
Secret-Key Zero-Knowlegde and Non-interactive
Verifiable Exponentiation

Ronald Cramer and Ivan Damg̊ard

BRICS�, Aarhus University, Denmark
{cramer,ivan}@brics.dk

Abstract. We consider a new model for non-interactive zero-knowledge
where security is not based on a common reference string, but where
prover and verifier are assumed to possess appropriately correlated se-
cret keys. We present efficient proofs for equality of discrete logarithms
in this model with unconditional soundness and zero-knowledge. This
has immediate applications to non-interactive verification of undeniable
signatures and pseudorandom function values. Another application is the
following: a set of l servers, of which less than l/2 are corrupt, hold shares
of a secret integer s. A client C specifies g in some finite group G, and
the servers want to allow the client to compute gs non-interactively, i.e.,
by sending information to C only once. This has immediate applications
in threshold cryptography. Using our proof system, the problem can be
solved as efficiently as the fastest previous solutions that either required
interaction or had to rely on the random oracle model for a proof of
security. The price we pay is the need to establish the secret key mate-
rial once and for all. We present an alternative solution to the problem
that is also non-interactive and where clients need no secret keys. This
comes at the expense of more communication and the assumption that
less than l/3 of the servers are corrupt.

1 Introduction

In a zero-knowledge proof system, a prover convinces a verifier via an interac-
tive protocol that some statement is true, i.e., a given word x is in some given
language L. The verifier must learn nothing beyond the fact that the assertion is
valid. Zero-knowledge is an extremely useful notion and has found innumerable
applications. Many variants of the model have been studied, in particular vari-
ants where some extra resource is assumed to be available. In some cases, this
allows to construct zero-knowledge proofs more efficiently than in the standard
model, e.g., in terms of round or communication complexity. For instance, in
the well known model of non-interactive zero-knowledge, prover and verifier are
assumed to have access to a common random reference string σ. This allows the
� Basic Research in Computer Science (www.brics.dk), funded by the Danish National

Research Foundation. Also supported by FICS, Foundations in Cryptography and
Security, funded by the Danish Natural Sciences Research Council

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 223–237, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

224 R. Cramer and I. Damg̊ard

prover to prove his statement x ∈ L simply by computing a single string π and
send it to the verifier, who can check it against σ.

In this paper, we propose a new non-interactive variant, where there is no
common random string (we do include a public string in our model for conve-
nience, but this is not essential). The new ingredient is that prover and verifier
are assumed to have secret keys skP , respectively skV . These are assumed to
be chosen with some appropriate joint distribution depending on the language
in question. The prover proves that x ∈ L by computing a proof π from x, skP

and some private information related to x. When π is sent to the verifier, he can
check it against x and skV .

Intuitively, the prover is prevented from cheating because he doesn’t know
skV , and so does not know “how” the verifier will check the proof. On the other
hand, although skP and skV must be correlated in a particular way, skV taken
by itself has a distribution that is easy to simulate from scratch. Furthermore,
we arrange it such that given skV and x ∈ L, the proof π that the prover would
give is easy to compute, thus allowing the verifier’s entire view to be simulated
efficiently.

Our motivation for introducing this model is an efficient example we present
allowing non-interactive proofs of statements related to discrete logarithms. We
give here an informal presentation of the idea, which will be formalized later in
the paper.

Let us assume that we have given a finite group G of prime order q, and that
P has a secret number s ∈ Zq. Now, skP is a random element y ∈ Zq, while
skV is a pair α, β where α is random in Zq while β = αs + y. We discuss later
how such keys can be set up. Note that skV is independent of s. The purpose of
the proof system is to allow P to prove that g, h ∈ G satisfy gs = h, whenever
this is the case. To understand how skP , skV help to do this, think of s as a
message, y as an authentication code, and α, β as a verification key. Indeed, if P
were to reveal s, y, then V could check that s was in fact the value fixed at key
set-up time by verifying β = αs + y. It is easy to see that to cheat, the prover
would have to guess α. Now, since the verification is done by taking a linear
combination of s, y we can instead do the check “in the exponent” when we are
given gs instead of s. So given g, h = gs, P sends as proof π = gy, and V checks
that gβ = hαπ. Informally, this is zero-knowledge, since given g, h, skV , V can
easily compute what π should be.

