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Abstract. Ad-hoc networks and even more intrinsic pervasive networks
face huge security lacks. In the most general case entities need to build
up a well-defined security association without any pre-established se-
cret or common security infrastructure. Under these circumstances it
turns out that without unrealistic assumptions authentication of previ-
ously unknown parties is not achievable. However, for a wide spectrum
of scenarios much weaker authentication forms are reasonable, e.g., for
routing protocols and other protocols aiming to intensify cooperation.
Like in real world when foreign subjects meet for the very first time, in-
ferring the opposites identity is impossible. Nevertheless even from this
zero common-knowledge status some minor level of trust establishment is
possible for both scenarios, in real world and on a technical level. In this
paper we will present a very light-weight still provably secure authen-
tication protocol not aiming at inferring the involved entities’ identities
but re-recognizing foreign communication partners whenever necessary.
We do not make any assumptions to the scenario, and we also have no
requirements for the devices’ abilities. For the technical realization we
propose extremely efficient security primitives applicable for nearly all
types of restricted devices. Our solution is more efficient than a public-
key operation by some orders of magnitude.

Keywords: Authentication, Pervasive Networks, Ad-hoc Networks,
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1 Introduction

Wireless ad-hoc networks and pervasive networks face huge security lacks. In
the most general case entities need to be able to establish well-defined security
associations without any pre-established secret or common security infrastruc-
ture. Unlike in military or closed networks where there is a single logical and
commonly agreed trust authority we cannot assume such a situation in the gen-
eral case. For example, assume two entities that have a certificate issued by two
different authorities. In an ad-hoc network with entities belonging to different
administrative domains there might be no pre-defined association between these
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two authorities, or the nodes might not be able to reach the authorities. In both
cases entities cannot easily establish a trust relationship.

In this paper we follow a fully infrastructure-less approach of establishing
trust relationships in pervasive networks that are highly dynamic. We define that
a network is of pure kind (or just pure) if there exist neither central services nor
does a fixed infrastructure exist, and if there are no pre-established knowledge
between two entities in a general manner. We do not assume that the network has
a special topology, specifically it might be a wireless multi-hop network that is
exposed to several attacks such as a man-in-the-middle attack. We define a weak
device to be a simple device without any further assumptions. Such assumptions
would be tamper resistance, or a unique identification number. We assume the
most general case in meaning that there is no common trusted third party (TTP),
and the ad-hoc network is indeed pure.

We define our security objective, which we call zero common-knowledge au-
thentication (ZCK) as follows: A is able to authenticate B in a zero common-
knowledge fashion if A is able to identify again the authority that runs B, i.e., B
is able to convince A that both had some relationship in the past. We also say
that A recognizes B, or that B authenticates to A. For example, if B was for-
warding a data-packet for A, then later on A is able to recognize B to forward
another packet, probably in exchange for another service. Now it is clear what
we want to achieve: ZCK authentication in a pure pervasive network consisting
of weak devices where there are no pre-established secrets, i.e., we do not use
any assumptions like tamper resistant devices, devices that are able to perform
expensive public-key operations, special access structures for deploying a dis-
tributed PKI, and so on. We believe that such an approach is more practical
and realistic, yet still sufficient. Certainly, we are not able to determine a user’s
identity as it is necessary for financial transactions. However, in many cases like
the financial one the problem of authentication does not differ to the problem in
traditional networks and can be solved with schemes similar to the ones that are
used in today’s Internet. Clearly, this involves further assumptions or infrastruc-
ture. Our approach focuses on problems that are inherent to pure pervasive and
ad-hoc networks. For example, our solution is suited to cooperation and moti-
vation based schemes [7][3][9] as well as secure routing methods. These schemes
require a large number of authentication steps for which ZCK authentication is
strong enough. Our scheme also makes sense for all kinds of client-server and
peer-to-peer relations, respectively.

A limited authentication based on re-recognition is reasonable. We cannot
achieve as much as other authentication schemes, but we can keep our promises
without any assumptions. Especially for pure ad-hoc and pervasive networks this
is a realistic approach. Furthermore, in a pure network we believe that we cannot
promise anything more than our objective. We formulate this as follows:
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Claim. Under the assumption that there exists no public-key scheme that works
without any pre-established knowledge1 or without a common TTP, recognition
is the best we can achieve in a pure network.

