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1 Institut für Experimentelle Mathematik, University of Duisburg-Essen
Ellernstrasse 29, D-45326 Essen

mocenigo@exp-math.uni-essen.de
2 Universität Paderborn

FB 17, D-33095 Paderborn.
preda@upb.de

Abstract. In the past years several authors have considered finite fields
extensions of odd characteristic optimised for a given architecture to ob-
tain performance gains. The considered fields were however very specific.
We define a Processor Adequate Finite Field (PAFF) as a field of odd
characteristic p < 2w where w is a CPU related word length. PAFFs have
several attractive properties for cryptography. In this paper we concen-
trate on arithmetic aspects. We present some algorithms usually provid-
ing better performance in PAFFs than in prime fields and in previously
proposed instances of extension fields of comparable size.

Keywords: Finite extension fields, exponentiation algorithms, modu-
lar reduction, discrete logarithm systems.

1 Introduction

Most public key cryptosystems are based on the difficulty of the discrete log-
arithm (DL) problem: If g is a generator of a group G and h ∈ G, find an
integer n with gn = h. Commonly used groups are: the multiplicative group of
a finite field, the rational point group of an elliptic curve [13, 23] over a finite
field or the group of rational divisor classes of an hyperelliptic curve [14]. Binary
fields, i.e. fields of characteristic 2, and prime fields, i.e. Fp

∼= Z/pZ, are the
most commonly used finite fields, but in principle any finite field can be used.
Hence, one may choose the best field to optimize the performance on a target
architecture, provided that the security prerequisites are satisfied.

In a cryptosystem designed around the multiplicative group of a finite field,
the fundamental computation is the exponentiation: We present several algo-
rithms to perform it in rather general extension fields.
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One of our motivations for doing the present work was the lack of a compre-
hensive study of exponentiation algorithms for the type and size of fields we are
interested in. Some of the methods which we present are much faster than those
which are usually deployed. The techniques can be applied mutatis mutandis to
compute scalar products in elliptic curves, in Jacobians of hyperelliptic curves
having efficiently computable endomorphisms, or trace zero varieties [17, 3]: see
§ 3.5.

The DL problem in large enough finite fields seems hard [1, 25, 30] (see
also [35, § 5]). DL based cryptographic schemes have been recently standardized
also over generic finite fields. Fields other than prime and binary are already
being considered by the industrial community: For example the XTR cryptosys-
tem [35], which uses an extension of degree 6 of a prime field. The usage of more
general extension fields Fp6m is mentioned in [35], and investigated in [19], where
however the structure of the extension field Fp6m is not exploited to speed up
the operations over the original system: the prime field Fp is merely replaced by
Fpm . The methods presented here, together with the approach taken in [33], can
be used to deliver fast XTR-like systems over the fields Fp6m . With the present
contribution we hope to stimulate further research.

The structure of the paper is the following. In the next section we give a gen-
eral introduction to finite extension field arithmetic and review some previous
work. The exponentiation techniques are presented in Section 3. Section 4 is de-
voted to modular reduction. In Section 5, implementation data and benchmarks
show that PAFFs can deliver up to 20 times better performance than prime
fields of comparable size.

2 General Setting

Let p be an odd prime. It is known that for any m ≥ 1, there is up to isomorphism
exactly one finite field Fpm with pm elements. If f(X) ∈ Fp[X ] is an irreducible
polynomial of degree m, then Fpm ∼= Fp[X ]/(f(X)). A model of Fpm is given
by a choice of f(X) together with a basis of Fpm as an Fp-vector space. The
Frobenius automorphism ϕ : Fpm → Fpm given by x �→ xp is an Fp-linear map.
With respect to the chosen basis ϕ may be represented by a m×m matrix with
entries in Fp.

