10◦ and the other with El = −25◦. Our
algorithm estimates depths of each one of the ten faces by solving Eq. (11). We
shift and stretch the estimated depths, so that they will have the same mean
and variance as the “ground truth” depths. In first part of Table 2, we provide
quality estimates of the results of our special case algorithm, on all the ten faces.

We have done further alignment between the estimated and “ground truth”
depths. We have normalized all the rows of the estimated depths to have the
same mean as their counterpart rows in the “ground truth” depths. Thereafter
we have measured the quality estimates of the results, and presented them in
the second part of Table 2. One can note a significant increase in estimates,
relatively to the first part of Table 2, which is an indication of a significant
1D ambiguity which is left in the solution of Eq. (11). Quality estimates in the
second part of Table 2 are comparable with those of our main results in Table 1.

5 Conclusions

In this paper we have presented a successful combination of two previous facial
shape reconstruction approaches - one which uses symmetry and one which uses
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Fig. 4. Rows correspond to different Yale faces. First, second and third columns con-
tain renderings of the faces with “ground truth”, reconstructed and average depths,
respectively. For the first three faces, texture matches rather well both “ground truth”
and estimated depths, but poorly the average depth (mainly in the area between nose
and mouth), indicating good shape estimation of our algorithm, at least for these faces.

statistics of human faces. Although our setup in this paper is rather restrictive
and results are inaccurate on many faces, still our approach has a major ad-
vantages over the previous methods - it is very simple, provides a closed-from
solution, accounts for facial nonuniform albedo and has extremely low computa-
tional complexity. The main disadvantage of the algorithm is inaccurate results
on some faces caused by asymmetry of these faces. On most faces, however, we
obtain reconstructions of sufficient quality for creation of realistically looking
new synthetic views (see new geometry synthesis in Fig. 4 and new illumination
synthesis in Fig. 5). In general, synthesizing views with new illumination does
not require very accurate depth information, so that our algorithm can be con-
sidered appropriate for this application because of its simplicity and efficiency.
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Fig. 5. The four different rows correspond to four different faces from the Yale face
database B. The first column contains renderings of faces with side illumination Az =
20◦ and El = 10◦. The second column contains images rendered from images in column
1 using the depth recovered by our algorithm. The faces in the second column should be
similar to the frontally illuminated faces in column 3 (one should ignore shadows present
in the rendered images, because such a simple cancellation scheme is not supposed to
cancel them out). Finally, the last column contains frontally illuminated faces from
column 3, flipped around their vertical axis. By comparing two last columns, we can
see noticeable facial asymmetry, even in the case of the three best faces. For the fourth
face asymmetry is rather significant, specially depth asymmetry near the nose, causing
rather big errors in the reconstructed depth, as can be seen in Fig. 4.
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