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Abstract. Recent advances in vision systems have spawned a new generation
of image modalities. Most of today’s robot vehicles are equipped with omnidi-
rectional sensors which facilitate navigation as well as immersive visualization.
When an omnidirectional camera with a single viewpoint is calibrated, the original
image can be warped to a spherical image. In this paper, we study the problem of
template matching in spherical images. The natural transformation of a pattern on
the sphere is a 3D rotation and template matching is the localization of a target
in any orientation. Cross-correlation on the sphere is a function of 3D-rotation
and it can be computed in a space-invariant way through a 3D inverse DFT of a
linear combination of spherical harmonics. However, if we intend to normalize the
cross-correlation, the computation of the local image variance is a space variant
operation. In this paper, we present a new cross-correlation measure that correlates
the image-pattern cross-correlation with the autocorrelation of the template with
respect to orientation. Experimental results on artificial as well as real data show
accurate localization performance with a variety of targets.

1 Introduction

Omnidirectional cameras [1,2] are now a commodity in the vision and robotics commu-
nity available in several geometries, sizes, and prices and their images are being used for
creating panoramas for visualization, surveillance, and navigation. In this paper we will
address the problem of template matching in omnidirectional images. Our methods can
be applied to any images which can be exactly or approximately mapped to a sphere.
This means that our input images will be spherical images while the template can be
given in any form which can be warped so that it has a support on the sphere. The main
challenge in template matching is to be able to detect the template under as many geo-
metric or illumination transformations as possible. This can be done by either comparing
invariants like moment functions between the template and the image or with statistical
techniques [3,4]. It is basic knowledge that we can compute affine invariants and that
we can compute an affine transformation from combinations of image moments [5,6]
or from Fourier descriptors [7]. Little work has been done on the computation of 3D-
rotations from area-based features [8,9,10]. Even if template matching in planar image
processing is certainly a problem studied in several different ways, there is hardly any
work addressing this problem in omnidirectional imaging.

In this paper we consider 3D rotations, the natural transformations on the sphere,
and we try to achieve a normalized cross-correlation to account for linear illumination
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changes. A straightforward implementation of normalization in cross-correlation would
be space variant, and as such quadratic in the number of image samples and cubic in
the tessellation of the rotation space. The contribution of this paper is the development
of a matcher that performs in the Fourier domain a sequence of two cross-correlations
in order to guarantee the same performance as the normalized cross-correlation and
simultaneously to avoid any space-variant operation. By introducing the concept of
axial autocorrelation, we have been able to construct a new normalization that preserves
the linearity of intensity transformations. The new measure consists of the image-pattern
cross-correlation and its subsequent cross-correlation with the axial autocorrelation of
the pattern.

The paper is split into 3 parts: Section 2 introduces the preliminary mathematics,
Section 3 presents the matcher, and Section 4 analyzes results with real omnidirectional
imagery.

2 Mathematical Preliminaries

This section collects the basic mathematical tools required for the formulation and so-
lution of the spherical template matching problem. The proposed method in particular
will make use of the analysis of real or complex valued functions defined on S2, the
two-dimensional unit sphere, and their harmonic representation. Throughout the paper
we make use of the traditional spherical reference frame, according to which any point on
S2 is uniquely represented by the unit vector ω(θ, φ) = (cos φ sin θ, sin φ sin θ, cos θ).
We denote with Λ(Rα,β,γ) the linear operator associated with a rotation R ∈ SO(3)
and we use the ZYZ Euler angle parameterization for rotations.