Let x = X mod f(X) and assume that Fpm has a power basis, i.e. any element
g ∈ Fpm can be written as g =

∑m−1
i=0 gix

i with the gi ∈ Fp. Let n ∈ N be an
exponent of the size of pm and

n =
m−1∑
i=0

ni pi, with 0 ≤ ni < p (1)

be its p-adic expansion. The exponentiation can be rewritten as

gn =
m−1∏
i=0

(gni)pi

=
m−1∏
i=0

ϕi(gni), (2)
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thus reducing the problem to that of computing the powers gni . It is usually
much faster to compute m powers of the same base g to different u-bit exponents
than only one power to a mu-bit exponent, as many common computations can
be done only once. (Also, on a parallel device several units can compute many
powers gni simultaneously, but we are not concerned here with this situation.)

The model of the field Fpm is of the utmost importance, since it influences
the performance of the system. In particular we wish that:

A. Reduction modulo the defining polynomial f(X) be easy.
B. The Frobenius matrix be sparse.
C. Modular reduction in the base field be particularly fast.

A. Lenstra proposed in [18] a model based on irreducible cyclotomic polyno-
mials f(X) = (Xm+1 − 1)/(X − 1) mod p, with m + 1 a prime. This leads to
so called optimal normal bases of type I, on which the Frobenius maps act like
permutation matrices. These fields are very practical, yet quite scarce because
of the restrictions that � = m + 1 be a prime and that p be primitive modulo �.

Bailey and Paar [4], following Mihăilescu [22], observed that taking f(X) of
the form f(X) = Xm − b – a binomial – gives a much larger choice of fields
while still fulfilling properties A and B. The corresponding power basis is called
a binomial basis. The only restriction is that Fp must contain some m−th root
of unity, i.e. m|(p− 1). An element b such that Xm − b is irreducible is quickly
found. The Frobenius map is still relatively efficient, even though less than for
optimal normal bases. All one has to do is to precompute first c1 and J such
that Xp mod (Xm − b) = c1X

J , then ct
1 for 1 < t < m. Then ϕ(x) = c1x

J and
ϕ(xt) = ct

1x
Jt mod m. The matrix of ϕ is the product of a permutation matrix

and of a diagonal one. A Frobenius operation in Fpm costs m multiplications in
Fp.

For efficient implementation in restricted environments, Bailey and Paar re-
stricted the characteristic p to be of the form 2k − c for c � 2k/2, i.e. a quasi
Mersenne prime, to adopt the reduction algorithm from [20, §14.3.4]. Extension
fields defined by irreducible binomials and of quasi Mersenne characteristic are
usually called optimal extension fields (OEF).
Definition. A Processor Adequate Finite Field (PAFF) is field of odd charac-
teristic p < 2w were w is some processor related word length.

The algorithms in Section 4 show that the gains achieved in modular reduc-
tion by means of OEFs can essentially be obtained for all PAFFs.

3 Exponentiation Algorithms

Let G be the multiplicative group of the field Fq where q = pm, p a prime
and m > 1. For g ∈ G and n ∈ N we want to compute gn. Just a few of the
methods which can be used are: square and multiply [16] with the usual binary
development or with the non-adjacent form (NAF, see [28]); unsigned sliding
windows [20]; sliding windows across NAFs [2]; and the wNAF [32], which is
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called also signed sliding windows. These algorithms assume only that group
multiplication and in some cases also inversion are available. In their basic forms,
they do not take advantage of the Frobenius ϕ. This is what we are going to do.

In the next two Subsections we shall assume that ϕ can be computed in
a reasonable time – i.e. of the order of one multiplication in G – but we do
not require its cost to be negligible. Thus the requirement B of Section 2 is not
stringent. If Fpm is represented by a non binomial polynomial basis, in general
the Frobenius will act on the basis like a non-sparse m×m matrix, and applying
it costs like a schoolbook multiplication.

Based upon (2), the Horner scheme for the evaluation of gn is

gn =
m−1∏
i=0

ϕi(gni) = ϕ(· · ·ϕ(ϕ(gnm−1) · gnm−2) · · · gn1) · gn0 (3)

and requires m− 1 multiplications and Frobenius evaluations.

