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Abstract. We propose a solution to the problem of inferring the depth
map, radiance and motion of a scene from a collection of motion-
blurred and defocused images. We model motion-blur and defocus as
an anisotropic diffusion process, whose initial conditions depend on the
radiance and whose diffusion tensor encodes the shape of the scene, the
motion field and the optics parameters. We show that this model is well-
posed and propose an efficient algorithm to infer the unknowns of the
model. Inference is performed by minimizing the discrepancy between the
measured blurred images and the ones synthesized via forward diffusion.
Since the problem is ill-posed, we also introduce additional Tikhonov
regularization terms. The resulting method is fast and robust to noise as
shown by experiments with both synthetic and real data.

1 Introduction

We consider the problem of recovering the motion, depth map and radiance of
a scene from a collection of defocused and motion-blurred images. Defocus is
commonly encountered when using cameras with a finite aperture lens, while
motion-blur is common when the imaging system is moving. To the best of
our knowledge, we are the first to address the above problem. Typically, this
problem is approached by considering images that are affected either by defocus
or by motion-blur alone. The first case is divided into two fields of research
depending on which object one wants to recover. When we are interested in
recovering the radiance from defocused (and possibly downsampled) images, we
are solving a super-resolution problem [2]. If we are interested in recovering
the depth map of the scene (and possibly the radiance), then we are solving
the so-called problem of shape from defocus [8,12,15,17,19,6].The second case
corresponds to the problem of motion deblurring, where one is mainly interested
in reconstructing the radiance, which can be thought of as the unblurred or ideal
image, of a scene under the assumptions of Lambertian reflection and uniform
illumination [3,4,14]. Motion deblurring is a problem of blind deconvolution [5]
or blind image restoration [21], and, therefore, is related to a large body of
literature [20].
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1.1 Contributions of This Paper

The contribution of this paper is twofold: to link the estimation of the depth
map of a scene to the recovery of the radiance and to introduce a simple and
computationally efficient imaging model for images that are both defocused and
motion-blurred. We model motion-blur via the depth map of the scene and the
rigid motion of the camera, which requires at most 6 scalar numbers for 2 images
(see section 2.2). This model avoids the artifacts of employing oversimplified mo-
tion models (e.g. each point on the image plane moves with the same constant
velocity) and yields better estimates than motion models where the motion field
is completely unconstrained, due to its lower dimensionality. The second con-
tribution of this paper is the introduction of a novel model for defocused and
motion-blurred images in the framework of anisotropic diffusion, in the spirit of
[10]. The literature on anisotropic diffusion is quite substantial and, therefore,
this work relates also to [13,18,16].

We pose the inference problem as the minimization of the discrepancy be-
tween the data and the model (i.e. the final value of the anisotropic diffusion for
several different focal settings). The problem is ill-posed, it consists in finding
a diffusion tensor and an unknown initial value from final values of parabolic
equations. For this sake we introduce Tikhonov-type regularization, which also
remedies an unwanted effect with respect to motion-blur, where a local minimum
would be attained for zero motion in the absence of suitable regularization (see
section 3).

2 A General Model for Defocus and Motion-Blur

2.1 An Imaging Model for Space-Varying Defocus

Images captured with a camera are measurements of energy emitted from the
scene. We represent an image with a function J : Ω ⊂ R

2 �→ [0, ∞), that maps
pixels on the image plane to energy values. We assume that Ω is a bounded
domain with piecewise smooth boundary ∂Ω. The intensity of the measured
energy depends on the distance of the objects in the scene from the camera and
the reflectance properties of their surfaces. We describe the surfaces of the objects
with a function s : R

2 �→ [0, ∞), and the reflectance with another function
r : R

2 �→ [0, ∞); s assigns a depth value to each pixel coordinate and it is called
depth map. Similarly, r assigns an energy value to each point on the depth map
s and it is called, with an abuse of terminology1, radiance. Furthermore, we
1 In the context of radiometry, the term radiance refers to a more complex object that

describes energy emitted along a certain direction, per solid angle, per foreshortened
area and per time instant. However, in our case, since we do not change vantage
point and the size of the optics and the CCD are considerably smaller than the size
of the scene, each pixel will collect energy mostly from a single direction, and the
change in the solid angle between different pixels is approximately negligible. Hence,
a function of the position on the surface of the scene, which is the one we use, suffices
to describe the variability of the radiance.
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usually know lower and upper bounds 0 < smin < smax for the depth map s,
which we may incorporate as an additional inequality constraint of the form

smin ≤ s(x) ≤ smax, ∀x ∈ Ω. (1)