The set of spherical harmonics {Y l
m(ω), l ≥ 0, | m |≤ l} (see [11]), forms a complete

orthonormal basis over L2(S2); thus any square-integrable function on the unit sphere
f(ω) ∈ L2(S2) can be decomposed as series of spherical harmonics. The Spherical
Fourier Transform and its inverse are defined [11] as:

f(ω) =
∑

l∈N

∑

|m|≤l

f̂ l
mY l

m(ω) (1)

f̂ l
m =

∫

ω∈S2
f(ω)Y l

m(ω)dω. (2)

We assume for any spherical image to be square integrable on S2 and bandlimited in
order to use the sampling theorem for spherical function introduced by Driscoll and
Healy [12]:

Theorem 1 (Driscoll and Healy). Let f(ω) be a band-limited function, such that f̂ l
m =

0,∀l ≥ B,, where B is the function bandwidth. Then for each | m |≤ l < B,

f̂ l
m =

√
2π

2B

2B−1∑

j=0

2B−1∑

k=0

a
(B)
j f(θj , φk)Y l

m(θj , φk)

where the function samples f(θj , φk) are chosen from the equiangular grid: θj =
jπ/2B, φk = kπ/B, and a

(B)
j are suitable weights.
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Under a rotation R(α, β, γ), decomposed using the Euler angles parameterization, each
harmonic of degree l is transformed into a linear combination of only those Y l

m with the
same degree | m |≤ l, [12]:

Λ(Rα,β,γ)Y l
m(ω) =

∑

|k|≤l

Y l
k(ω)Dl

k,m(R) (3)

where Dl
m,k(R) is defined as:

Dl
m,k(R) = e−imαdl

m,k(cos β)e−ikγ (4)

and for a definition of dl
m,k, the irreducible unitary representation of SO(3), we refer to

[13].
From (3) we can easily show that the effect of a rotation on a function f(ω) ∈ L2(S2)

is a linear transformation associated with a semi-infinite block diagonal matrix in the
Fourier domain:

h(ω) = Λ(Rα,β,γ)f(ω) ⇔ ĥl
m =

∑

|k|≤l

f̂ l
kDl

m,k(R) (5)

We finally add a lemma we first proved in [14] because it will be part of the first stage
of our matcher.

Lemma 1. Givenf(ω), h(ω) ∈ L2(S2), the correlation betweenf(ω)andh(ω)defined
as

C(α, β, γ) =
∫

S2
f(ω)Λ(Rα,β,γ)h(ω) dω (6)

can be obtained from the spherical harmonics f̂ l
m and ĥl

m via the 3-D Inverse Discrete
Fourier Transform as

C(α, β, γ) = IDFT{
∑

l

f̂ l
mĥl

kdl
m,h(π/2)dl

h,k(π/2)}. (7)

3 Spherical Pattern Matching

In this section we present normalized correlation and an approach on how to reduce the
associated computational cost. We will introduce first the axial autocorrelation function
for spherical functions and its invariant properties.

3.1 Autocorrelation Invariance

Let f(ω) ∈ L2(S2) be a function defined on the unit sphere. We define the axial auto-
correlation function, as the autocorrelation of the function f(ω) computed rotating the
function itself only around the Z axis, that points out of the North Pole η:

ACf,η(γ′) =
∫

S2
f(ω) · Λ(R0,0,γ′)f(ω)dω. (8)
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Expanding the function f(ω) as series of spherical harmonics we can rewrite relation
(8) as:

ACf,η(γ′) =
∫

S2

∑

l,m

f̂ l
mY l

m

∑

l′,m′,k

Dl′
m′,k(0, 0, γ′)f̂ l′

k Y l′
m′dω.

where Dl
m,k(0, 0, γ′) = e−jkγ′

δm,k. Using the spherical harmonics orthogonality, we
can finally simplify

ACf,η(γ′) =
∑

k

∑

l

∣∣∣f̂ l
k

∣∣∣
2
eikγ′

= IDFT{
∑

l

∣∣∣f̂ l
k

∣∣∣
2
}. (9)

Under the action of a rotation Rα,β,γ the North Pole η is transformed into the point ω′ =
(β, α). Following the same procedure as above, we can show that the axial autocorrelation
of the rotated function h(ω) = Λ(Rα,β,γ)f(ω), computed around the axis ω′, is related
to the function ACf,η by a simple translation:

ACh,ω′(γ′) = ACf,η(γ′ − γ). (10)