We cannot provide a formal proof but only intuitive arguments. If we were able
to achieve more than ZCK authentication in a pure network, i.e., identify a user
instead of recognizing him, then we had a public-key scheme that works with-
out any pre-established knowledge or TTP. Today this seems to be impossible
though.

Imagine two foreigners that meet in the real world. Usually, and obviously
strongly related to the considered level and type of interaction these people do
not doubtlessly identify each other, e.g., by showing their passports. Assuming
there is nobody else available to ask about the opposite’s reputation the best both
can do is to establish step-by-step a trust relationship build on their bilateral,
personal experiences. To do so, it is mandatory that these two people recognize
again the next time they meet. In our model we do not assume geographical
proximity though.

The main contribution of this paper is a new authentication scheme especially
suited to pervasive networks. The scheme only requires one-way hash-functions
and is suited to nearly any computationally weak device since it is more ef-
ficient than any public-key scheme by some order of magnitudes. Our scheme
provides provably secure authentication against passive adversaries and secure
message authentication against active adversaries, where the scheme is as sound
as the underlying one-way hash function. We also present solutions for slightly
different application scopes. The paper is organized as follows. Section 2 gives
a description of our ZCK authentication scheme in a general framework. Sec-
tion 3 introduces our new scheme. Section 4 compares the different instantiations
of our general authentication scheme and rates them by comparing their com-
plexity and by giving advise for which scope they are applicable. Finally, the
last section concludes this work.

2 General ZCK Authentication Scheme

In this section we describe our scheme in a general kind. Consider the case where
an entity A wants to be able to recognize an entity B after an initial contact.
Obviously the communication channel they use is insecure. In this scenario, B
might be a service provider and A the client. In the first step B provides A
with some data that allows the later one to recognize B. Let S be a set of
secrets, and x ∈ S be a secret. B is able to prove that it knows x in such a way
that A is not able to impersonate B. Furthermore B is able to use x in such
a way that A can verify that a message origins of B, i.e., B is able to perform
a message authentication by using the key x. Let (m)x be an authentication
of a message m, then A can verify the origin by checking ((m)x)f(x) = m,

1 Note that we consider a unique global and tamper resistant ID for each device as
pre-established knowledge.
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where f is a mapping on S such that the knowledge of f(x) enables a prover
to check if a verifier knows x, i.e., f(x) is a public key. A simple example is
a private/public-key pair of a digital signature scheme. The protocol runs as
follows. The entity B sends the public key f(x) to A. Then A and B perform
a challenge-response protocol as described in [8] such that A is able to verify
that B knows the secret x. A simplified version of the protocol looks as follows:

1 : B generates x ∈ S at random
2 : B sends f(x) to A
Repeat Steps 3 to 5 for each authentication process
3 : A sends random r to B
4 : B sends authenticated (r)x to A
5 : A checks if ((r)x)f(x) = r
~ If ’yes’, A accepts, otherwise she rejects

Remarks:
– Step 1 only needs to be performed once for each authority and/or entity.

An authority might hold several devices such that each device can hold the
same secret x or that each device has its own secret xi.

– Step 2 needs to be performed once for each communication pair A and B.
– Steps 3− 5 have to be performed for each authentication process.
– Step 4 usually consists of a message block r′, (r, r′)x with random r′ to avoid

chosen-text attacks. Since this is no threat to a ZCK scheme we omit it here.

We consider as main objective of this scheme the capability to ensure that
entities are able to re-recognize another entity in order to receive a service they
requested. Hence the public key f(x) always has to be send together with the
offered service, i.e., service and key have to be bound together to avoid that
a malicious entity can inject his public key to a service that he did not offer at
all. It follows that the authentication scheme we are envisioning here usually is
connected to some offered service, i.e., to messages that are exchanged. Therefore
we add the following steps to authenticate messages that replace Steps 3− 5:

Repeat Steps 3 to 4 for each message to authenticate
3′ : B sends (m)x to A
4′ : A checks if ((m)x)f(x) = m
~ If ’yes’, A accepts, otherwise she rejects

Note that message integrity and also freshness, i.e. that the data is recent and
not replayed, comes with the message authentication. In contrast to PKI scenar-
ios where there is a logical central certificate directory, A has to store B’s public
key (together with B’s ID string) to be able to recognize B. After A deletes B’s
public key from her memory A is not able anymore to build a connection to
a previous relationship with B. Note that in many applications a mutual au-
thentication process is required. The above protocol can easily be extended for
this case.