3.1 Right-to-Left Square-and-Multiply

This algorithm was suggested in [18] and uses m temporary variables x0, . . . ,
xm−1, which are initially set to 1. The elements g, g2, g4, . . . , g2u

are computed
by repeated squarings. When g2j

is computed, for each i, 0 ≤ i ≤ m − 1, if
the j-th bit of ni is equal to 1 then xi is multiplied by g2j

. At the end xi = gni

and gn is recovered by means of (3).
This method requires u− 1 squarings, on average m(u/2− 1) multiplications

(for each variable xi the first multiplication can be replaced by an assignment)
and m − 1 Frobenius operations. This deceptively simple algorithm performs
very well.

A. Lenstra [18] claims that the exponentiation method of Yao [36] as im-
proved by Knuth [16] is 20% faster. Our implementations confirm this for fields
of about 500 to 2000 bits. In the next two Subsections we shall describe even
faster methods.

3.2 Baby-Windows, Giant-Windows

We consider again (3). We call the representation in base p the subdivision of n in
giant windows, as the exponent is first read through windows of size log2 p , and
then each ni will be scanned by smaller windows. The exponents ni are limited
by a (relatively) small power of 2 and we must calculate all the gni . A first
approach would consist in precomputing all powers g2j

for 2j ≤ max{ni}; Then,
for each i, we obtain gni by multiplying together the g2j

where j runs through
the bits of ni equal to one. This is the core idea of the baby windows, which read
the exponents in a radix 2�, for some integer � ≥ 1.

Fix a small integer � – the width of the baby windows. Let u be the bit-length
of p, so 2u > p > 2u−1 and write u = K� + R, with R < �. A 2u-bit word will
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be subdivided in K ′ baby windows, with K ′ = K if R = 0 and K ′ = K + 1
otherwise.

Upon developing the exponents ni in base 2�, i.e. ni =
∑K′−1

j=0 nij2j� where
all nij ∈ {0, 1, . . . , 2� − 1}, we have

gni =
∏

0≤j<K′
nij �=0

gnij2
j�

. (4)

If the values gt 2j�

for 0 ≤ j < K ′ and 1 ≤ t ≤ 2� − 1 are given, then each gni

can be computed with just K ′ − 1 multiplications. In fact, if R �= 0, for j = K
we shall only need the values with 1 ≤ i ≤ 2R − 1 for j = K, so the last window
is smaller. A similar approach is described in [9] for fields of even characteristic.

After � has been selected (this is discussed later) one precomputes the set
	 =

{
gi 2j�

: 0 ≤ j < K ′; 1 ≤ i ≤ 2� − 1
}
. Then one computes all the values gni ,

each by at most K ′− 1 multiplications of elements of 	. Last, gn is obtained by
(3).

Algorithm 1: Baby–windows giant–windows exponentiation

1. Expand n p-adically: n =
∑m−1

i=0 nip
i with 0 ≤ ni < p (if not already

given in that form).
2. Compute (or retrieve from a storage) the set

	 =
{
gi 2j�

: 0 ≤ j < K ′; 1 ≤ i ≤ 2� − 1
}
.

3. Compute gn by means of formula (3) where gnd−1 , . . . .gn0 are com-
puted using (4) by multiplying together elements of 	.

The algorithm just described can be seen as a particular case of Pippenger’s
exponentiation algorithm: see Stam’s Ph.D. Thesis for an accessible description
of the latter [34].

