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Abstract. Detecting low-level image features such as edges and ridges
with spatial filters is improved if the scale of the features are known
a priori. Scale-space representations and wavelet pyramids address the
problem by using filters over multiple scales. However, the scales of the
filters are still fixed beforehand and the number of scales is limited by
computational power. The filtering operations are thus not adapted to
detect image structures at their optimal or intrinsic scales. We adopt the
steering approach to obtain filter responses at arbitrary scales from a
small set of filters at scales chosen to accurately sample the “scale space”
within a given range. In particular, we use the Moore-Penrose inverse to
learn the steering coefficients, which we then regress by polynomial func-
tion fitting to the scale parameter in order to steer the filter responses
continuously across scales. We show that the extrema of the polynomial
steering functions can be easily computed to detect interesting features
such as phase-independent energy maxima. Such points of energy max-
ima in our α-scale-space correspond to the intrinsic scale of the filtered
image structures. We apply the technique to several well-known images
to segment image structures which are mostly characterised by their in-
trinsic scale.

1 Introduction

Low-level feature detection and extraction by spatial filters is used in many fields
such as image analysis, image representation, image compression and computer
vision. In applications where the aim of the spatial filtering is to reconstruct
the original image, e.g. compression, the choice of filter size and scale affect the
spatial frequency of the encoded and reconstructed image structures. A set of
filters at different scales can be employed to encode coarse, medium and fine
structures in the image [1]. However, an image structure may contribute sig-
nificantly to multiple filter responses over different scales when the filter scale
does not match the scale of the image structure. While this does not affect the
reconstruction process, inferring the presence of low-level features from filter re-
sponses becomes difficult because of the ambiguity arising from the sub-optimal
encoding of image structures and the possible encoding of multiple structures
into a single filter response when incorrect filter scales are used.
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The problem of incorrect filter scale has previously been addressed by filter-
ing over a greater number of finely-sampled scales. Fdez-Valdivia [2] constructed
a bank of 2D Gabor filters over multiple orientations and scales and used the
normalised 2D power spectrum over the filter responses to detect activation at
scales where image structures exist. Lindeberg [3] uses extrema over scales in
normalised scale-space to optimally detect image structures at their intrinsic
scale. Kadir and Brady [4] have shown that normalised maxima of entropy of
low-level features in images can be used to detect salient image structures. There
is also evidence that neurons in the primary visual cortex of Old World mon-
keys “tune” their spatial frequency response over time to detect features from
coarse to fine scale [5]. This spatial frequency tuning highlights the importance
of searching over a range of scales to optimally detect image features.

The main problem with these approaches is that exhaustive filtering with
kernels over a wide range of finely-sampled scales is computationally intensive
and inefficient. Fast implementations of scale selection by searching for scale-
space maxima has been proposed by [6,7] using quadratic interpolation of the
filter responses across scales. On the other hand, Freeman and Adelson [8] de-
vised an analytical method for linearly combining all the responses of a small
set of oriented basis filters to obtain filter responses over all orientations. While
linearly combining the basis filter responses over orientations results in a Taylor
series expansion, an analytical formulation for steering filter responses across
the scale parameter is not so forthcoming because of the unbounded nature of
the problem, i.e. filter scales can theoretically increase to infinity. In practice,
the maximum filter scale is limited by the size of the image. Perona [9] used
the Singular Value Decomposition to design scale-steerable “deformable” filters.
Bharath [10] constructed exemplar vectors of the radial frequency response of
filters across scales and used a Moore-Penrose generalised inverse to learn the
steering coefficients through simple matrix algebra. We modify the technique by
learning the steering coefficients from radial response exemplars in the spatial
domain and we parameterise the coefficients in terms of scale through regressive
fitting of polynomial functions.