So the proof consists of sending one group element and requires one expo-
nentiation to compute and at most two for verification. Later, we generalize the
idea to arbitrary finite groups, where P, V do not even need to know the order
of G. An important fact from a practical point of view is that neither the prover
nor the verifier need random coins: security of the proof system relies only on the
randomness involved in choosing the keys. Since obtaining random bits securely
“on the fly” can be difficult, it is interesting to be able to push the need for
randomness to a set-up phase.

We mention that the hash proof systems of Cramer and Shoup [1] are also a
special case of our model where skP is empty. The most well-known example of

Secret-Key Zero-Knowlegde and Non-interactive Verifiable Exponentiation 225

hash proof systems also relate to equality of discrete logarithms: given generators
g0, g1 of prime order group G, the prover can show for given h0, h1 that h0 =
gs
0, h1 = gs

1. Here, skV consists of two random integers a, b, and the prover must
know ga

0gb
1 to compute the proof. Thus, hash proof systems allow proving equality

of discrete logs, assuming that the “base elements” g0, g1 are fixed.
Our proof system instead fixes the exponent, and allows the base to vary

without changing the keys. This dramatically expands the range of possible
applications, as we shall see. We emphasize that all our applications must of
course assume that correctly chosen secret keys are set up for all would-be provers
and verifiers before use. This can always be established by trusted parties, or
by secure two-party or multiparty computation. For our main example proof
system, we give an efficient key set-up protocol later in the paper. This protocol
only involves the prover and verifier, it is constant round and has communication
complexity O(k) bits, where k is the security parameter.

An obvious application is to do non-interactive confirmation of undeniable
signatures, when using Chaum’s original scheme [2], or the convertible scheme of
Rabin et al[9]. This is immediate because these schemes produce signatures by
computing a group element from the input message and raising this to a fixed se-
cret exponent. A further application is to verify outputs from the pseudo-random
functions of Naor and Reingold[11]. A secret key for their construction consists
of a set of fixed exponents, and one evaluates the function by raising a fixed
element in a prime order group to a sequence of exponenents determined by the
input. Using Nielsen’s variant of this construction[12], it is safe to reveal the in-
termediate results. Each of these can be sent along with the function value and
verified non-interactively using our proof system. This gives a functionality sim-
ilar to verifiable pseudorandom functions, but the construction is conceptually
simpler and more efficient than known constructions.

A final application is the following: a set of l servers, of which less than l/2
are corrupt, hold shares of a secret integer d. A client C specifies g in some
finite Abelian group G, and the servers want to allow the client to compute
gd non-interactively, i.e., by sending information to C only once and with no
communication between servers. This has immediate connections to threshold
cryptography, and can be applied directly to distributed El-Gamal and RSA.
Using our proof system, the problem can be solved as efficiently as the fastest
previous solutions that either required interaction or had to rely on the random
oracle model for a proof of security. The price we pay is, as mentioned, the need
to establish the secret key material once and for all. Some variants are possible,
however: a client without secret keys can still use the system, at the expense of
an extra round of communication. Or he can do a key set-up protocol once and
for all with the servers, and then use the system non-interactively.

A different type of “trade-off” is also possible. We present an alternative
solution to the problem, which is not directly based on secret-key zero-knowledge,
but uses a related technique. It is also non-interactive and needs no secret keys for
clients. This comes at the expense of more communication and the assumption
that less than l/3 of the servers are corrupt.