To choose the optimal value of � note that the cardinality of 	 is v :=
K(2�− 1)+ (2R− 1)− 1 so (v− 1)/2 squarings and (v +1)/2 multiplications are
required in Step 2. Step 3 uses (K − 1)m or Km multiplications, according to
R = 0 or R �= 0. One of the factors in (4) is 1 = g0 with probability 1/2� (with
probability 1/2R in the last baby–window if R �= 0). Therefore the total cost of
the algorithm is roughly

f(�) =
(
K(2� − 1) + (2R − 1)

)τM + τS

2
− τS + mK

(
1− 1

2�

)
τM + (m− 1)τϕ

where τM , τS , and τϕ denote the timings for a multiplication, a squaring and
a Frobenius. It is tempting to optimize analytically the baby-window size by
determining the minimum of f(�): however this would require the evaluation
of trascendental functions. In the applications the sizes of the exponents are
bounded, and only few integer values of � are admissible. Hence the best strategy
to pick the optimal baby-window size consists in counting the amount of average
operations required for several consecutive values of � until a minimum is found.
Many examples of this strategy are found in Table 1.
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3.3 Abusing the Frobenius

We return to the problem of evaluating gn in Fpm , but this time we require that
computing the Frobenius is fast. We begin again by writing n =

∑m−1
i=0 nip

i, with
0 ≤ ni < p, and ni =

∑K′−1
j=0 nij2j�, for some window size �� u = 
log2 p�. Put

K = 
u/��. While writing down the expansion of gx we immediately change the
order of the operations:

gn =
m−1∏
i=0

ϕi(gni) =
m−1∏
i=0

K−1∏
j=0

gnij2
j�pi

=
K−1∏
j=0

(
m−1∏
i=0

gnijpi

)2j�

. (5)

Then for j = 0, 1, . . . , K − 1 we define the quantities

Πj :=
m−1∏
i=0

gnijpi

=
m−1∏
i=0

ϕi(gnij )

which can be evaluated by a Horner scheme in ϕ, so that a second Horner scheme
(in the guise of a square-�-times-and-multiply loop) yields gn = (· · · (Π 2�

K−1 ·
ΠK−2)2

� · · ·Π1)2
� ·Π0.

Algorithm 2: Frobenius-abusing exponentiation

Input: An element g of Fpm , an exponent n =
∑m−1

i=0 nip
i with 0 ≤ ni <

p, and a window length �.
Output: gn.

1. Compute (or retrieve) g2, . . . , g2�−1.
Set u← 
log2 p� and K ← 
u/��.
Write ni =

∑K−1
j=0 nij2j� for 0 ≤ i < m, with 0 ≤ nij < 2�.

Set x← 1.
for j = K − 1 down to 0 do {

2. Π ← 1
for i = m− 1 down to 0 do {

3. Π ← Π · gnij

4. if i �= 0 then Π ← ϕ(Π) }
5. x← x ·Π
6. if j �= 0 then x← x2� }
7. return (x)

We now write down the operation count. In Step 1, 2�−1 multiplications
and 2�−1 − 1 squarings are required. In Steps 3 and 4, an expected amount
mK(1−2−�) of multiplications and, respectively, (m−1)K Frobenius operations
are performed. In Step 6 (K−1)� squarings are done. Hence the total is

(
2�−1 +

mK(1− 2−�)
)
M + (2�−1 − 1 + (K − 1)�)S + (m− 1)Kϕ. This algorithm bears
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Table 1. Operation counts for one exponentiation in F4086122041m

Ratios Simple (§ 3.1) Algorithm 1 Algorithm 2
m τS

τM

τϕ

τM
M/S/ϕ Cost � #� M/S/ϕ Cost � #� M/S/ϕ Cost

4 .83 .42
60
31
3

87.95 1 31
63
31
3

90.95 4 15
33.4
32
20.5

69.70

6 .76 .25
90
31
5

114.83 2 47
87
31
5

111.83 4 15
47
32
34.2

80.30

8 .80 .24
120
31
7

146.48 2 47
111
31
7

137.48 5 31
60.2
32
40.4

95.53

16 .68 .15
240
31
15

264.30 3 72
182
41
15

213.34 5 31
106.4
32
86.7

143.27

32 .57 .12
480
31
31

501.07 4 119
295
63
31

334.88 6 63
190.7
32

155.6
223.75

64 .63 .06
960
31
63

983.67 5 188
510
97
63

576.25 7 127
347
32

280.5
384.00

128 .65 .04
1920

31
127

1943.15 6 317
881
161
127

985.86 7 127
632
32

565.5
668.43

the name “Frobenius-abusing exponentiation” because of the large amount of
applications of ϕ, whereas the amount of other group operations is much smaller
than with Algorithm 1.