The energy measured by an image J also depends on the optics of the camera.
We assume the optics can be characterized by a function h : Ω × R

2 �→ [0, ∞),
the so-called point spread function (PSF), so that an image J can be modeled
by

J(y) =
∫

h(y, x)r(x)dx. (2)

Although we did not write it explicitly, the PSF h depends on the surface s and
the parameters of the optics (see section 3 for more details).
Under the assumption that the PSF is Gaussian and that the surface s is smooth,
we can substitute the above model with a PDE whose solution u : R

2 × [0, ∞) �→
R, (x, t) �→ u(x, t), at each time t represents an image with a certain amount
of blurring. In formulas, we have that J(y) = u(y, T ), where T is related to the
amount of blurring of J . We use the following anisotropic diffusion equation:


u̇(y, t) = ∇ · (D(y)∇u(y, t)) t > 0
u(y, 0) = r(y) ∀y ∈ Ω
D(y)∇u(y, t) · n = 0

(3)

where D
.=
[

d11 d12
d21 d22

]
with dij : R

2 �→ R for i, j = 1, 2 and d12 ≡ d21, is called

diffusion tensor. We assume that dij ∈ C1(R2) (i.e. the space of functions with
continuous partial derivatives in R

2) for i, j = 1, 2, and2 D(y) ≥ 0 ∀y ∈ R
2.

The symbol ∇ is the gradient operator
[

∂
∂y1

∂
∂y2

]T
with y = [y1 y2]T , and

the symbol ∇· is the divergence operator
∑2

i=1
∂

∂yi
. n denotes the unit vector

orthogonal to ∂Ω. Notice that there is a scale ambiguity between the time T
and the determinant of the diffusion tensor D. We will set T = 1

2 to resolve this
ambiguity.

When the depth map s is a plane parallel to the image plane, the PSF h is a
Gaussian with constant covariance σ2, and it is easy to show that 2tD = σ2Id,
where Id is the 2 × 2 identity matrix. In particular, at time t = T = 1

2 we have
D = σ2Id. This model is fairly standard and was used for instance in [10].

2.2 An Imaging Model for Motion-Blur

On the image plane we measure projections of three dimensional points in the
scene. In other words, given a point X(t) = [X1(t) X2(t) X3(t)] ∈ R

3 at a time
instant t, we measure

x(t) .= [x1(t) x2(t)]T
.=
[
X1(t)
X3(t)

X2(t)
X3(t)

]T

. (4)

2 Since D is a tensor, the notation D(y) ≥ 0 means that D(y) is positive semi-definite.
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Using the projections of the points on the image plane x(t), we can write the
coordinates of a point X(t) as

X(t) = [x(t)T 1]T s(x(t)). (5)

We denote with V = [V1(t) V2(t) V3(t)]T ∈ R
3 the translational velocity and

with ω ∈ R
3 the rotational velocity of the scene. Then, it is well known that the

time derivative of the projection x satisfies (see [11] for more details):

ẋ(t) =
1

s(x(t))

[
1 0 −x1(t)
0 1 −x2(t)

]
V +

[ −1 − x2
2(t) x1(t)x2(t) −x2(t)

−x1(t)x2(t) 1 + x2
1(t) x1(t)

]
ω. (6)

We define v
.= ẋ(t) and call it the velocity field.

As we have anticipated, we restrict ourselves to a crude motion model that
only represents translations parallel to the image plane, i.e.

v(t) =
V1,2(t)
s(x(t))

(7)

where V1,2 is the velocity in focal length units. Now, recalling eq. (2), we have
that J(x+vt) denotes an image captured at time t. If the camera shutter remains
open while moving the camera with velocity V for a time interval ∆T , then the
image I we measure on the image plane can be written as:

I(x) =
1

∆T

∫ ∆T
2

− ∆T
2

J(x + vt)dt �
∫

1√
2πγ2

e
− t2

2γ2 J(x + vt)dt (8)

where γ depends on the time interval ∆T . The parameter γ can be included in
the velocity vector v since there is an ambiguity between the duration of the
integration time and the magnitude of the velocity. Therefore, we have

I(x) =
∫

1√
2π

e− t2
2 J(x + vt)dt. (9)

For simplicity, the above model has been derived for the case of a sideway trans-
lational motion, but it is straightforward to extend it to the general case of
eq. (6).