In Section 2, we describe a method for specifying the angular and radial
frequency characteristics of filter kernels in the Fourier domain to construct
an appropriate scale-space and then generating filter mask coefficients in the
spatial domain by the inverse discrete Fourier transform. In Section 3, we exploit
the ability to synthesise filters of arbitrary radial frequency responses and thus
spatial scale in order to build two exemplar matrices containing desired radial
responses in the spatial domain over a finely-sampled range of scales and over
a small fixed set of basis scales respectively. We use the Moore-Penrose inverse
to learn the linear combination coefficients to compute the former from the
latter. The linear combination coefficients are then parameterised over scale by
polynomial functions, yielding continuous scale steering functions. After filtering
an image, we collapse in Section 4 the fields of filter responses of the basis
set and the individual polynomial steering functions for each basis filter into
a two-dimensional field of single polynomial steering functions. The maxima of
these single polynomial steering functions can be easily obtained by computing
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the roots of their derivative. Although we cannot directly steer the energy of a
pair of complex filters in quadrature using this method, we can still compute
the location of the maxima of the square of the energy which is the same as
the location of the maxima of the energy. We show that such energy maxima
correspond to the intrinsic scale of the image structure being filtered in a similar
manner to [2,3,4]. We finally show how the scale at which energy maxima occurs
in an image can be used to segment a class of well-known natural images where
intrinsic scale plays an important role in defining structures in the image.

2 Design of Polar Separable Filters

Characteristics of local low-level image structures at any position consist of ori-
entation, scale and phase [9]. In order to detect such structures, spatial filters
are designed with similar orientation, scale and phase characteristics. To steer
through the scale parameter, we need to design filters where the other parame-
ters are kept constant. Polar separable filter kernels allow the radial frequency
(scale) characteristic of the filters to be separately specified from the angular
frequency (orientation) characteristic [11]. Furthermore, filtering with pairs of
filter kernels in quadrature, where one filter is the Hilbert transform of the other,
yields a phase-independent “energy” response.

The polar separable filter kernel Gθ
α(ω, φ) is specified in the Fourier domain

by the radial frequency function Gα(ω) and angular frequency function Gθ(φ)
where α and θ are the scale and orientation of the desired filter respectively

Gθ
α(ω, φ) = Gα(ω)Gθ(φ) (1)

The angular frequency characteristic of the filter affects the selectivity of
its response to a specific range of orientations of image structures. The angular
power (sum of squares) of a set of oriented filters for covering orientations [0, π]
also needs to be flat in order to provide uniform coverage. We choose a third
power cosine function, clipped by a rectangular function, which gives a flat angu-
lar power response when used in a set of four orientations, i.e. θ ∈ {0, π

4 , π
2 , 3π

4 }

Gθ(φ) = cos3(φ − θ)rect(φ − θ) (2)

where rect is the unit rectangular function

rect(φ) =
{

1 , if |φ| ≤ π
2

0 , otherwise (3)

The radial frequency characteristic of the filter affects the spread of its power
spectra over scales. Traditional linear scale-space representations use derivatives
of Gaussian in the spatial domain [12]. However, the amplitude of Gaussian
spatial derivatives decrease over scales for scaled versions of the same image
structure, rendering comparison of filter responses across scales more complex.
Lindeberg [3] thus introduces an Lp normalisation of the scale-space filter re-
sponses so that their maxima corresponds to the optimal detection of image
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structures at their intrinsic scale. On the other hand, Poisson kernels have re-
cently been investigated for the consistency of filter behaviour over scales [13]. We
adopt Erlang functions [14] of order n = 7 and scale α, which possess similar ra-
dial frequency responses to Poisson kernels and also benefit from quasi-invariant
energy response over scales α avoiding the need for scale normalisation (which
we do not show here due to lack of space)

Gα(ω) =
(αe

n

)n

ωne−αω (4)

The inverse discrete Fourier transform of Gθ
α(ω, φ) yields a complex filter

gθ
α(ω, φ) in the spatial domain where the real and imaginary parts of the kernel

are in quadrature. The magnitude of the response of this complex filter, when
convolved with an image, provides a phase-independent “energy” response [11].
Following this approach, complex filter kernels of arbitrary orientation and scale
can be synthesised.

3 Steering in Scale

A family of spatial filter kernels with similar orientation but varying scales can
be obtained by varying the α scale parameter in Eqn (4). A scale-space repre-
sentation similar to [1] can easily be constructed, providing a continuum of filter
responses across scales. However, filtering at very small scale intervals to obtain
a continuum of filter responses is a computationally intensive operation. Per-
ona [9] approached the problem of designing a steerable basis filter set by first
choosing the number of filters and thus the number of filtering operations. Then,
Singular Value Decomposition is used to synthesise the best filter kernels for a
certain detection task such as steering across scales. In contrast, we start with
polar separable filter kernels where the desired orientation and radial character-
istics are pre-specified and use the method of Bharath [15] to find the steering
coefficients. Bharath generated radial frequency responses across many scales at
very fine intervals and used a Moore-Penrose generalised inverse to learn the
steering coefficients for obtaining those responses from the linear combination of
a small set of basis filters. He varied both the scale parameter α and the order
n of the Erlang functions in order to construct his basis set.