The proof of the previous identity is again straightforward if we rewrite the function
ACh,ω′(γ′) using the expansion (1):

ACh,ω′(γ′) =
∫

S2
Λ(Rα,β,γ)f(ω) · Λ(Rα,β,γ‘)f(ω)dω =

=
∫

S2

∑

l,m,k

Dl
m,k(α, β, γ)f̂ l

kY l
m ·

∑

l′,m′,k′
Dl′

m′,k′(α, β, γ′)f̂ l′
k′Y l′

m′dω =

=
∑

l,m,k,k′
dl

m,k(β)dl
m,k′(β)f̂ l

kf̂ l
k′e

−ikγeik′γ′
.

Using the orthogonality of the matrices dl(β):
∑

m

dl
m,k(β)dl

m,k′(β) = δk,k′

we can finally simplify the ACh,ω′(γ′) expression:

ACh,ω′(γ′) =
∑

k

∑

l

∣∣∣f̂ l
k

∣∣∣
2
eik(γ′−γ) = ACf,η(γ′ − γ).

3.2 Normalized Cross-Correlation

Let I(ω) be a spherical image and P (ω) the template that is to be localized. If a pattern
that matches exactly with the template is present in the image I(ω) at the position ω0,
the linear filtering that maximizes the signal to noise ratio in ω = ω0, can be expressed
as a cross-correlation. Such a cross-correlation function C : SO(3) → R for functions
defined on the unit sphere (6) may be computed fast as a 3D Inverse Fourier transform of
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a linear combination of the template and the image spherical harmonics (lemma 1). The
difficulty is in normalizing this expression to account for variations of the local signal
energy. A normalized cross-correlation coefficient would be written as

NC(R) =

∫
S2(I(ω) − Īw)(Λ(Rα,β,γ)P (ω) − P̄ )dω

√∫
PW

∣∣I(ω) − Īw

∣∣2 dω
∫

PW

∣∣P (ω) − P̄
∣∣2 dω

, (11)

where PW is the image window defined by the support of the pattern, and the over bar
means the mean value of the signals in the PW region. Hereafter, we use the overbar
to represent the local mean of the image instead of the complex conjugate as we did in
subsection 3.1.

Digital spherical images are processed after a projection to the uniformly sampled
{θ, φ} plane, where the distribution of samples is related to the chosen equiangular
grid. With this representation the number of samples inside the overlapping window
PW, and the shape of the window itself are space-variant. This means that to perform
the normalization process shown in (11), we must refresh the shape of the window
PW for every possible rotation which yields to an extremely high computational cost.
In particular if N2

i is the number of image samples and N3
r is the dimension of the

discretized rotational space {α, β, γ}, then the computational cost of (11) is O(N2
i N3

r ).
Observe that the cost is proportional to the number of sphere samples as well as the
number of samples of α, β, γ because the entire sphere has to be revisited for every
rotation due to the space variant pattern window.

A possible remedy to this problem has been introduced in [14] where the matching
is performed between the image and template gradients:

CG(R) =
∫

S2
〈∇T [I(ω)],∇T [Λ(Rα,β,γ)P (ω)]〉dω. (12)

This approach, also based on space invariant operations, even if much faster than the
normalized cross-correlation still does not guarantee robustness against any possible
intensity linear transformation of the template intensity the same way a normalized
cross-correlation would do. Taking advantage of the properties of the axial autocorre-
lation, we can instead modify the standard normalized cross-correlation matching and
decrease the processing time without losing the normalization properties. Matching will
be accomplished in two steps, the first of which is the image-template cross-correlation
(6) followed by a 1D normalized cross-correlation performed using the axial autocorre-
lation as kernel. Let us suppose that a rotated version Pr(ω) = Λ(Rα̃,β̃,γ̃)P (ω) of the
template P (ω) is present in our image I(ω) (as shown Fig. 1.a), then for any value of
(α̃, β̃, γ̃) we can state that the following relation holds:

C(R)|α=α̃,β=β̃ = C(γ) = ACP,η(γ − γ̃)

where C(R) is the cross-correlation, computed with α = α̃ and β = β̃ and ACP,η(γ)
is the template axial autocorrelation (Fig. 1.b).

