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Abstract. We present a probabilistic framework for recognizing objects
in images of cluttered scenes. Hundreds of objects may be considered
and searched in parallel. Each object is learned from a single training
image and modeled by the visual appearance of a set of features, and
their position with respect to a common reference frame. The recognition
process computes identity and position of objects in the scene by finding
the best interpretation of the scene in terms of learned objects. Features
detected in an input image are either paired with database features, or
marked as clutters. Each hypothesis is scored using a generative model
of the image which is defined using the learned objects and a model for
clutter. While the space of possible hypotheses is enormously large, one
may find the best hypothesis efficiently – we explore some heuristics to do
so. Our algorithm compares favorably with state-of-the-art recognition
systems.

1 Introduction

In the computer vision literature there is broad agreement that objects and
object categories should be represented as collections of parts (or features) which
appear in a given mutual position or shape (eg side-by-side eyes, a nose below
them etc). Each feature contains local information describing the image content
[2,3]. There is, however, disagreement as to the best tradeoff in this design space.
On one hand, one may wish to represent the appearance and position of parts in
a careful probabilistic framework, which allows to generate principled learning
and detection algorithms. One example of this approach is the ‘constellation
model’ [4] which has been successfully applied to unsupervised learning and
recognition of object categories amongst clutter [5,6]. This approach is penalized
by a large number of parameters that are needed to represent appearance and
shape and by algorithmic complexity – as a result there is a practical limit
to the size of the models that one can use, typically limiting the number of
object parts below 10. On the other hand, one finds in the literature models
containing hundreds of features. In this case the authors dramatically simplify
the way appearance and position are modeled as well as the algorithms used to
learn and match models to images. A representative of this approach is David
Lowe’s algorithm [7,8] which can recognize simultaneously and quickly multiple
individual objects (as opposed to categories).
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We are interested in exploring whether probabilistically rigorous modeling
may be extended to yield practical data structures and algorithms for mod-
els that contain hundreds of features. To this end, we modify the constellation
model [6,9] to incorporate a number of attractive features presented by Lowe:
using a KD-tree for efficiently associating features by appearance as well as com-
puting feature positions with respect to a common reference frame rather than
with respect to each other. Additionally, we pool representational parameters
amongst features. As a result, it is possible to learn models quickly based on
a single example; additionally, the system gains the robustness associated with
using a large number of features while also offering an expressive probabilistic
model for verifying object presence. One additional contribution is exploring
efficient algorithms for associating models with images that are based on this
probabilistic model and the A* search technique [10,11].

In section 2 we review the feature matching and constellation model ap-
proaches upon which this paper builds. Section 3 details the probabilistic frame-
work used in our recognition system. Section 4 describes the algorithm for incre-
mentally constructing a high probability hypothesis without exploring the entire
hypothesis space. In section 5, we discuss the task of learning. In section 6, we
compare our systemès performance against that of a pure feature matching ap-
proach. Finally, in section 7, we present conclusions and discuss areas for further
research.

2 Related Research

A feature-based recognition approach recently developed by Lowe [7,8] consists
of four stages: feature detection, extraction of feature correspondences, pose pa-
rameter estimation, and verification. Features are computed over multiple scales,
at positions that are extrema of a difference-of-Gaussian function. An orienta-
tion is assigned to a feature using the histogram of local image gradients. Each
feature’s appearance is represented by a vector constructed from the local image
region, sampled relative to the feature orientation. A k-d tree structure, mod-
ified with backtracking for search efficiency [12], is the central component of
a database used to perform efficient appearance-based feature matching. Each
match between scene and model features suggests a position, orientation, and
scale for the model within the scene. Recognition is achieved by grouping sim-
ilar model poses using a Hough transform and then explicitly solving for the
transformation from model to scene coordinates.

The constellation model [4,5,6,9] also relies on matching image parts, but typ-
ically uses on the order of 5 features, whereas Lowe uses hundreds of features.
Rather than restricting features to a rigid position, the constellation model uses
a joint probability density on part positions. In addition, a probabilistic model
for feature appearance is used, permitting the quality of matches to be measured.
One drawback of the constellation model is the high number of training samples
required, although recent work by Fei Fei et al [13] proved that learning can be
efficiently achieved with few examples. Another disadvantage of the constellation
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model lies in the large computation time required in order to learn feature con-
figurations, limiting it to use of a relatively small number of parts for each object
category. In our adaptation of the constellation approach for individual object
recognition, this limitation disappears, at a slight cost to the model’s generality.