To create steerable filters, we first assume that the steering of filter responses
across scales can be obtained by linearly combining the responses fθ

αi
(x, y), where

i ∈ {1, . . . , N}, of a small set of N basis filters Gθ
αi

(x, y) as

fθ
α(x, y) =

N∑
i=1

si,αfθ
αi

(x, y) (5)

where si,α is the steering coefficient of filter i for scale α. We can also formulate
Eqn (5) into matrix form

F = FBS (6)



486 J. Ng and A.A. Bharath

(a) (b)

(c) (d)

Fig. 1. From left to right: (a) Radial frequency response in the Fourier domain over
scales α; (b) Real part of the radial response in the spatial domain over scales; (c)
Error in the real part of the steered radial response from basis filters at scales 0.5, 1.0,
2.0, 3.0, 4.0; (d) Error in the real part of the steered radial response from basis filters
at scales 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 4.0. Please note that the range of radial responses
in (b) is [−7.69, 13.31].

where F is a matrix of column vectors of the radial responses (Gα(ω)) in the
spatial domain) across scales [α1, αN ] at very small intervals, FB is a matrix of
column vectors of radial responses from the basis set with scales {α1, . . . , αN}
and S is a matrix of column vectors of steering coefficients to obtain each column
of F from a linear combination of FB. Given that we can synthesise the matrix
F by varying the scale parameter α in Eqn (4) in very small increments between
[α1, αN ] and we can also synthesise FB, we obtain S by the Moore-Penrose
generalised inverse

S = FB
†F (7)

where

B† = (BT B)−1BT (8)
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We can also evaluate the accuracy of the learnt steering solution for a given basis
filter set by re-evaluating the steered radial responses

F̂ = FBS (9)

and thus empirically choose the scales αi of the basis filter set to obtain an
acceptable steering accuracy.

In order to select the scales of our basis filter set, we observe that the radial
frequency response Gα(ω) changes smoothly with the scale parameter α as shown
in Fig. 1(a). The change in radial response in the frequency domain increases
exponentially with α. In the spatial domain (Fig. 1(b)), this translates into an
inverse exponential rate of change for the real part of the radial response, where
most of the change occurs at small values of α. Therefore, we dedicate more
basis filters to the finer scales than the coarser scales. In Fig. 1(c), we show the
steering error F̂−F resulting from filter scales chosen at integer intervals (except
the finest scale to avoid any aliasing), i.e. scales αi ∈ {0.5, 1.0, 2.0, 3.0, 4.0}. The
steering errors occur mostly at the finer scales because of the scaling properties
of the Erlang function. As we dedicate more basis filters to the finer scales,
i.e. αi ∈ {0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0}, the steering errors are spread out more
evenly and the magnitude of the errors is significantly reduced. We henceforth
use the latter set of scales for our basis filters. The size of the filter kernels in
the spatial domain range from 9× 9 to 60× 60. Fig. 1 suggests that the range of
scales over which the filter responses can be steered can be efficiently increased
by adding coarser-scale basis filters over larger intervals of α.

Each N -element column of S in Eqn (7) contains the steering coefficients for
the N basis filters to obtain filter responses at the corresponding scale α. There-
fore, each of the N rows of S contains the finely sampled steering coefficients
across scales for the N basis filters. We fit 12th order polynomial functions to
regress the steering coefficients for each basis filter to the scale parameter α.
We thus replace the steering coefficients si,α in Eqn (5) by polynomial steering
functions1 si(α) with polynomial coefficients cfpi where p ∈ {0, . . . , 12}

si(α) = cf12i α12 + . . . + cf1i α + cf0i (10)

to obtain

fθ
α(x, y) =

N∑
i=1

si(α)fθ
αi

(x, y) (11)

We show scale steering results on Jaehne’s test image of radial cosine modu-
lation with increasing frequency from the centre in Fig. 2. In order to show the
accuracy of the complex steered responses, we show the energy (defined below
in Eqn (16)) of the responses, which is independent of the phase of the cosine
modulation, for orientation θ = 0.