We now consider the traditional security objectives, namely authentication,
confidentiality, integrity, and non-repudiation [8]. The above scheme ensures
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ZCK authentication. It does not allow a key-exchange by itself, hence it cannot
establish confidentiality. However, it is possible to establish integrity of messages
by authenticating these messages as shown above. Obviously the scheme does
not provide non-repudiation. However, for some type of scenario a weaker form
of non-repudiation may also be appropriate. We define ZCK non-repudiation to
be the service which prevents an entity to deny a commitment or action chain.
In our case this means that an entity A is able to prove to a third party that
a number of actions or commitments were taken by the same (probably un-
known) entity B. Obviously a scheme that provides signatures satisfies the ZCK
non-repudiation objective.

The presented protocol is as secure as the underlying security scheme, i.e.,
to break the protocol an adversary has to construct an authenticated message
(m)x for given m and f(x). Note that a man-in-the-middle attack is always
possible, and consider what this means at an example. There is an entity B that
offers a service, an entity A that seeks this service, and a malicious entity M .
The entity B sends f(xB) to A. M interrupts this message, and sends f(xM )
to A. Then M satisfies the needs of A by offering its services. All that A is
interested in was that service. She does not care who provided the service, but
she wants to receive the service in the same quality again. It becomes now clear
that a man-in-the-middle attack is no threat to our protocol.

Two instantiations of the ZCK authentication scheme that immediately arise
are based on traditional signature schemes as well as symmetric ciphers. Authen-
tication is done by the proof of knowledge of the secret key in a challenge and
response manner. The verifier sends a challenge r, and the prover signs the chal-
lenge or computes a message authentication code (MAC) of r. As we argued
before, a man-in-the-middle attack is possible but irrelevant in the sense of our
intention. In the case of digital signatures the scheme ensures ZCK authentica-
tion and ZCK non-repudiation, and also message authentication. In most cases
public-key operations overstrain the capabilities of weak devices. Hence for our
scope of weak devices, only very efficient public-key schemes such as NTRU [6]
are appropriate, while RSA and even ECC might be too slow and too resource
consuming.

In the case of a symmetric cipher a secret key s has to be shared a priori,
i.e., the protocol requires a secret channel to exchange the shared secret. It is
suited for applications where devices are geographically close, e.g., where devices
can exchange the keys by infrared channel, or where there is only a single trust
authority. If the key s is a t-bit string, and an authenticated message (m)s is
a t-bit string, then the protocol requires storage of t/8 bytes and the exchange of
2t/8 bytes which are split into two messages. For a security level similar to 1024-
bit RSA we choose t = 80. A protocol run then requires the exchange of 20 bytes
in two messages, where the key has a size of 10 bytes. Clearly, a secure channel for
key-exchange could also be established by a secure key-exchange such as Diffie-
Hellman. Such a key-exchange has to be performed for each communication
pair. Since a key-exchange demands computationally powerful devices and the
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heavily changing topology of pervasive networks of mobile nodes induces many
key-exchanges such a solution is not suited to weak devices.

3 Key-Chain Scheme

This section introduces our new protocol for ZCK authentication that only re-
quires one-way hash functions but no expensive public-key operations. Doing so
our scheme is extremely efficient and by orders of magnitudes faster than any
public-key scheme. Again Bob wants to authenticate to Alice. Let xG

B be a t-bit
string which is Bob’s global private key. Let each device have a network identifier
ID2, in our case IDA and IDB. Let f be a function that maps the identity ID
to a bit-string, rID be t-bit random strings, and ⊕ be an operation on bit strings.
Then xB

0 is Bob’s private key for the communication with Alice which is derived
from Bob’s global key, Alice’s identity and rB such that xB

0 = xG
B⊕f(IDA)⊕rB.