Remark 1. If a binomial basis is used computing a power of ϕ is as costly as
computing ϕ. All it takes is to precompute the constants and permutation map
associated to ϕa: If ϕ(x) = c1x

J then ϕa(x) = ca
1x

Ja mod m. Hence if some nij = 0
in Step 3 the application of the Frobenius to Π can be delayed until a nonzero
coefficient is found or i = 0. This non-trivial optimisation is most effective if �
is small.

3.4 Comparing the Exponentiation Algorithms

Table 1 contains the expected operations counts and costs of the three above ex-
ponentiation algorithms in a typical set of examples. We take p = 4086122041 so
that u = 
log2 p� = 32, and let m vary. Fpm is, roughly, a 32 m-bit field. All the
fields have been represented by binomial bases. The labels 	, M, S, ϕ denote the
number of memory registers used, and the amount of multiplications, squarings
and Frobenius operations required. The relative speed ratios of squarings and
Frobenius operations with respect to multiplications have been taken from our
highly optimised library MGFez, which uses also the other arithmetic improve-
ments described in this paper, by timing it on an Intel Pentium processor. For
each value of m, in Algorithms 1 and 2 the optimal choice of � for speed is used.
Total costs are given relative to a multiplication. The results are then compared
in Table 2 to the simple square-and-multiply algorithm and the sliding window
method (using the optimal window size). The costs are computed with the same
weights as before.
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Table 2. Comparison with other exponentiation algorithms

m (u = 32) 4 6 8 16 32 64 128

Square and
Multiply

169.41 241.16 332.00 603.48 1095.11 2313.61 4709.75

Sliding 144.73 197.24 269.40 459.36 778.23 1633.77 3278.05
Windows (� = 4) (� = 4) (� = 4) (� = 5) (� = 5) (� = 6) (� = 7)

Lenstra’s Method
Subsection 3.1

87.95 114.83 146.48 264.30 501.07 983.67 1943.15

Algorithm 1
90.95 111.83 137.48 213.34 334.88 576.25 985.86
(� = 1) (� = 2) (� = 2) (� = 3) (� = 4) (� = 5) (� = 6)

Algorithm 2
69.70 80.30 95.53 143.27 223.75 384.00 668.43
(� = 4) (� = 4) (� = 5) (� = 5) (� = 6) (� = 7) (� = 7)

For a 1024-bit field (m = 32) Algorithm 2 is 24% faster than Algorithm 1.
However, if the ratios are different, then Algorithm 2 can be slower. This is
the case, for example, if a generic (non binomial) polynomial basis is used: For
m = 32, in this case we observed τS

τM
= 0.86 and τϕ

τM
= 2.13 – then the cost of

Algorithm 1 is 366.95M and that of Algorithm 2 is 505.83M .
Even though the estimates apply to specific examples of finite fields, the ad-

vantages of the methods presented here in general for PAFFs should be obvious.

3.5 On Curves

Algorithms 1 and 2 can easily be adapted to compute scalar products in elliptic
curves or in Jacobians of hyperelliptic curves with an efficiently computable en-
domorphism ϕ. For subfield curves – i.e. curves defined over Fpr but considered
over Fpm with r|m – this endomorphism is induced by the Frobenius automor-
phism of the field extension Fpm/Fpr . To perform an exponentiation in the cho-
sen subgroup G, one uses in conjunction with ϕ the so-called τ -adic expansion
of the exponent, where τ is a complex root of the characteristic polynomial of
ϕ [15, 32], or exponent splitting techniques such as those by Gallant, Lambert
and Vanstone [10], Müller [24], and Sica, Ciet and Quisquater [31]. Efficient
ad-hoc exponent splitting techniques exist for trace zero varieties [17, 3].