3 Probabilistic Framework

We model individual objects as constellations of features. Features are gener-
ated by applying Lowe’s feature detector [7,8] to each training image. Each
feature has a position, orientation, and scale within the object model as well as
a feature vector describing its appearance. We learn probabilistic models for fore-
ground and background feature appearance. The collection of models extracted
from training images, together with a k-d tree of model features searchable by
appearance, forms the database.

Features are generated from a scene using the same procedure applied to
training images. If a model is present, each of its features has a chance of ap-
pearing as a scene feature. We also expect spurious background detections in
the scene. A hypothesis assigns each scene feature to either the background or
a model feature. It also specifies the pose of each model present in the scene. A
hypothesis may indicate the presence of multiple instances of the same object,
each in a different pose.

The task of the recognition algorithm is to find the hypothesis that best
explains the scene. The solution is the hypothesis with maximum probability
conditioned on both the observed scene features and the database.

3.1 Hypothesis Valuation

Let O denote the set of observed scene features, D the database, and H a hy-
pothesis. We define the valuation of H by v(H) = p(H|O, D). Using Bayes rule,

v(H) = p(H|O, D) =
p(O|H, D)p(H|D)

p(O|D)
(1)

The desired output of the recognition algorithm is the hypothesis H maximizing
this valuation. In particular,

H = argmax
H∈H

(
p(O|H, D)p(H|D)

p(O|D)

)
= argmax

H∈H
(p(O|H, D)p(H|D)) (2)

where H denotes the set of all hypotheses and we dropped the constant p(O|D).
In order to evaluate these probabilities, we expand a hypothesis into several

components. The hypothesis states which objects are in the scene and where
those objects are detected in the scene. Let m denote the number of object
detections predicted by hypothesis H. Then, for i = 1. . .m, H specifies the
model, Mi ∈ D, of the ith detected object, as well a set of parameters, Zi,
describing that model’s pose in the scene.
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In addition to stating the position of detected objects, hypothesis H at-
tributes their appearance to features found in the scene. In particular, H breaks
the set of scene features, O, into m + 1 disjoint sets, O0 . . .Om, where O0 is the
set of features attributed to the background and for i = 1. . .m, Oi is the set
of features attributed to model Mi. To specify the exact pairing between scene
features in Oi and model features in Mi, we introduce two auxiliary variables, di

and hi. The binary vector di indicates which features of Mi are detected (value
1) and which features are missing (value 0). Vector hi also contains an entry for
each feature j of Mi. If j is detected (dij = 1), then hij indicates the element of
Oi to which j corresponds. In other words, hi maps indices of detected model
features to indices of their corresponding scene features.

For notational convenience, we define the single vector h to contain the entire
correspondence map between scene features and model features (or background).
h is simply the concatenation of all the hi’s. Also, n denotes the number of back-
ground features, or equivalently, the size of O0. Together, h, n, {d1, . . . ,dm},
{Z1, . . . , Zm}, and {M1, . . . , Mm} completely specify a hypothesis. These vari-
ables contain all detection, pose, and feature correspondence information.

Using this decomposition, we now return to the computation of the valuation
of a hypothesis. From equation (2) we can redefine the hypothesis valuation as

v′(H) = p(O|H, D) · p(H|D) (3)

3.2 Pose and Appearance Density

The term p(O|H, D) characterizes the probability density in location, scale, ori-
entation, and appearance for the features detected in the scene image. Condi-
tioning on the pose of models present in hypothesis H, we can assume that
features attributed by H to different model objects are mutually independent:

p(O|H, D) =p(O|h, n, {di}, {Zi}, {Mi}, D)

=p(O0|n, D) ·
m∏

i=1

p(Oi|hi,di, Zi, Mi, D)
(4)