2.3 Modeling Motion-Blur and Defocus Simultaneously

In this section, we consider images where defocus and motion-blur occur simul-
taneously. In the presence of motion, a defocused image J measured at time t
can be expressed as

J(y + vt) =
∫

h(y + vt, x)r(x)dx. (10)

Following eq. (9), we obtain

I(y) =
∫

1√
2π

e− t2
2

∫
1

2πσ2 e− (y−x+vt)T (y−x+vt)
2σ2 r(x)dxdt. (11)
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If we now interchange the integration order, we can write the previous equation
in a more compact way as

I(y) =
∫

1
2π|C| 1

2
e− (y−x)T C−1(y−x)

2 r(x)dx (12)

where C = σ2Id + vvT .
Eq. (12) is also the solution of the anisotropic diffusion PDE (3) with initial con-
dition the radiance r and diffusion tensor D = C

2t . Hence, a model for defocused
and motion-blurred images is the following:




u̇(y, t) = ∇ · (D∇u(y, t)) t > 0
u(y, 0) = r(y) ∀y ∈ Ω
D∇u(y, t) · n = 0

(13)

where at time t = T = 1
2 , D = C = σ2Id + vvT . Now, it is straightforward to

extend the model to the space-varying case, and have that

D(y) = σ2(y)Id + v(y)v(y)T . (14)

In particular, when eq. (7) is satisfied, we have

D(y) = σ2(y)Id +
V1,2V

T
1,2

s2(y)
. (15)

Notice that the diffusion tensor just defined is made of two terms: σ2(y)Id and
V1,2V T

1,2
s2(y) . The first term corresponds to the isotropic component of the tensor, and

captures defocus. The second term corresponds to the anisotropic component of
the tensor, and it captures motion-blur. Furthermore, since both of the terms
are guaranteed to be always positive semi-definite, the tensor eq. (15) is positive
semi-definite too. We will use eq. (13) together with eq. (15) as our imaging
model in all subsequent sections.

2.4 Well-Posedness of the Diffusion Model

A first step in the mathematical analysis is to verify the well-definedness of
the parameter-to-output map (r, s, V1,2) �→ u(., T ), which corresponds to a well-
posedness result for the degenerate parabolic initial-boundary value problems




u̇(y, t) = ∇ · (D(y)∇u(y, t)) t > 0
u(y, 0) = r(y)
D(y)∇u(y, t) · n = 0

(16)

for diffusion tensors of the form D(y) = σ(y)2Id + V1,2V T
1,2

s(x)2 . n denotes the unit
vector orthogonal to the boundary of Ω. The following theorem guarantees the
existence of weak solutions for the direct problem:
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Theorem 1. Let r ∈ L2(Ω) and s ∈ H1(Ω) satisfies (1). Then, there exists a
unique weak solution u ∈ C(0, T ; L2(Ω)) of (16), satisfying

∫ T

0

∫
Ω

λ(y)|∇u(y, s)|2 dy ds ≤
∫

Ω

r(y)2 dy, (17)

where λ(y) ≥ 0 denotes the minimal eigenvalue of D(y).

Proof. See technical report [9].

3 Estimating Radiance, Depth, and Motion

In section 2.1 we introduced the variance σ2 of the PSF h to model defocus. The
variance σ2 depends on the depth map via σ2(x) =

(
d
2

)2 (
1 − p

(
1
F − 1

s(x)

))2
,

where d is the aperture of the camera (in pixel units), p is the distance between
the image plane and the lens plane, F is the focal length of the lens and s is the
depth map of the scene. We simultaneously collect a number N of defocused and
motion-blurred images {I1, . . . , IN} by changing the parameter p = {p1, . . . , pN}.
Notice that the parameters pi lead to different variances σ2

i (x), which affect the
isotropic component of the diffusion tensor D, but not its anisotropic component
V1,2V T

1,2
s2(x) . As shown in section 2.3 we can represent an image Ii by taking the

solution ui of eq. (13) at time t = T = 1/2 with a diffusion tensor Di(x) =

σ2
i (x)Id + V1,2V T

1,2
s2(x) , and with initial condition ui(y, 0) = r(y) ∀i = 1 . . . N .