For brevity, we skip further details. We just point out that little needs to be
done other than changing the notation from multiplicative to additive. On curves
and Jacobians the speed ratios of the operations (addition, doubling, endomor-
phism) differ greatly from the finite field case. Hence the optimal algorithm must
be determined for every case.
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4 Polynomial Arithmetic and Mixed Modular Reduction

Multiplication in extension fields is based on two types of modular reduction:
reduction modulo the irreducible polynomial f(X) and reduction of integers
modulo the characteristic p.

The first one is a well investigated problem: we consider here only the case
f(X) = Xm − b, which makes the Frobenius easy to compute and thus allows
the use of Algorithm 2. If Xm − b is irreducible and x = X mod f(X), like
in Section 2, we consider Fpm as a Fp-vector space with basis [1, x, . . . , xp−1].
Every element of Fpm is represented uniquely as a polynomial in x of degree at
most m− 1 over Fp. Addition is performed componentwise. The multiplication
in Fpm under this representation is induced from the polynomial multiplication
in Fp[X ], with the relation xm = b: Write α =

∑m−1
i=0 aix

i and β =
∑m−1

i=0 bix
i.

Then

αβ =
2m−2∑
i=0

cix
i = cm−1x

m−1 +
m−2∑
i=0

(ci + bci+m)xi textwhere cj =
∑

j+k=i
0≤j,k<m

ajbk.

In what follows w denotes the bit-length of the integer registers of a given com-
puting architecture (for example 32 or 64).

The quantities cj are computed modulo p: In a straightforward implemen-
tation the biggest part of the computation time is spent performing modulo p
reductions. To speed up the multiplication in Fpd we can:

(i) Speed up modulo p reduction.
(ii) Reduce modulo p less often while doing the polynomial arithmetic.

Instance (i) can be addressed in many ways, not equally satisfactory:

– Using the division-with-remainder operations of the CPU or some software
macros to that effect [20, §14.3.1]. This solution is very slow [7].

– Barrett ([5] and [20, §14.3.3]) or Quisquater reduction [26, 27]. These meth-
ods are fast only for large inputs. See also [7].

– Use quasi-Mersenne primes, which are of the form 2b ± c with c ≤ 2b/2 (see
[20, Algorithm 14.47]).

– Montgomery reduction [21]. Very efficient [7], but employs an alternate rep-
resentation of the integers. See [20, §14.3.2].

– Modular reduction for generalized Mersenne primes according to [8].

Instance (ii) can be addressed in a simple way for small enough p, i.e. m ·p2 <
22w: in this case several products can be added together and only the final
result reduced – the application to schoolbook multiplication is obvious. Another
solution is to allow triple precision intermediate operands, but efficient modular
reduction for the accumulated result can only be done for specific types of primes
(e.g. quasi-Mersenne). The Montgomery and Barrett algorithms cannot be used
to reduce triple precision operands modulo a single precision prime, unless one
increases the precision of all operands – resulting in a big performance penalty.

We shall provide more satisfactory answers to both problems.
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4.1 A Modulo p Reduction Algorithm

In this Subsection we descrive a fast application of Barret’s [5] modular reduction
algorithm to the single precision case, which can be used as an alternative to
Montgomery’s [21]. The quantity to be reduced modulo p will be denoted by x
and shall satisfy x < p2w.

Barret’s algorithm in single precision approximates the quotient q of 
x/p�
by the formula

⌊
x
p

⌋ ≈ ⌊(⌊
22w

p

⌋ · x/
22w

⌋
, then computes a remainder r = x − qp

and decrements it by p until it is ≤ p: this adjustment needs to be done at most
twice. Often a further approximation is done by truncating x, i.e.