Likewise xA
0 = xG

A ⊕ f(IDB) ⊕ rA is Alice’s private key for the communication
with Bob. The private key for the communication with an entity having the iden-
tifier ID can later again be derived by the stored associated string rID and the
global private key. Note that these keys are only applicable to the communication
pair Alice and Bob, and to no one else.

We define a hash chain, which is also known as Lamport’s hash chain [8], as
h(xi) = xi+1 with x0 being the anchor and h being an unkeyed one-way hash
function that has a security of t-bits, i.e., which maps bit-strings to t bits. Our
scheme is based on such hash chains with xA

0 and xB
0 being the anchors. Let xA

nA

and xB
nB

be the final elements of the hash chains, respectively. We call these the
public keys of Alice and Bob. We can use a key-value of the chain to generate an
authenticated message by a MAC (keyed hash function). Let (m)x be the MAC
of a message m by the key x. The core idea of our protocol is as follows: First
exchange a value f(x) which the receiver will tie together with some experience.
Then prove knowledge of the pre-image of f(x), i.e. x, in order to authenticate
by establishing a relationship to f(x) and the past experience. Since we want
to be able to repeat the authentication step arbitrary many times we propose
the use of a key-chain based on a one-way hash function. Our protocol works as
follows:

2 For the protocol this is an identifier to recognize another entity again. We do neither
assume that the ID cannot be tampered with nor that IDs are unique. A just has
to be able to map B to some name IDB.
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1 : A sends her public key xA
nA

to B, who stores (xA
nA

, rB, nB, 1)
2 : B sends his public key xB

nB
to A, who stores (xB

nB
, rA, nA, 1)

Repeat Steps 3 to 9 for each authentication process
3 : Assume A stores (xB

i , rA, j, u) and B stores (xA
j , rB , i, v)

4 : (+) A sends authenticated messages (m)xA
j−u−1

to B

5 : (+) B sends authenticated messages (m)xB
i−v

to A

6 : A opens her key by sending xA
j−1 to B.

7 : B checks if h(xA
j−1) = xA

j

8 : For k = 1 to k′ ← max{u, v} repeat Steps 8.1 to 8.5
8.1 : B opens his key by sending xB

i−k to A
8.2 : A checks if h(xB

i−k) = xB
i−k+1

8.3 : A opens her key by sending xA
j−k−1 to B

8.4 : B checks if h(xA
j−k−1) = xA

j−k

8.5 : If any check fails, or the loop is interrupted, A and
B stop execution. Then A stores (xB

i , rA, j, max{u, k + 1})
and B stores (xA

j , rB , i, max{v, k + 1}).
9 : A and B store the new values (xB

i−k′ , rA, j − k′ − 1, 1) and
(xA

j−k′−1, rB , i− k′, 1)

Remarks:
– Steps 1 − 2 ensure the exchange of public-keys which is done only once per

pair A and B.
– Steps 3− 9 are done for each authentication process.
– For each authentication process we assume that A stores B’s key xB

i and
that B stores A’s key xA

j (Step 3). Furthermore A and B store information
to compute the subsequent keys, i.e., they store the random value rA and rB

to compute the chain anchor from the global key xG
A and xG

B , respectively.
Furthermore they store i and j to obtain the chain value from the anchor. In
the initialization, i.e., after Steps 1-2, A and B store tuples (xB

nB
, rA, nA, 1)

and (xA
nA

, rB, nB, 1). These are replaced later by updated tuples.
– Steps 4 and 5 provide messages authentication and are optional. The mes-

sages are guaranteed to be fresh.
– The messages sent in Steps 4 − 5 can be read but are not authenticated

at this moment. It has to be ensured that all messages are received, e.g.,
by the underlying routing protocol or by further steps in the authentication
protocol. Messages can be checked after the keys were opened.