– p(O0|n, D) is the probability that the n background detections would occur
at the exact positions and with the exact appearances specified in O0. We
assume each point in the (location, orientation, scale) space examined by
the feature generator has an equal chance of producing a spurious detection.
Assuming that clutter detections are independent from each other,

p(O0|n, D) =
[

1
A

· 1
2π

]n

·
∏

x∈O0

pbg(x|D) (5)

where A is the number of pixels in the Gaussian pyramid used for feature
detection, or equivalently, the size of the (location, scale) space, and there
is a range of 2π in possible values for orientation. pbg(x|D) is the density
describing the appearance of background features.
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– p(Oi|hi,di, Zi, Mi, D) is the probability that the detections of the model
features indicated by the hypothesis would occur with the exact pose and
appearance specified in Oi. Conditioning on model pose, we will assume in-
dependence between model features. This is a key assumption distinguishing
our model from the constellation model [4,5,6]. Thus,

p(Oi|hi,di, Zi, Mi, D) =
∏

x∈Oi

ppose(x|hi,di, Zi, Mi, D) · pfg(x|hi,di, Mi, D)

(6)

where ppose and pfg are the pose and appearance probabilities, respectively,
for the foreground features.

The discussion on learning in section 5 describes the technique used for estimat-
ing probability densities pbg, ppose, and pfg.

3.3 Hypothesis Prior

The term p(H|D) is the prior on the hypothesis. We expand this term as

p(H|D) = p(h, n, {di}, {Zi}, {Mi}|D)
= p(h|n, {di}, {Zi}, {Mi}, D) · p(n|{di}, {Zi}, {Mi}, D)

·
[

m∏
i=1

p(di|Zi, Mi, D)

]
· p({Zi}, {Mi}|D)

(7)

– p(h|n, {di}, {Zi}, {Mi}, D) is the probability of a specific set of feature as-
signments. As h is simply a vector of indices mapping model features to
scene features, and we have no information on scene feature appearance or
position at this stage, all mappings that predict n background features and
are consistent with the detection vectors {di} are equally likely. Hence,

p(h|n, {di}, {Zi}, {Mi}, D) = p(h|n, {di}) =




[
N !

(N−Nfg)!

]−1 h, n, {di}
consistent

0 otherwise

(8)

where N is the total number of features in the scene image and Nfg = N −n
is the number of foreground features predicted by the hypothesis.

– p(n|{di}, {Zi}, {Mi}, D) is the probability of obtaining n background fea-
tures. Background features are spurious responses to the feature detector
that do not match with any known object. We assume a Poisson distri-
bution for the number of background features [9]. Since scene images may
have different sizes, the expected number of background detections is pro-
portional to the area A examined by the feature detector. If λ denotes the
mean number of background features per unit area, then

p(n|{di}, {Zi}, {Mi}, D) = pPoisson(n|λ, A) = e−λA (λA)n

n!
(9)
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– p(di|Zi, Mi, D) is the probability of detecting the indicated model features
from model Mi. Let pij denote the probability that feature j of model Mi

is detected in the scene. The probability that it is missing is (1 − pij). We
break p(di|Zi, Mi, D) into a term for detected features and a term for missing
features to obtain

p(di|Zi, Mi, D) =
∏

j detected
(dij=1)

pij ·
∏

j missing
(dij=0)

(1 − pij) (10)

– p({Zi}, {Mi}|D) is the prior on detecting objects {Mi} in poses {Zi}. We
model this prior by a uniform density over frame transformations and com-
binations of model objects in the scene. Thus, this term is dropped in the
implementation presented here.

4 Hypothesis Search

The recognition process consists of finding the hypothesis H that maximizes
v′(H). Unfortunately, due to the size of the hypothesis space H, it is not possible
to evaluate v′(H) for each H ∈ H. Early work by Grimson (e.g. [14]) showed the
exponential growth of the search tree and the need for hypotheses pruning. Here,
we use the A* search technique [10,11] to incrementally construct a reasonable
hypothesis while only examining a small fraction of the hypothesis space.

In constructing incrementally a solution, we introduce the notion of a partial
hypothesis to refer to a partial specification of a hypothesis. In particular, a par-
tial hypothesis specifies a set of models {Mi} and their corresponding poses {Zi}
as well as a pairing between scene features and model features. Unpaired scene
features are either marked as background or unassigned, whereas are either miss-
ing or unassigned. The partial hypothesis does not dictate how the unassigned
scene or model features are to be treated. A completion of a partial hypothesis
is a hypothesis that makes the same assignments as the partial hypothesis, but
in which there are no unassigned scene features. A completion may introduce
new models, make pairings between unassigned scene and model features, mark
unassigned scene features as background, or mark unassigned model features as
missing.