We pose the problem of inferring the radiance r, the depth map s and the
motion field v of the scene by minimizing the following least-squares functional
with Tikhonov regularization (cf. [7])

r̂, ŝ, V̂1,2 = arg min
r,s,V1,2

N∑
i=1

∫
Ω

(ui(x, T ) − Ii(x))2 dx + α ‖r − r∗‖2 + β ‖∇s‖2 +

+γ (‖V1,2‖ − M)2 , (18)

where α, β, and γ are positive regularization parameters, r∗ is a prior3 for r and
M is a suitable positive number4. One can choose the norm ‖ · ‖ depending on
the desired space of solutions. We choose the L2 norm for the radiance and the
components of the gradient of the depth map and the �2 norm for the velocity
vector V1,2. In this functional, the first term takes into account the discrepancy
between the model and the measurements; the second and third term are classical
regularization functionals, imposing some regularity on the estimated depth map
3 We do not have a preferred prior for the radiance r. However, it is necessary to

introduce this term to guarantee that the estimated radiance does not diverge. In
practice, one can use as a prior r∗ one of the input images, or a combination of them,
and choose a very small α.

4 Intuitively, the constant M is related to the maximum degree of motion-blur that
we are willing to tolerate in the input data.
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Fig. 1. Left: cost functional for various values of V1 and V2 when γ = 0 or M = 0.
Right: cost functional for various values of V1 and V2 when γ �= 0 and M �= 0. In both
cases the cost functional eq. (18) is computed for a radiance r̂ and a depth map ŝ away
from the true radiance r and the true depth map s. Notice that on the right plot there
are two symmetric minima for V1,2. This is always the case unless the true velocity
satisfies V1,2 = 0, since the true V1,2 can be determined only up to the sign.

and penalizing large deviations of the radiance from the prior. The last term is of
rather unusual form, its main objective being to exclude V1,2 = 0 as a stationary
point. One easily checks that for γ = 0 or M = 0, V1,2 = 0 is always a stationary
point of the functional in (18), which is of course an undesirable effect. This
stationary point is removed for positive values of M and γ (see Figure 1).

3.1 Cost Functional Minimization

To minimize the cost functional (18) we employ a gradient descent flow. For
each unknown we compute a sequence converging to a local minimum of
the cost functional, i.e. we have sequences r̂(x, τ), ŝ(x, τ), V̂1,2(τ), such that
r̂(x) = lim

τ �→∞ r̂(x, τ), ŝ(x) = lim
τ �→∞ ŝ(x, τ), V̂1,2 = lim

τ �→∞ V̂1,2(τ). At each iteration
we update the unknowns by moving in the opposite direction of the gradient
of the cost functional with respect to the unknowns. In other words, we let
∂r̂(x, τ)/∂τ

.= −∇r̂E(x), ∂ŝ(x, τ)/∂τ
.= −∇ŝE(x), ∂V̂1,2(τ)/∂τ

.= −∇V̂1,2
E(x).

It can be shown that the above iterations decrease the cost functional as τ in-
creases. The computation of the above gradients is rather involved, but yields
the following formulas, that can be easily implemented numerically:

∇rE =
N∑

i=1

wi(x, 0)

∇sE = 2
N∑

i=1

∫ T

0

(
σi(x)

pi

s2(x)
Id +

V1,2V
T
1,2

s3(x)

)
∇ui(x, t) · ∇wi(x, t) dt

∇V1,2E = −
N∑

i=1

∫ T

0

∫
Ω

(
V ′

1,2V
T
1,2 + V1,2V

′T
1,2

s2(x)
∇ui(x, t) · ∇wi(x, t)) dx dt

(19)

where wi satisfies the following adjoint parabolic equation (see [9] for more de-
tails):
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


ẇi(y, t) = −∇ · (Di(y)∇wi(y, t))
wi(y, T ) = ui(y, T ) − Ii(y)
(Di(y)∇wi(y, t)) · n = 0.