– Before Step 6 is performed it has to be ensured that A and B send the last
messages in Steps 4-5 (if any). A might send a message to B expressing that
she finished sending messages, and B sends after receiving such a message
to A. To reduce the overhead of additional messages a flag-bit in the packet
header might be used to indicate a final message. Note that this information
has to be protected by a MAC as well to prevent forgery, e.g., it might be
part of the final message (mf )xA

j−u−1
and (mf )xB

i−v
, respectively.
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– The loop in Step 8 avoids an attack, where a malicious entity starts an
authentication process, interrupts it after he gained a key, and uses that
key to the other benign entity. The idea is that A assumes after a faulty
execution, that an attacker uses the gained key to obtain another key from B.
Hence A does not accept a single key anymore but requires knowledge of the
next two keys, and so on. B acts in the same way.

– After the public keys are exchanged, u, v = 1. Also after a successful protocol
run, u and v are reset to 1. Hence in a normal protocol run the loop is only
executed once, i.e., k′ = 1.

– If A opens a key which B does not receive due to network faults, A can
send the key again without endangering the security of the scheme until B
gets the key, or until A halts the execution of the protocol due to a time-out
error. The same holds for keys opened by B.

– A and B do not need to know k′ = max{u, v} before the execution of the
loop. The entities just continue running the loop until both signalize their
satisfaction.

– The scheme uses mutual authentication to avoid that a key of Bob is stolen
by a malicious entity that pretends to be Alice, and later on used by the ma-
licious entity to impersonate Alice when authenticating to Bob. Note that
all complexities for our scheme obtained below are for mutual authentication
whereas the previous scheme instantiations only ensured mutual authentica-
tion at additional cost.

– A and B always have to be in the same role, i.e., for a pair A and B, the
same entity always has to act as A. This limitation can be removed at the
cost of a further message by requiring that A and B open at least two keys.
The following steps which replace Step 9 implement such a case:

9′ : B opens his key by sending xB
i−k′−1 to A

10′ : A checks if h(xB
i−k′−1) = xB

i−k′

~ If the check fails, or the execution is interrupted,
~ A stores (xB

i , rA, j, max{u, k′ + 1})
11′ : A and B store the new values (xB

i−k′−1, rA, j − k′ − 1, 1)
~ and (xA

j−k′−1, rB , i− k′ − 1, 1)

– A man-in-the-middle attack at execution time is possible as it is for most
other authentication schemes including the public-key scheme.

– The man-in-the-middle attack is not possible to forge authenticated messages
since the messages are already exchanged at the time when the authentica-
tion starts.

– The scheme is not resistant to denial-of-service attacks (as is neither of the
other schemes). A malicious entity can try to exhaust the keys of the key
chain by starting an authentication process with A, gaining A’s next key,
using it against B to obtain B’s key, using it again for A, and so on. An
implementation can take care of this attack by forcing an exponentially in-
creasing time interval between two authentication processes.
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– The security of the scheme is as sound as the security of the underlying one-
way hash-function and the underlying message authentication code. A for-
mal proof of all above mentioned security properties can be found in the
Appendix.

– The public key is only send once. Usually, the loop is only executed once,
thus an authentication process requires three messages (Steps 6, 8.1, and 8.3),
each of them a t-bit string

– To compute an arbitrary element of a hash chain, A only needs to know B’s
ID and the random seed rA used for B.

– Assume that A and B use hash chains of length n. To compute xA
i−1 and xB

j−1

in Steps 4 and 5 from the global private key, this requires on average n/2
applications of the hash function h. Since A needs twice as many keys as B
for an authentication, he might want to use chains that are twice as long.

– For each communication pair of A with any B, she needs to store a tuple
(xB

i , rA, j, u), i.e., the public key. Assuming that we use short key-chains the
indices j and u can be expressed in 2 bytes. Then A requires storage of
(2t + 32)/8 bytes. Assuming that A stores data of p communication parters,
she needs storage of p(2t + 32)/8 bytes.