The basic idea is then to perform the localization task using the normalized cross-
correlation between the axial autocorrelation of the pattern and the image-pattern cross-
correlation, instead of using the normalized correlation (11) between the pattern and the
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(a)

0 pi/2 pi 3pi/2 2pi

A
C

(γ
)

0 pi/2 pi 3pi/2 2pi

C
(γ

)

(b)

Fig. 1. On the left (a) a catadioptric image mapped on the sphere and an artificial pattern to be
matched. (b) On the right the axial autocorrelation of the pattern ACP,η and the pattern-image
cross-correlation C(R)|α=α̃,β=β̃ , computed in the point (α̃, β̃) where the pattern is located.

image; this means that the matching is not performed on the pattern function but on its
autocorrelation, (fig. 13):

M(α, β) = max
γ′∈(0,2π]

∫

γ

C(Rα,β,γ) · ACP,η(γ − γ′)dγ (13)

We can show that if the pattern has undergone a linear intensity transformation then
a linear transformation relates also their axial autocorrelations:

P ′(ω) = a · P (ω) + b ↔ ACP ′,η(γ) = A · ACP,η(γ) + B

where A = a2 and B = 2ab
∫

S2 P (ω)dω+4πb2. Besides since ACP,η and C(R)|α,β are
one-variable (γ) discrete functions and the interval γ ∈ [0, 2π) is uniformly sampled, the
normalization process is thus reduced to a one-dimensional, space invariant operation.

We present now in detail a new algorithm for template matching on the sphere and
the associated computational cost of each step. We assume that the rotational space can
be sampled with N3

r samples and that the spherical image sampling N2
i is lower than

N2
r .

1. Initialize a Nr×Nr square localization map M(α, β). The dimension Nr determines
the Euler angle estimation precision, the rotational space will be in fact discretized
in N3

r points.
2. Compute the spherical harmonics of both the image and the pattern. Using the algo-

rithm described in [12] this operation require a computational cost O(Ni log2 Ni),
where N2

i is the number of samples of the uniformly sampled (θ, φ)-plane.
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α

β

0 pi/2 pi 3pi/2 2pi

0

pi/2

pi

Fig. 2. The localization map M(α, β)), relative to fig. 1.a.

3. Compute the axial autocorrelation of the template ACP,η . This function can be
obtained as 1D IDFT, so using the standard FFT requires only O(Nr log(Nr))

4. Compute the cross-correlation C(R) between the template and the image. Using
Lemma 1 the computational cost of this step is O(N3

r log(Nr)).
5. Build the localization map M: for every point (α, β) the normalized 1D circular

cross-correlation between ACP,η and C|α,β is computed, and the maximum value
is assigned to the map. M(α, β) = max{AC ⊗ C|α,β}, (equation 13). Computing
every normalized cross-correlation via 1D FFT the global computational cost of this
step is again O(N3

r log(Nr)).
6. Localization of the pattern: exhaustive search of the max of the map M(α, β).

Computational cost O(N2
r ).

7. The estimation of the pattern orientation γ is performed computing the shift factor
between ACP,η and C|α,β . Computational cost O(Nr).

The final computational cost is O(N3
r log(Nr)) where N3

r is the sampling of the rotation
space.

4 Experiments

In this section we will present some results of our algorithm applied to artificial as well
as real images. Before pattern matching, an omnidirectional image is projected into
the uniformly sampled (θ, φ) space, required to compute the SFT using the sampling
theorem (in any test has been chosen a square space of 700 × 700 pixels). The spherical
Fourier transform has been performed assuming for the images to be band-limited, and
we will use a subset of their spectrum in the third and fourth steps of the algorithm,
considering a number of spherical harmonic up to the degree l = 40.