(20)

4 Experiments

The algorithm presented in section 3.1 is tested on both synthetic (section 4.1)
and real (section 4.2) data. In the first case, we compare the estimated unknowns
with the ground truth and establish the performance of the algorithm for differ-
ent amounts of noise. In the second case, since we do not have the ground truth,
we only present a qualitative analysis of the results. We implement the gradient
flow equations in section 3.1 with standard finite difference schemes (see [18,1]).

4.1 Synthetic Data

In this first set of experiments, we consider a scene made of a slanted plane (see
the leftmost image in Figure 4), that has one side at 0.52m from the camera
and the opposite side at 0.85m from the camera. The slanted plane is painted
with a random texture. We define the radiance r to be the image measured on
the image plane when a pinhole lens is used (see first image from the left in
Figure 2). The second image from the left in Figure 2 has been captured when
the scene or the camera are subject to a translational motion while the camera
shutter remains open. Notice that the top portion of the image is subject to
a more severe motion-blur than the bottom part. This is due to the fact that
in this case points that are far from the camera (bottom portion of the image)
move at a slower speed than points that are close to the camera (top portion of
the image).

We simulate a camera that has focal length 0.012m and F-number 2. With
these settings we capture two images: one by focusing at 0.52m, and the other by
focusing at 0.85m. If neither the camera nor the scene are moving, we capture
the two rightmost images shown in Figure 2. Instead, if either the camera or
the scene are moving sideway, we capture the two leftmost images shown in
Figure 3. The latter two are the images we give in input to our algorithm. In
Figure 3 we show the recovered radiance when no motion-blur is taken into
account (third image from the left) and when motion-blur is taken into account
(rightmost image). As one can notice by visual inspection, the latter estimate
of the radiance is sharper than the estimate of the radiance when motion-blur
is not modeled. The improvement in the estimation of the radiance can also be
evaluated quantitatively since we have ground truth. To measure the accuracy
of the estimated radiance, we compute the following normalized RMS error:

NRMSE(φestimated, φtrue) =
‖φestimated − φtrue‖

‖φtrue‖ (21)

where φestimated is the estimated unknown, φtrue is the ground truth and ‖ · ‖
denotes the L2 norm. We obtain that the NRMSE between the true radiance
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Original Motion-blurred Two defocused images

Fig. 2. First from the left: synthetically generated radiance. Second from the left:
motion-blurred radiance. This image has been obtained by motion-blurring the syn-
thetic radiance on the left. Third and fourth from the left: defocused images from a
scene made of the synthetic radiance in Figure 2 (leftmost) and depth map in Figure 4
(leftmost) without motion-blur.

Fig. 3. First and second from the left: defocused and motion-blurred images from a
scene made of the synthetic radiance in Figure 2 (leftmost) and depth map in Figure 4
(leftmost). Third from the left: recovered radiance from the two defocused and motion-
blurred images on the left when no motion-blur is taken into account (V1,2 = 0). Fourth
from the left: recovered radiance from the two defocused and motion-blurred images
on the left when motion blur is taken into account (V1,2 �= 0).

Fig. 4. Left: true depth map of the scene. Middle: recovered depth map. Right: profile
of the recovered depth map. As can be noticed, the recovered depth map is very close
to the true depth map with the exception of the top and bottom sides. This is due to
the higher blurring that the images are subject to at these locations.

and the motion-blurred radiance (second image from the left in Figure 2) is
0.2636. When we compensate only for defocus during the reconstruction, the
NRMSE between the true radiance and the recovered radiance is 0.2642. As
expected, since the motion-blurred radiance is the best estimate possible when
we do not compensate for motion-blur, this estimated radiance cannot be more
accurate than the motion-blurred radiance. Instead, when we compensate for
both defocus and motion-blur, the NRMSE between the true radiance and the
recovered radiance is 0.2321. This shows that the outlined algorithm can restore
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Fig. 5. Left: depth map estimation for 5 levels of additive Gaussian noise. The plot
shows the error bar for 20 trials with a staircase depth map and a random radiance.
We compute the RMS error between the estimated depth and the true depth, and
normalize it with respect to the norm of the true depth (see eq. (21)). Right: radiance
estimation for 5 levels of additive Gaussian noise. As in the previous error bar, we
compute the RMS error between the true radiance and the reconstructed radiance and
then normalize it with respect to the norm of the true radiance.