226 R. Cramer and I. Damg̊ard

2 Secret-Key Zero-Knowlegde

Our model involves the following ingredients: interactive Turing Machines P, V
(Prover and Verifier) and the Key generator a PPT algorithm G. In addition a
(possibly infinite) set of strings PK.

In the model, we play initially a game where the language in which mem-
bership is to be proved is fixed, and where keys are set up: P, V get as input
pk ∈ PK and 1k where k is a security parameter. Then P outputs strings s, inpP

and V outputs string inpv. Then G is run on input 1k, pk, s, inpP , inpV , and will
output two strings skP , skV which will later be given to P, V, respectively.

The meaning of this is as follows: each pair s, pk, where pk ∈ PK, defines
a language Ls,pk, that is, we assume there is a polynomial time algorithm that
decides if x ∈ Ls,pk, when given s, pk as additional input. One can think of pk
as a public key chosen once and for all, and s as a secret piece of information
that the prover is committed to after the key set-up phase. Our model captures
this by having P give s to G initially. Because the prover is committed to s, the
language Ls,pk is well defined, even though V gets no information initially on s.
For instance, pk might specify a finite group, and s could be a secret discrete
logarithm.

G models a protocol or a trusted party that will set up secret keys for P, V
which will help P in convincing V about membership in Ls,pk. The strings
inpP , inpV allow us to model the influence that P or V are allowed on the
keys produced.

Now, from inputs s, skP , pk and x ∈ Ls,pk the prover computes output string
P(x, s, pk, skP). This can be thought of as a non-interactive zero-knowledge proof
that x ∈ Ls,pk. The verifier can from input x, a string pr (supposedly coming
from P) and pk, skV compute as output 1 for “accept” or 0 for “reject”. We now
have

Definition 1. The triple (G, P, V) is said to be a secret-key zero-knowledge
proof system for PK with error probability ε(·, ·) if the following conditions are
satisfied:

Completeness. Correct proofs produced and checked using matching keys are
always accepted: Fix any pk ∈ PK, and any s, skP , skV that can be pro-
duced by honest G, P, V on input pk. Then for any x ∈ Ls,pk, we have
V(x,P(x, s, pk, skP), pk, skV) = 1 with probability 1.

Soundness. Even given the secret prover information, no prover can produce t
statements and proofs, and have any false statement accepted with probability
better than ε(pk, t): Fix any pk ∈ PK, and for any (possibly unbounded)
prover P ∗, set (s, inpP) = P ∗(pk). Set (skP , skV) = G(1k, s, pk, inpP , ⊥).
Give skP as input to P ∗. Now do the following for i = 1...t: P ∗ produces a
word xi and a proof pri, and recieves V’s output bit V(xi, pri, pk, skV). We
require that V rejects all xi �∈ Ls,pk except with probability ε(pk, t).

Zero-Knowledge. The verifier’s view of the key generation and proof of any
true statement(s) can be simulated with the correct distribution. Fix any
pair (s, pk) (pk ∈ PK), and consider any verifier V ∗. Set inpV = V ∗(pk),

Secret-Key Zero-Knowlegde and Non-interactive Verifiable Exponentiation 227

and (skP , skV) = G(1k, s, pk,⊥, inpV). Finally, for any word x ∈ Ls,pk, run
P(x, s, pk, skP) to obtain a proof pr. There exists a PPT simulator M1 such
that the output distribution M1(1k, pk, inpV) is statistically indistinguishable
from that of skV . Moreover, there exists a PPT simulator M2 such that the
output distribution M2(1k, pk, skV , x) is statistically indistinguishable from
that of pr.

Discussion: In this model, the quality of the simulation is guaranteed by in-
creasing the security parameter k. We do not require that the soundness error
vanishes with increasing k, but this can be achieved by generating several inde-
pendent sets of keys for the same pair s, pk and repeating the proof system in
parallel. However, for all the applications we are aware of, this is not necessary,
because the application allows us to choose s, pk such that the soundness error
is already exponentially small for all polynomial t.