Considering a hash function that maps strings to t bits, the probability to find
a collision for any pair of strings (collision resistance) is 2−t/2 whereas the proba-
bility to find a collision to a given message (target collision resistance) is 2−t. We
believe that target collision resistance suffices our demands. It is widely believed
that computing a collision to a given message in a one-way hash function with
t = 80 is as hard as factoring an RSA modulus of 1024 bits. Hence to establish
a security level similar to 1024-bit RSA we assume t = 80. Let the size of the av-
erage key-chain be n = 100 which should meet the demands of most short-lived
pervasive networks. As we said before authentication in a pervasive network is
usually connected to some service that is offered or requested, i.e., authentica-
tion is bound to messages that are exchanged. Altogether the scheme requires
on average 50 applications of the hash function, and three message exchanges
each of 10 bytes. It furthermore requires 24 bytes of storage on the prover’s and
verifier’s side which are far less than an RSA public key and about the same
size of a 160-bit ECC public key (assuming each entity uses the same curve
parameters). Note that in our scheme the prover and the verifier have to store
the other entity’s public key. Since most relationships in a pervasive network
are mutual we do not believe this to be a disadvantage but a feature. A hash
function has very low running time. For example, the SHA-1 implementation
in [1] obtains hashing speeds of 48.7 Mbit/s whereas an RSA verification (which
is the most efficient signature verification scheme) runs in roughly 1 ms [5]. Thus
an application of a hash function is faster than an RSA verification by almost
a factor of 106, and the repeated application of a hash function nearly is for free
for 50 or even more iterations. If a device has on average contacts to p = 50
communication parters, there is storage needed of 1200 bytes.
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The number of hash function iterations can be reduced at the cost of storage,
or by using shorter key-chains. To store the elements of a chain we can store
each element of the chain, or only store the anchor and compute the elements on
demand. A storage efficient mechanism was proposed in [4] which only requires
log n storage and log n computation to access an element in a chain of n elements.
For instance, if n = 100 we can reduce the number of average hash-function
iterations to 7 at the cost of 7 more storage entries.

To safe memory and to avoid extensive computations short key-chains are
used. We now show how to establish a new key-chain without breaking the trust
relationship. Let xi be the values of an old key-chain that is nearly used up, and
x′

i be the values of a new key-chain. These key-chains use different anchors x0

and x′
0 which are derived of the same global private key xG and different random

seeds, i.e., x0 = xG ⊕ f(ID) ⊕ r and x′
0 = xG ⊕ f(ID) ⊕ r′ with r �= r′. We

consider xA
1 , xA

0 , and x′A
nA

as the involved elements, where the first two keys are
the last keys of the old chain and the last one is the first key of the new chain.
Let rA and r′A be the random seeds of the old and new key-chain. The following
protocol presents a way for Alice to introduce a new key-chain to Bob.

1 : Assume A stores (xB
i , rA, j) and B stores (xA

1 , rB, i)
2 : A sends B the new chain start value (xA

nA
)xA

0

3 : Do Steps 6 to 8 as in the previous protocol
4 : Finally, if all checks were successfully, A stores

~ (xB
i−k′ , r′A, nA, 1) and B stores (x′A

n , rB, i− k′, 1).

Remarks:
– To avoid a man-in-the-middle attack as for the previous protocol we intro-

duce Step 3.
– As before, keys always have to be checked for correctness, e.g., after Step 5.
– It is wise not to use the anchor x0 in the protocol. It is better to keep some

elements before initializing a new key-chain to avoid a complete loss of the
trust relation due to network errors or malicious interceptions.

4 Comparison of the Schemes

In the previous sections we presented three instantiations of the ZCK authenti-
cation scheme. Table 1 gives an overview over all three instantiations. The first
rows describe the complexity whereas the following rows describe features. Note
that the values for the public-key scheme depend on the used scheme. Where ap-
plicable, a ’x’ means that the scheme provides a feature, a ’-’ means that it does
not, and a ’o’ means that the scheme can provide the feature with modifications
(at higher computational cost). The symmetric-key scheme is the most efficient
one but it requires geographical proximity for a key exchange, or a single trust au-
thority such as in military scenarios or such as for application in a private home.
A secure key-exchange could be established by means of public-key schemes.
At this point the symmetric-key scheme integrates in the public-key scheme.
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Table 1. Overview of ZCK authentication schemes