4.1 A*

We can organize the set of all partial hypotheses into a tree. The root of the tree
is the partial hypothesis containing no models and in which all scene features
are unassigned. The leaves of the tree are all complete hypotheses, (i.e. H).
Descending a branch of the tree corresponds to incrementally making decisions
about feature assignments in order to further specify a partial hypothesis.

We prioritize the exploration of the tree by computing a valuation for each
partial hypothesis. Partial hypotheses are entered into a priority queue according
to this valuation. At each step of the search procedure, the highest valuation
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partial hypothesis is dequeued and split into two new partial hypotheses. In one
of these new hypotheses, a certain feature assignment is made. In the other new
hypothesis, that feature assignment is expressly forbidden from occuring. This
binary splitting ensures that a search of the hypothesis tree visits each partial
hypothesis at most once.

4.2 Partial Hypothesis Valuation

To produce an effective search strategy, the valuation of a partial hypothesis
should reflect the valuation of its best possible completion. If these two quan-
tities were equal, the search would immediately descend the tree to the best
complete hypothesis. However, it is impossible to compute the valuation of the
best possible completion before actually finding this completion, which is the
task of the search in the first place. Therefore, we will define the valuation of a
partial hypothesis using a heuristic.

The heuristic we use can be thought of as the “optimistic worst-case sce-
nario”. It is the valuation of the partial hypothesis’s completion in which all
unassigned scene features are marked as background and all unassigned model
features are dropped from the model. Unassigned model features are counted as
neither detected nor missing. They do not enter into probability computations.

Note that this choice of heuristic is coherent with the expression for the valu-
ation of a complete hypothesis. As the algorithm makes assignments in a partial
hypothesis, its valuation approaches the valuations of its possible completions.
Furthermore, this valuation is likely to serve as a decent guide for the search pro-
cedure. It is a measure of the minimum performance offered by a branch under
the assumption that further assignments along that branch will do no harm.

4.3 Initialization

A list of potential database feature matches is created for each scene feature
based on appearance. The empty partial hypothesis is split into two based on
the best appearance match. One subbranch accepts this match, the other rejects
it and forbids it.

4.4 Search Step

The partial hypothesis H with the highest valuation is dequeued. If H contains
a model in which there are unassigned features, the algorithm picks one of these
unassigned model features. A similar splitting to that in the initialization step
is performed: one subbranch adds the match to the hypothesis, and the other
forbids it as far as this hypothesis is concerned. In order to save computation
time, we greedily follow only the branch that results in a better valuation. This
is reasonable for rigid models in which the pose constraints should allow very
few possibilities for a correct match in the scene.

If there are no unassigned model features in H, we pick the unassigned scene
feature with the best appearance based match and split the hypothesis on this
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assignment: one subbranch accepts the match and adds the corresponding model
to the hypothesis, the other rejects the match, and adds no information regarding
this model.

In both of the above cases, the resulting partial hypothesis or hypotheses are
enqueued and the process is repeated.

4.5 Termination

The search process corresponding to one object terminates when no more unas-
signed features are available in this object. The scene features paired with this
object are removed, and the search iterates with the remaining scene features.
If all model objects have been considered without fully explaining the scene, the
unassigned scene features are considered as background detections.

Fig. 1. Sketch of hypothesis build: a) Initialization: The best appearance match in the
database is identified for each scene feature. Each such match is entered in the queue
as a partial hypothesis. b) Search for a new match in the partial hypothesis which has
highest valuation: we look for an unassigned feature in the same model image Mi. This
feature is mapped to its best appearance match in the scene, if this new pairing is
coherent with the pose predicted by the hypothesis - otherwise, the match is rejected.
The pose is then updated based on the new match.