1 We refer to the polynomial functions which provide the steering coefficients for a
given basis filter from a scale parameter alpha as a steering function
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(a)

(b) (c) (d) (e)

(f) (g) (h)

Fig. 2. From left to right: (a) Jaehne’s test image with varying radial frequency; (b)-(e)
Energy of the complex basis filter responses at scales 1.0, 1.5, 2 and 3 for orientation
θ = 0 (vertical edges); and (f)-(h) Energy of the steered filter responses at intermediate
scales 1.25, 1.75 and 2.5 for orientation θ = 0.

4 Detecting Intrinsic Scale

The polynomial steering functions allow one to obtain filter responses at any scale
within the range of scales of the basis filter set. Kadir and Brady [4] have shown
that normalised maxima of entropy over scales can be used to detect salient
regions in images. Lindeberg [3] used normalised extrema in scale-space to detect
edges and ridges more reliably. The formulation of the steering functions si(α)
in terms of polynomial functions of α lends itself well to the detection of global
maxima by analytically finding the roots of the derivatives of the polynomials,
rather than exhaustively performing operations over multiple scales to detect
maxima as in the previous aforementioned works.

Once the complex filter responses fθ
α(x, y) have been computed over an image,

they can be treated as constants. A polynomial function multiplied by a constant
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Fig. 3. Scale at which energy maxima were detected in Jaehne’s test image, corre-
sponding to the intrinsic scale function used to generate the test pattern. Note: Some
noise at the borders remains even though filtering was done with border reflection.

results in a new polynomial function where the coefficients are scaled by the
constant. We can thus multiply our polynomial steering functions si(α) by our
field of filter response constants fθ

α(x, y) in Eqn (11) to obtain fields of polynomial
steering functions for locations (x, y) in the image

fθ
α(x, y) =

N∑
i=1

sθ
i (α, x, y) (12)

where

sθ
i (α, x, y) =

[
cf12i fθ

α(x, y)
]
α12 + . . . +

[
cf1i f

θ
α(x, y)

]
α +

[
cf0i f

θ
α(x, y)

]
(13)

The filter responses over scales (Eqn (12)) can be further simplified by summing
the polynomial functions sθ

i (α, x, y) (adding their coefficients) together for all
basis filters i to obtain a field of single polynomial steering functions

fθ
α(x, y) = sθ(α, x, y) (14)

where

sθ(α, x, y) =

[
N∑

i=1

cf12i fθ
α(x, y)

]
α12+. . .+

[
N∑

i=1

cf1i f
θ
α(x, y)

]
α+

[
N∑

i=1

cf0i f
θ
α(x, y)

]

(15)
In essence, the weighted summation of a set of polynomial functions of the

same variable α for steering across scales (Eqn (11)) can be simplified into a single
polynomial function by weighting and summing the polynomial coefficients only
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(a) (b)

(c) (d) (e) (f)

Fig. 4. From left to right, top to bottom:(a) Barbara image; (b) Map of energy maxima
over scales (black is 0.5 and white is 4); Segmented Barbara image where energy maxima
lies between scales (c) 0.5 and 1, (d) 1 and 2 , (e) 2 and 3, and (f) 3 and 4.

(commutation of operations). Finding derivatives of polynomial functions again
only involves simple operations on the coefficients.

In order to search for phase-independent maxima of filter responses over
scales, whereby ridge-like or edge-like image structures are treated equally, we
need to obtain a steering equation for the energy of the complex response. The
phase-independent “energy” response of a complex quadrature filter is obtained
from the magnitude of the filter response fθ

α(x, y) [11]

Eθ
α(x, y) =

√
real(fθ

α(x, y))2 + imag(fθ
α(x, y))2 (16)

We can finally collapse the field of complex steering polynomial functions
(Eqn (14)) by squaring2 the real and imaginary parts of the polynomial steering
functions in fθ(α, x, y) and adding them together. Obtaining the square root of a
polynomial function is not a trivial task but fortunately, it is not needed because
our final steering function (Eθ

α(x, y))2 will have maxima at the same scales as
Eθ

α(x, y). To obtain an orientation-independent measure of energy maxima over
scales, we select the maximum of the energy maxima in each of the four direc-
tions θ ∈ {0, π

4 , π
2 , 3π

4 }. We show the results of the detection of energy maxima
2 If the polynomial is represented as a vector of coefficients, convolving the vector with

itself yields the square of the polynomial.
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(a) (b)

(c) (d) (e) (f)

Fig. 5. From left to right, top to bottom:(a) Mandrill image; (b) Map of energy maxima
over scales (black is 0.5 and white is 4); Segmented Mandrill image where energy
maxima lies between scales (c) 0.5 and 1, (d) 1 and 2 , (e) 2 and 3, and (f) 3 and 4.

over scales (and a small set of fixed directions) in Jaehne’s test image with vary-
ing radial frequency (scale of structures) in Fig. 3. We have used reflection along
the borders of the image in order to obtain filtering results near the borders.