Key-Chain Public-Key Sym. Key

public-key size (bytes) 24 ‡ 10†

exchanged messages 3 2 2

exchanged bytes 30 ‡ 20

computational effort 0 2 PK Op. 0

ZCK authentication x x x�

message authentication § x x x�

ZCK non-repudiation - x -

key-exchange - x -

signature - x -

mutual authentication x o o

† size of the shared key
‡ depends on the used public-key scheme
� requires secure channel for key-exchange
§ includes message integrity and freshness

That one requires computationally demanding operations that are significantly
more expensive than all other schemes but provides ZCK non-repudiation as
well as a key-exchange. Our new scheme nearly has the same complexity as the
symmetric scheme without its shortcomings. It is not capable of providing ZCK
non-repudiation and a key-exchange, but comes with a mutual authentication
for free. It is extremely efficient in providing ZCK authentication and message
authentication in the view of computational as well as network resources.

Finally we want to give a remark about key distribution. A core benefit of
a public-key infrastructure (PKI) compared to some infrastructure using sym-
metric keys is the key distribution. In a PKI each user has a public/private
key pair that enables an entity to communicate with each other entity, whereas
a symmetric key infrastructure (SKI) requires a shared key between any entity
pair. Thus for n entities a PKI requires n key pairs whereas a SKI requires up to
n(n− 1)/2 shared keys if any entity wants to be able to communicate with any
other entity. In our scheme, there are even n(n−1) key-chains, i.e. keys, required
if any pair of entities established a relationship. Thus one could conclude that
our key-chain scheme has this disadvantage compared to a public-key scheme.
However, in our scope of ZCK authentication the facts are different. Clearly
there are no central directories of public-keys in a pure pervasive network as we
are envisioning it. Furthermore, each user stores foreign entities’ keys and binds
them to some common past or experience. If an entity does a broadcast of its
public key the receivers will not take notice of that key since they are not able
to establish a relationship to that key. Each key has to be hand over bound to
a service as we said before. Hence in our case, the complexity of a full distri-
bution of all keys is always n(n − 1), both in the symmetric and asymmetric
case.
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5 Conclusions

In this work we presented a basic understanding of authentication for perva-
sive networks. Our approach is simplistic yet still realistic. It presents the most
general case of authentication in pervasive networks which we call zero common-
knowledge (ZCK) authentication. We presented three instantiations. The public-
key scheme will not suffice our requirements for weak devices since it is not
efficient enough. The symmetric-key scheme is most efficient but requires ge-
ographical proximity for a key exchange, or a single trust authority. Our new
key-chain scheme is a general and still extremely efficient solution. It virtually
needs no computation, 30 exchanged bytes in 3 messages, and 24 bytes to store
a public key, and it provides mutual authentication for free. Therefore in many
applications our new hash-chain based ZCK authentication scheme is very well
suited to pervasive computing devices since it provides ZCK authentication and
message authentication and requires nearly no computational power, and very
low bandwidth and memory storage.
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A Security Proof of Key-Chain Scheme

In the following we give a security proof of our new key-chain authentication
scheme. We will first analyze and evaluate the protocol as proposed by the
BAN-logic [2]. Then we prove that our authentication scheme is secure against
a passive eavesdropper, and that our scheme for message authentication is even
secure against an active adversary.

A.1 Evaluation with BAN-Logic

We start the analysis of our protocol with means of the BAN-logic by presenting
an idealized version of the authentication steps. Message authentication is based
on the authentication steps and comes with it. For ease of description we omit
the random seeds ri without loss of generality.

A stores (xB
i , j, u) and B stores (xA

j , i, v)
1 : A→ B: xA

j−1

2 : For k = 1 to k′ ← max{u, v} do
2.1 : B → A: xB

i−k

2.2 : A→ B: xA
j−k−1

2.3 : If failure then
2.3.1 : A stores (xB

i , j, max{u, k + 1})
2.3.2 : B stores (xB

j , i, max{v, k + 1})
End If

End For
A stores (xB

i−k′ , j − k′ − 1, 1) and B stores (xA
j−k′−1, i− k′, 1)

We first recall the basic constructs of the BAN-Logic:

– A|≡ X : A believes X , or A would be entitled to believe X . In particular, the
principal A may act as though X is true.

– A|∼ X : A once said X . The principal A at some time sent a message including
a statement X . It is not known whether the message was sent long ago or
during the current run of the protocol, but it is known that A believed X
when he sent the message.