5 Learning

Several components of the probabilistic framework given above must be inferred
from training examples. Since our system requires only a single training image
per object, we cannot estimate separate appearance and pose densities for each
feature in an object model. We therefore utilize the entire feature database in
estimating global probability densities which can be applied to all features. Note
that only training images are used here, not the test set.
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5.1 Background Features

To estimate the background appearance density, we assume that a typical back-
ground feature looks like a feature found in the database. The background, like
the database, is composed of objects. It just happens that these objects are
not in the database. A probability density for the appearance of features in
the database describes the appearance of background detections in a scene. We
model this density with a full covariance gaussian density. Letting µbg and Σbg

denote the mean and covariance of the database feature appearance vectors,

pbg(x|D) =
1

(2π)
d
2 |Σbg|e

− 1
2 (xapp−µbg)T Σ−1

bg (xapp−µbg) (11)

where xapp is the appearance vector of feature x and d the dimension of appear-
ance vectors.

A typical model generates 500 to 1000 features, resulting for a database with
100 objects in a total of 50,000 to 100,000 training examples for the background
appearance density. As our experiments used 128-dimensional appearance vec-
tors, this was a sufficient number of examples for estimating the gaussian density.

The mean number of background detections per unit area, λ, is program-
mer specified in our current implementation. When running Lowe’s detection
method on our training and test sets, 80% of the detections were assigned to
the background, therefore we chose this same fraction for λ. This parameter has
only weakly effects on the total probability as the terms for pose and appearance
dominate.

5.2 Foreground Features

The foreground appearance density must describe how closely a scene feature
resembles the model feature to which it is matched. This density is difficult to
estimate as in principle, it involves establishing hundreds of thousands of ground
truth matches by hand. A possible shortcut is looking at statistics coming from
planar scenes seen from different viewpoints [15], or synthetic deformations of
an image [3].

Here we followed a different approach: we approximate a good match for a
feature by its closest match in appearance in the database. The difference in
appearance between correctly matched foreground features is modeled with a
gaussian density with full covariance matrix, and the covariance matrix Σfg is
estimated from the difference in appearance between database features paired
in such a manner. This yields

pfg(x|hi,di, Mi, D) =
1

(2π)
d
2 |Σfg|e

− 1
2 (xapp−yapp)T Σ−1

fg (xapp−yapp) (12)

where y = h−1
i (x) is the model feature paired with scene feature x.

Unlike background feature pose which are modeled with a uniform distribu-
tion in equation (5), foreground features are expected to lie in a pose consistent
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with that of their corresponding model. In particular, model pose Zi predicts a
scene location, orientation, and scale for each feature of Mi. If the hypothesis
matches scene feature x to model feature y, and Zi maps y to z, we write

ppose(x|hi,di, Zi, Mi, D) = Gloc(x|z) · Gθ(x|z) · Gs(x|z) · (13)

where Gloc, Gθ, and Gs are Gaussian densities for location, orientation, and log
scale, respectively, with means given by the pose of z. The covariance parameters
of these densities are currently specified by hand, with values of 20 pixels for
location, half an octave for log-scale and 60 degrees for orientation (orientation
was quite unreliable).

We determine the model pose Zi by solving for the similarity transform
that minimizes, in the least-squares sense, the distance between observed and
predicted locations of foreground model features. Zi is updated whenever a pre-
viously unassigned feature of Mi is matched.

The probability pij of detecting individual features is set to the same value
across features and models. A reasonable choice is the fraction of features that
are typically needed to produce a reliable pose estimate. This value was obtained
by running Lowe’s detection method on our training and test sets: in average
20% of a model features were found in a test image containing this model. This
value of 20% was used for pij .

Fig. 2. Example of result for a textured object included in a complex scene (only
one detection shown here). According to this hypothesis, the box displayed in the
model image is transformed into the box shown in the scene image. a) Initial object
b) Result of Lowe’s algorithm. Since the stuffed bear is a textured object, detection of
similar features can occur in many locations, leading to incorrect pairings. As a result,
the frame transformation, estimated only from the features positions, is inaccurate. c)
Result of the probabilistic search.
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6 Experimental Results