5 Experiments

We have applied our scale steering technique to detect maxima of phase-
independent energy in popular images, such as Barbara and Mandrill, and other
images of natural scenes where intrinsic scale plays an important part in iden-
tifying image structures. We show the scales at which energy maxima occur in
different parts of the image and show preliminary results in coarsely segmenting
the image into four bands: (a) 0.5 − 1.0 for very fine scale structures such as
texture, (b) 1.0 − 2.0 for fine scale structures, (c) 2.0 − 3.0 for medium scale
structures, and (d) 3.0 − 4.0 for coarse scale structures such as homogenous
regions.

In the case of the Barbara image (Fig. 4), the stripes of Barbara’s head-scarf
and the hatched pattern of the chair in the back have been identified as very
fine scale structures, shown in Fig. 4(c). Some folds of the head-scarf, the eyes
and the mouth of Barbara have been segmented into the fine scale structures
in Fig. 4(d). Barbara’s chin and a blurred patch of the striped scarf have been
segmented into medium scale structures. Finally, the forehead, the nose, the
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(a) (b)

(c) (d) (e) (f)

Fig. 6. From left to right, top to bottom:(a) Waterfall image; (b) Map of energy maxima
over scales (black is 0.5 and white is 4); Segmented Waterfall image where energy
maxima lies between scales (c) 0.5 and 1, (d) 1 and 2 , (e) 2 and 3, and (f) 3 and 4.

cheeks, the hands, uniform parts of the wall and floor, and a small piece of scarf
and hatched chair were segmented into coarse scale structures in Fig. 4(f).

The ability to segment facial features based on their intrinsic scale can further
be seen on the Mandrill image in Fig. 5. The fur, the whiskers and the fine
edges are segmented into (c) very fine scale structures. Parts of the nose and
some fur are segmented into (d) fine scale structures. Interestingly, the sides of
the nose and the eyes are segmented into (e) medium scale structures and the
nose is mainly segmented into (f) a coarse scale structure. In Fig. 6, we show
how the main waterfall feature is segmented into a (f) coarse scale structure
while the trees are segmented into (c) very fine and (d) fine scale structures.
Image structures in the sea picture (Fig. 7) are also broken down into (f) coarse
structures such as the big waves and the sky, (e) medium structures such as the
horizon and some clouds, (c) and (d) for the smaller waves.

6 Conclusion and Future Work

Spatial filters give the highest response when their scale matches that of the
image structure being filtered. Filtering over multiple scales such as in scale-space
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(a) (b)

(c) (d) (e) (f)

Fig. 7. From left to right, top to bottom:(a) Sea image; (b) Map of energy maxima
over scales (black is 0.5 and white is 4); Segmented Sea image where energy maxima
lies between scales (c) 0.5 and 1, (d) 1 and 2 , (e) 2 and 3, and (f) 3 and 4. Note that
the segmentation has separated the clouds which are present in the sky.

representations and pyramids does not fully address the problem as the number
of scales is usually constrained by computational power. We have described how
to synthesise polar separable filters which possess quasi-invariant responses over
scale by adopting Erlang functions as radial frequency characteristic. We have
also shown how to create a basis filter set, learn the scale steering coefficients
and evaluate the accuracy of the steering solution. The main novelty of our work
lies in regressing the scale steering coefficients with polynomial functions and
exploiting the ease of collapsing the linear combination of polynomial steering
functions into a single polynomial function whose extrema can be analytically
computed from the roots of its derivative. We have also shown that maxima of
the energy response of our complex filters over scales correspond to the intrinsic
scales of image structures both in Jaehne’s test image and in natural images.

We have shown results where the global energy maxima over scales were found
in each direction first and then the maximum energy over all filtered directions
was chosen for determining intrinsic scale. We have not used the remaining
roots of the polynomial functions which provide scale information about the
other local energy maxima, minima and inflection points occurring both in the
direction of greatest energy and the other directions. This information could
potentially improve the segmentation results that we provided.
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