– #X : The formula X is fresh, that is, X has not been sent in a message at
any time before the current run of the protocol.

Now we can give some assumptions which are immediately derived from the
stored values:

A|≡ (xB
i , j, u) B|≡ (xA

j , i, v)

It easily follows the conclusions :

A|≡ (xB
i−k′ , j − k′ − 1, 1) B|≡ (xA

j−k′−1, i− k′, 1) (1)

The objective of our authentication scheme is to ensure that the last opened
key is fresh, i.e., was not send before. Based on the security of a one-way hash
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function, only the right entity could have opened this key for authentication. We
denote this formally as follows:

A|≡ B|∼ xB
i−k′ A|≡ #xB

i−k′ (2)

B|≡ A|∼ xA
j−k′−1 B|≡ #xA

j−k′−1 (3)

The proof outline below shows the idea of the proof. For easier understanding,
we suppress details. First we analyze the execution of a loop. If a key is received
by A she can verify by applying the hash function and known key-chain values
that B has once sent this key.

∀k ≤ k′. A|≡ B|∼ xB
i−k ∀k ≤ k′. B|≡ A|∼ xA

j−k−1 (4)

By construction of the loop, all key values that are larger than u and v,
respectively, have to be fresh in a general fashion, i.e., A and B believe that
they are fresh. This is ensured by the failure condition in Step 2.3.

∀k ≥ v. A|≡ #xB
i−k ∀k ≥ u. B|≡ #xA

j−s−1 (5)

Since k′ ≥ u, v, our objective (Equations (2) and (3)) easily follows from
Equations (4) and (5) for the last iteration of the loop (k = k′). It is also clear
that the conclusions (Equation (1)) immediately follow from the data seen by A
and B. If there is a failure Step 2.3 ensures that the authentication process is
not successful, and that Equation (5) still holds. The proof needs only slight
adjustment to cover the case where A and B open at least two keys as described
in Section 4.

Message authentication is done with the keys xA
j−u−1 or xB

i−v respectively.
Assuming that the message authentication code is secure, it immediately follows
that all authenticated messages were sent by A or B, respectively, and that all
messages are fresh.

A.2 Security Proofs

As we said before, our authentication scheme is secure against a passive adversary
but not an active one. However, we can show that the message authentication
property of our scheme is also secure against active adversaries. More precisely,
we will prove that our schemes are as sound as the underlying one-way hash
function.

Theorem 1. Our authentication scheme is as sound as the one-wayness of the
underlying hash function against passive adversaries.
Proof: Assume the scheme is based on a one-way hash function h. As we evalu-
ated before by BAN-Logic an entity has to send a fresh key value to be authenti-
cated. We allow an eavesdropper to listen to arbitrary many values xi+k, k ≥ 1,
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with xi+k+1 = h(xi+k). The adversary has to present the key xi to be success-
fully authenticated. Assume the adversary could authenticate successfully, then
he could derive the key xi of all the keys xi+k with k ≥ 1. Hence we could
use the adversary to invert the hash function, which is a contradiction to its
one-wayness.

Finally we prove that our scheme provides provably secure message authen-
tication. We assume that the authentication steps starts after all messages are
sent, which can easily be provided by a flag in the authenticated message header.
Note that at the point the final message (m)xi is received it is not already authen-
ticated but hold for authentication. However, this suffices as assumption since an
adversary would have to forge the last message before the authentication steps
start.

Theorem 2. Our message authentication scheme is as sound, i.e. as secure
against message forgery, as the underlying message authentication code against
active adversaries.
Proof: Assume that the authentication step starts after all the messages are
exchanged, and that the scheme is based on a one-way hash function h. We allow
the adversary to listen to arbitrary many messages (m)xi+k

and xi+k, k ≥ 1,
with xi+k+1 = h(xi+k). Now assume an adversary can forge a message, i.e., he
is capable of producing a valid (m)xi . As before the last opened key xi has to be
fresh, i.e., it was not sent before by A or B. But then we could use the adversary
to produce a forged message authentication code without knowing the key. This
is a contradiction to the security assumptions of the MAC.
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