All the real pictures used to test the algorithm performance have been captured by a
Nikon Coolpix 995 digital camera equipped with unique effective viewpoint catadiop-
tric system (parabolic convex mirror and orthographic lens [1]). In [15], it is shown that
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such a projection is equivalent to the projection on the sphere followed by a stereogra-
phic projection from the North Pole of the sphere to the equator plane. The coordinate
transformation

u = cot(θ/2) cos(φ) (14)

v = cot(θ/2) sin(φ) (15)

allows us to map the catadioptric images directly on the unit sphere

I(θ, φ) = I(cot(θ/2) cos(φ), cot(θ/2) sin(φ)). (16)

            

(a)

            

(b)

            

(c)

Fig. 3. On the left a 1400×1400 pixels catadioptric test-image. In the middle the same image
presented in the equiangular (θ, φ) plane and mapped on the sphere (on the right). The southern
emisphere has been padded with zero-value samples.

Table 1. Euler angle estimation for the letters (Fig. 4). For every letter, it is indicated the real
position (RP), the estimated position (EP1) using the original templates and the estimated position
relative to the scaling-offset transformed version (Fig. 4.b), (EP2). In the last case we provide the
indication of the different offset and scaling factors applied to each letter.

A M P U V
sc.=0.6 sc.=0.8 sc.=0.9 sc.=0.5 sc.=0.7
offs.=25 offs.=10 offs.=-10 offs.=-15 offs.=20

RP 0◦ 45◦ 90◦ 135◦ 180◦

α EP1 0.89◦ 45.47◦ 91.82◦ 136.4◦ 180.98◦

EP2 0.89◦ 45.75◦ 91.82◦ 136.4◦ 180.98◦

RP 60◦ 60◦ 60◦ 60◦ 60◦

β EP1 58.85◦ 58.85◦ 58.85◦ 58.85◦ 58.85◦

EP2 58.85◦ 58.85◦ 58.85◦ 58.85◦ 58.85◦

RP 0◦ 0◦ 270◦ 26◦ 120◦

γ EP1 0.89◦ 0.89◦ 271.29◦ 25.98◦ 120.77◦

EP2 0.89◦ 0.89◦ 271.29◦ 27.77◦ 120.77◦
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(a)

            

(b)

Fig. 4. Two artificial images with five different letters. In (b) different scaling factors and offsets
have been applied to the letters’ intensity to test the matcher invariance to this class of transfor-
mation.

Table 2. Euler angle estimation for the real pattern (Fig.5). For every pattern is indicated the real
position (RP) and the estimated position obtained with the proposed cascading normalized corre-
lation (NC) compared with the analogous result obtained applying the gradient based correlation
(GB). NCs and GBs refer to the matching performed using noisy images.