Fig. 6. First and second from the left: input images of the first data set. The two
images are both defocused and motion-blurred. Motion-blur is caused by a sideway
motion of the camera. Third from the left: recovered radiance. Fourth from the left:
recovered depth map.

images that are not only defocused, but also motion-blurred. The recovered
depth map is shown in Figure 4 on the two rightmost images together with the
ground truth for direct comparison (left). The true motion is V1,2 = [0.8 0]T and
the recovered motion is [0.8079 − 0.0713]T in focal length units.

To test the performance and the robustness of the algorithm, we synthetically
generate defocused and motion-blurred images with additional Gaussian noise.
We use a scene made of a staircase depth map with 20 steps, with the first step
at 0.52m from the camera and the last step at 0.85m from the camera. As in
the previous experiment, we capture two images: one by focusing at 0.52m and
the other by focusing at 0.85m. To each of the images we add the following 5
different amounts of Gaussian noise: 0%, 0.5%, 1%, 2.5% and 5% of the radiance
magnitude. For each noise level we run 20 experiments from which we compute
the mean and the standard deviation of the NRMSE. The results are shown in
Figure 5.
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Fig. 7. First and second from the left: input images of the second data set. The two
images are both defocused and motion-blurred. Motion-blur is caused by a sideway
motion of the camera. Third from the left: recovered radiance. Fourth from the left: an
image taken without motion-blur.

Fig. 8. First from the left: estimated depth map visualized as a gray level intensity
image. Second, third and fourth from the left: visualization of the estimated depth
map from different viewing angles. The depth map is also texture mapped with the
estimated radiance.

4.2 Real Images

We test the algorithm on two data sets. The first data set is made of the two real
images shown in Figure 6. The scene is made of a box that is moving sideway. We
simultaneously capture two images with a multifocal camera kindly lent to us by
S. K. Nayar. The camera has an AF NIKKOR 35mm Nikon lens, with F-number
2.8. We capture the first image by focusing at 70mm from the camera and the
second image by focusing at 90mm from the camera. The scene lies entirely
between 70mm and 90mm. The estimated radiance is shown in Figure 6, together
with the recovered depth map. The estimated motion is V1,2 = [0.5603 0.0101]T

in units of focal length. In the second data set we use the two defocused and
motion-blurred images in Figure 7 (first and second image from the left) captured
with the same camera settings as in the first data set. The scene is composed of
a banana and a bagel and the scene is moving sideways. The estimated radiance
is shown in the third image from the left of the same figure. To visually compare
the quality of the estimated radiance, we also add the fourth image from the
left in Figure 7. This image has been obtained from about the same viewing
point when neither the camera nor the scene was moving. Hence, this image is
only subject to defocus. The reconstructed depth map is shown in Figure 8. The
first image from the left is the depth map visualized as a gray level image. Light
intensities correspond to points that are close to the camera and dark intensities
correspond to points that are far from the camera. The next three images are
visualizations of the depth map from different viewing angles with the estimated
radiance texture mapped onto it. The estimated velocity for this data set is
V1,2 = [0.9639 − 0.0572]T , that corresponds to a sideway motion.
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5 Summary and Conclusions

In this manuscript we proposed a solution to the problem of inferring the depth,
radiance and motion of a scene from a collection of motion-blurred and defocused
images. First, we presented a novel model that can take into account both defocus
and motion-blur (assuming motion is pure sideway translation), and showed that
it is well-posed. Motion-blurred and defocused images are represented as the
solution of an anisotropic diffusion equation, whose initial conditions are defined
by the radiance and whose diffusion tensor encodes the shape of the scene, the
motion field and the optics parameters. Then, we proposed an efficient algorithm
to infer the unknowns of the model. The algorithm is based on minimizing the
discrepancy between the measured blurred images and the ones synthesized via
diffusion. Since the inverse problem is ill-posed, we also introduce additional
Tikhonov regularization terms. The resulting method is fast and robust to noise
as shown in the experimental section.
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