⌊
x
p

⌋ ≈ ⌊(⌊
22w

p

⌋·⌊
x
2w

⌋)
/2w

⌋
with 3 single precision multiplications, whereas the adjustment loop

is repeated at most 3 times.
We observe that, when 
log2(p)� = w, we have µ = 2w +µ0 with 0 < µ0 < 2w

and q < 2w. By this the second approximation of 
x/p� is calculated by just one
multiplication and and one addition. The complexity of the resulting method is
comparable to that of Montgomery’s.

By adjusting the parameters to the bit-size of the modulus we can perform
such a cheap reduction modulo all primes, and not only to those with maximal
bit length fitting in a word. If u = 
log2(p)�, we replace 22w by 2w+u. The
following approximation of the quotient is used:⌊

x

p

⌋
≈

⌊(⌊
2w+u

p

⌋
· x

)
/2w+u

⌋
≈

⌊(⌊
2w+u

p

⌋
·
⌊ x

2u

⌋)
/2w

⌋
.

We obtain the following algorithm:

Algorithm 3: Modular reduction

Input: p prime ≤ 2w; x an integer with x ≤ p · 2w

Output: x mod p (optional: x div p)
Assume u and µ0 known, where: u is s.t. 2u > p > 2u−1, and

µ0 ← 
2w+u/p� − 2w = 
2w(2u − p)/p�
1. x1 ← 
x/2b�
2. q ← x1 +

⌊x1 · µ0

2w

⌋ [
note that q =

⌊
x1·µ
2w

⌋ ]
3. r ← x− q · p
4. while r ≥ p do { r ← r − p (optional: q ← q + 1) }
5. return r (and optionally also q)

The correctness is obvious. Step 4 is iterated at most 3 times and, practice,
it is repeated only 0.5–1.5 times, depending on the prime.

Only Mersenne-type moduli with very small coefficients allow a sensibly faster
reduction, such as those of the form 2m ± 1. Note, however, that multiplication
in PAFFs is less sensitive to further improvements in modular reduction than
multiplication in other algebraic structures, because of incomplete reduction,
described in the next Subsection.
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4.2 Incomplete Reduction

We return to the problem of computing the sum
∑d−1

i=0 aibi mod p given ai

and bi with 0 ≤ ai, bi < p, where as always p is a prime smaller than 2w, w being
the single precision word size.

To use Algorithm 3 or Montgomery’s reduction procedure [21] at the end of
the summation, we just have to make sure that all partial sums of

∑
aibi are

smaller than p 2w: the number obtained by removing the least significant w bits
should stay reduced modulo p. Hence, we add the double precision products ai, bi

together in succession and we check if there has been an overflow or if the most
significant word of the intermediate sum is ≥ p : if so we subtract p. This requires
as many operations as allowing intermediate results in triple precision, but either
less memory accesses are needed, or less registers have to be allocated.

Furthermore, at the end we have to reduce a possibly smaller number, making
the modular reduction faster than in the case with triple precision intermedi-
ate sums and, as already remarked, allowing a bigger choice of algorithms and
primes.

Algorithm 4: Incomplete reduction

Input: p (and µ0), ai and bi for i = 0, . . . , t,
Output: x with x ≡∑t

i=0 aibi mod p2w and 0 ≤ x ≤ p2w

Notation: x = (xhi, xlo) is a double precision variable.

1. Initialise x← a0b0

for i = 1 to t do {
2. x← x + aibi

3. if carry or xhi ≥ p then xhi ← xhi − p }
4. return x

4.3 Fast Convolutions

Like in the case of long integer arithmetic, fast and nested convolution tech-
niques [29, 6] can be used for additional speed-ups. We illustrate the methodol-
ogy, and the issues, with two examples.

To multiply two degree m polynomials we can use a Karatsuba [12] step to
reduce the problem to three multiplications of degree 
m/2� polynomials. It is
very well known that this leads to an O(mlog2 3) algorithm. For m small, say
m < 10 or m < 30 depending on the implementation, schoolbook multiplication
is faster.