In the absence of “standard” training and test sets of images containing both
objects and clutter, we compare the performance of our probabilistic search
method to that of Lowe’s algorithm on a training set consisting of 100 images
of toys and common kitchen items, with a single image per object. The test set
contained images of single objects, as well as complicated scenes that include
several objects, ranging from 1 to 9 objects. It included 80 test images, with
a total of 254 objects to be detected (each object was considered as one de-
tection). Some test images didn’t contain any learned object. In that case all
feature detections are expected to be assigned to the background. We used a
resolution of 480 × 320 for training images and test images of single objects,
and 800 × 533 for complex scenes. All images were taken in a kitchen, with
an off-the-shelf digital camera, and no precautions were taken with respect to
lighting conditions, viewpoint angle and background. In particular, the lighting
conditions varied significantly between training and test images, and viewing
angles varied between 0 and 180 degrees (picture of the back of an object taken
as test while the corresponding model was a picture of the front of the object).
No image was manually segmented, and the proportion of features generated
by an object in a model or test image, ranged from 10%to 80% (80% for a sin-
gle object occupying most of the image). The database is available online from
http://www.vision.caltech.edu/html-files/archive.html.

Our algorithm achieved a detection performance similar to Lowe’s system,
with a detection rate of 85%. Figure 3 shows ROC curves for both methods.
The threshold used is the accuracy of the best hypothesis at the end of the
search. Since our method verifies the coherence of each match by scoring partial
hypothesis, our false alarm rate was lower than that of Lowe’s method.

In order to measure the accuracy of the pose transformations estimated by
each method, the training and test images were manually marked with ground
truth information. An ellipse was fitted, and a canonical orientation was chosen,
for each object. We measured the accuracy of the transformation with the dis-
tance in pixels, between the predicted positions of the ellipses in a scene, and
the ground truth previously recorded. The error was averaged across points reg-
ularly spaced on the ellipse and across test images. We obtained a mean error of
45 pixels for our method, and 56 pixels for Lowe’s algorithm.

Our approach requires to examine and evaluate a number of partial and
complete hypotheses that is much higher than with Lowe’s method. As a result,
the probabilistic algorithm is the slower of the two methods. Our unoptimized
code for Lowe’s method takes in average 2 seconds on a Pentium 4 running at
2.4GHz to identify objects in a 800×533 image, while our probabilistic algorithm
requires on average 10 seconds for the same image.

In practice, the A* search achieves only little pruning, typically 10-20% of the
branches are eliminated. Therefore, the valuation heuristic was coupled with a
stopping criterion (depth-first completion of the partial hypothesis that performs
best after 4000 iterations). The main computational benefit of the A* method
in this paper, is to introduce a framework for evaluating partial hypotheses in a
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Fig. 3. ROC based on the accuracy of the pose estimated by the best hypothesis. It
measures how much the hypothesis’ prediction of the object position, differs from the
ground truth. This quantity can be measured for both recognition systems.

Fig. 4. Other example of recognition in a complex environment. a) and b) present
one match obtained by our probabilistic search, c) and d) are the best result from
Lowe’s voting approach. Since Lowe’s method does not evaluate geometric and ap-
pearance quality of hypotheses, numerous incorrect correspondences are accepted. As
a result, the estimated frame position is inaccurate. The probabilistic search accepts
only matches that are geometrically coherent, and leads to accurate pose parameters.
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Fig. 5. Samples from our training and test sets. The red boxes show locations where
models were identified

way that is coherent with the valuation of complete hypotheses, and a ranking
of hypotheses that leads to efficient search.

7 Discussion and Conclusion

We have presented a new probabilistic model and efficient search strategy for
recognizing multiple objects in images. Our model provides a unified view of two
previous lines of research: it may be thought as a probabilistic interpretation of
David Lowe’s work [7,8] or, conversely, as a special case of the constellation
model [4] where many of the parameters are pooled amongst models, rather
than learned individually.

Our experiments indicate that the system we propose achieves the same
detection rate as Lowe’s algorithm with significantly lower false alarm rates.
The localization error of detected objects is also smaller. The price to be paid
is a slower processing time, although this may not be a significant issue since
our code is currently not optimized for speed. The front-end of both systems
was identical (feature detection, feature representation, feature matching) and
therefore all measurable differences are to be ascribed to the probabilistic model
and to the matching algorithm.

It is clear that the heuristic we chose for ranking partial hypotheses is suscep-
tible of improvement. In choosing it we followed intuition rather than a principled
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approach. This is obviously an area for further investigation. Developing better
techniques for estimating the probability density function of appearance and pose
error of both foreground and background features is another issue deserving of
further attention.
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