Logo Field Paint Park Car Door
RP 92.57◦ 236.69◦ 77.18◦ 321.59◦ 257.27◦ 272.71◦

NC 93.61◦ 236.25◦ 77.56◦ 321.85◦ 257.66◦ 273.70◦

α GB 95.39◦ 233.23◦ 81.13◦ 340.60◦ 257.66◦ 229.12◦

NCn 95.07◦ 237.04◦ 77.32◦ 320.7◦ 257.32◦ 270.0◦

GBn 315.63◦ 237.04◦ 143.24◦ 249.71◦ 152.66◦ 215.12◦

RP 64.28◦ 51.45◦ 51.45◦ 64.32◦ 66.89◦ 64.32◦

NC 62.40◦ 51.70◦ 51.70◦ 62.41◦ 65.97◦ 62.41◦

β GB 68.30◦ 52.35◦ 71.32◦ 62.41◦ 67.88◦ 65.97◦

NCn 63.38◦ 48.17◦ 50.70◦ 63.38◦ 65.91◦ 63.38◦

GBn 78.59◦ 53.24◦ 70.98◦ 40.56◦ 42.16◦ 118.42◦

RP 0◦ 26.37◦ 131.85◦ 80.25◦ 120.38◦ 28.66◦

NC −0.89◦ 27.63◦ 133.50◦ 81.53◦ 120.77◦ 29.57◦

γ GB −0.71◦ 28.45◦ 125.70◦ 95.60◦ 120.36◦ 38.54◦

NCn 1.28◦ 29.37◦ 134.04◦ 85.53◦ 121.28◦ 29.37◦

GBn 247.18◦ 206.62◦ 209.15◦ 97.60◦ 95.28◦ 246.12◦

Naturally, the range of this mapping is limited by the field of view of the original
catadioptric system: θ ∈ [0, 102◦), φ ∈ [0, 360◦). The portion of the sphere that is not
covered by the mapping has been padded with zero-value samples, (fig 3). We remark
that the mapping of the catadioptric images onto the sphere is necessary to compute
the spherical harmonics and perform the matching in the transformed space. Working
directly with the original images in fact, would oblige us to deal with the negative
effects of the distortion due to the template rotations. Such distortions of objects’ shape
in catadioptric images are extremely stressed and would certainly lead us to results of
low quality and as shown above high processing time.
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Fig. 5. Six catadioptric images. The patterns are presented mapped onto the sphere and slightly
rotated forward to enhance their visibility.

We present first the localization performance of our normalized cross-correlation
algorithm applied to an artificial image with five different letters A, M, P, U and V
overlapped on a uniform background (Fig. 4.a). For every letter, in the second test, the
grayscale value has been modified applying different scaling factors and offsets (Fig.
4.b). Table (1) presents real and estimated position of every letter. In this first test we do
not present any comparison with other matching approaches because our main purpose
is to show the effective scaling-offset invariance of the proposed method.

Then our algorithm has been tested using real images and real templates. As descri-
bed in section 3.2, the matcher uses the pattern placed on the North Pole of the spherical
reference frame as kernel to compute the cross-correlation function (6); however due
to the structure of the catadioptric system used to take the pictures, it is impossible to
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have a real image of the pattern placed on the North Pole. This problem has been over-
come with an artificial rotation of the target pattern, selected from an omnidirectional
image of the same environment captured with a different tripod orientation (rigid trans-
lational+rotational motion). Figure 5 shows six catadioptric images with the relatives
selected objects and in the Table 2 we presents the localization performances. For com-
parison purposes, we performed the same test using the gradient matching introduced in
[14], because it is the only matching system that requires the same computational cost
of the algorithm presented in this paper and guarantees a good robustness to scaling-
offset template transformation. The last test has been performed using a noisy version
of the same real images of Fig. 5, obtained with an additive gaussian white noise (zero
mean with 0.05 variance). Results are presented in the same Table 2. It is interesting
to emphasize that using the axial autocorrelation kernel the template pose estimation is
very robust to noisy images. This is due to the fact that the matching is performed by
a harmonic analysis that involves a reduced number of transformed coefficients, which
are less sensitive to noise.

5 Conclusion

In this paper we presented a pattern matching algorithm for spherical images based on
the computation of a new cross-correlation measure: the cross-correlation of the image-
pattern cross-correlation with the axial autocorrelation of the pattern. The new cross-
correlation measure is invariant to linear intensity transformations and can be computed
in O(N3

r log(Nr)) where N3
r is the sampling of the SO(3) Euler angle parameterization.

This reduces the sampling cost significantly comparing to the cost associated with an
explicit traversal of the image and the rotation space O(N2

i N3
r ). To validate the propo-

sed algorithm we presented results obtained using artificial as well as real images and
patterns, with the main goal to check the real maintenance of the matcher’s invariance
properties.

Just before the submission of the camera ready version of the paper we discovered a

way to compute the local signal energy
√∫

PW

∣∣I(ω) − Īw

∣∣2 dω required in the classical
normalized cros-correlation coefficient (11) by computing the spherical harmonics of
the support mask as well as the spherical harmonics of the square of the image and
simultaneously keeping the same computational cost at O(N3

r log(Nr)). Time limits did
not allow obtaining experimental results for this new procedure which will be thoroughly
presented in a future report.
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