Similar algorithms split their inputs in three or more parts, as the k-points
Toom-Cook algorithm (cfr. [16, § 4.4.3]). Its time complexity is O(mlogk(k+1)),
but in practice it gives gains only for input sizes steeply increasing with k.
Karatsuba’s method is the particular case k = 2.

Different types of convolutions can be nested, always choosing the optimal
one for a given operand size. Since the schoolbook method is the fastest for small
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operands, it is always used at the bottom level of the recursion, called the socle.
For many applications the only effective “short convolution” will be the shortest
one, i.e. Karatsuba.

Care is required for the decision to keep which intermediate results in double
precision. In fact, even if we save modular reductions by doing so, the number
of memory accesses will increase and divisions by small constants will have to
operate on double precision operands instead of on single precision ones. There
are two basic partially delayed modular reduction variants:

– In the first one, all results are kept in double precision and the full modular
reduction is done only at the very end.

– In the second variant the modular reduction is always done in the school-
book socle. The convolutions above the socle operate only on single precision
integers.

The first variant uses less CPU multiplications but more memory accesses, hence
it is the approach of choice on workstations with large memory bandwidth. The
second solution seems the best one on a PC.

5 A Software Experiment

We implemented the algorithms of Sections 3 and 4 in the software library
MGFez (a quasi-acronym for Middle Galois Field Extensions), previously known
as PAFFlib. For large extension degrees MGFez uses simple convolutions and
recognizes automatically small primes, so that even without incomplete reduc-
tion the accumulated sums do not exceed 22w. The current version of MGFez
works only with w = 32 and can be compiled on Pentium, Alpha and POWER
processors.

For several values of a parameter B we compare the timings required by
gmp version 4.0 to perform an mod b where a, b and n are B-bit numbers,
against the time required by MGFez to compute gn, where g is an element of
a finite extension field with about 2B elements and n ≈ 2B. The manual of gmp
describes all algorithms employed. For operands of the sizes which we tested, 3
points Toom-Cook convolutions and exact division algorithms are used.

Table 3 contains some sample timings in milliseconds on a 400 Mhz Pen-
tium III. We explain the meanings of the captions:

– Inline asm = gmp-4.0 compiled only using the C version with inline assem-
bler macros for some double precision operations. This is the same kind of
optimization used in MGFez.

– Asm kernel = gmp-4.0 linked with aggressively optimised assembler por-
tions, exploiting MMX operations for a bigger speed-up. This is the stardard
installation.

– Large prime = the prime 4086122041 was used, close to 232 but not of special
form. Incomplete reduction (Algorithm 4) is used.

– Small prime = the prime 637116481 was used (29 bit). In this case no in-
complete reduction is required in the schoolbook socle.
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Table 3. Some Timings.

Bits gmp-4.0 MGFez

(B) inline asm asm kernel large prime small prime

128 0.5 0.11
192 1.75 0.37
256 3.5 0.52
512 22 7 2.8 2.1

1024 160 45 13.2 9.4
2048 1158 340 68.2 49.4

Even though such comparisons must be taken cum granum salis, it is worth
noting that an implementation of our algorithms with just a few assembler
macros shows the performance advantages of PAFFs over prime fields - even
when the latter are aggressively optimized.

6 Conclusions

We have presented techniques for arithmetic in PAFFs. The first are two ex-
ponentiation algorithms which make heavy use of the structure induced by the
automorphism of the group. We illustrated them in detail in the case of the
Frobenius of the multiplicative group of a field extension. The other techniques
reduce the cost of a field reduction involved in a multiplication in Fpm , i.e. in
typical field operations.

We implemented these techniques in a relatively portable software library.
The run times compared to the fastest general purpose long integer arithmetic
library gmp, version 4.0, display a speed up ranging between 10 and 20 over
prime fields of cryptographically relevant sizes. Our exponentiation algorithms
outperform also the previously used methods for the particular instances of the
extension fields which we consider.
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