The simulator is given the public string pk and must simulate w.r.t. pk. Thus,
unlike standard non-interactive zero-knowledge, the reason why the simulator
can work efficiently is not that it gets to choose the public string by itself, but
that it knows skV and can use this knowledge when simulating the proofs.

Note that the zero-knowledge requirement implies that a cheating verifier’s
view can be simulated, even in a case where several statements are proved after
key generation and where the verifier can decide the order in which they are
proved: one simply runs M1 and then M2 a number of times using the output
of M1 and the relevant statements to be proved. This works since the honest
prover acts independently on each statement, given his secret key.

The definition requires unconditional security for both parties. This is pos-
sible since both players possess information that is information theoretically
hidden from the other player. However, if G is realized via a protocol that only
offers computational security, this will of course reduce the security of the proof
system to computational as well.

Our model may superficially resemble earlier proposals for “zero-knowledge
with preprocessing”. The essential difference is that we have no restriction on
the number of proofs that can be done based on a given key pair, while earlier
schemes used the preprocessing phase to build resources that would eventually
run out later.

We proceed to present our main example of SKZK. Our set of public keys
PK is the set of strings pk that contain (in some fixed format) a specification of
a finite Abelian group G and natural numbers k0, k1, where the smallest prime
factor in the order of G is larger than 2k0 . The language Ls,pk consists of pairs of
elements g, h ∈ G such that h = gs, provided that s is an integer in [0..2k1 − 1].
Otherwise it is empty.

This specification reflects the fact that a bound on the size of prime factors
in the order of G will be needed to estimate the soundness error of our proof
system, and that it is only intended to work for values of s up to a certain limit.

The specification of G is a string, such that if it is known, one can decide
membership in G and compute the group operation and inverses in G efficiently

228 R. Cramer and I. Damg̊ard

(poly-time in the size of the specification). For instance, G could be a prime order
subgroup of Z∗

p for some prime p, or (a subgroup of) Z∗
n for an appropriately

chosen RSA-modulus n.

The key generator is given s, G, k0, k1, security parameter k, and two strings
inpP ,inpV that are interpreted as integers in the standard way (recall that
these are used to model the allowed influence of (corrupt) P or V on the
choice of keys). Test if the following conditions are satisfied: s ∈ [0..2k1 − 1],
inpP ∈ [0..2k0+k1+k] or inpP is empty, inpV ∈]0..2k0] or inpV is empty.
If the conditions are satisfied, then set α = inpV , or if inpV is empty, choose
α uniformly random in]0..2k0]. Set y = inpP , or if inpP is empty, choose y
uniformly random in [0..2k0+k1+k]. Set β = αs + y. Finally, set skP = (s, y),
skV = (α, β) and output these values.
If the conditions on s, inpP , inpV are violated, output empty strings and
stop.

The honest prover and verifier are assumed to always choose empty strings
as inpP , inpV .

From a practical point of view, this SKZK proof system can be used to allow
a prover to get g ∈ G as input, send gs to the verifier and non-interactively
prove that this was correctly done. The specification of G allows that a corrupt
P can choose s, y (in the correct intervals), but will get no information on α. A
corrupt V can choose α as any value in the interval he likes, but he learns no
information on s, y other than β. The specification also allows a corrupt party to
block the key generation, this models the fact that since we want to implement
G via a two-party protocol, we cannot guarantee successful termination because
one player can just stop early.

We proceed to describe the other algorithms:

The prover will on input g, h where hs = g, compute v = gy as the proof
(assuming skP is not empty).

The verifier will on input g, h, v check whether g, h ∈ G and gβ = hα · v, and
will accept if and only if this is the case.

We have:

Theorem 1. The above is a SKZK proof system for L with error probability
t/(2k0 − t).

Proof. Completeness is trivial by simply plugging the values produced by the
prover into the equation checked by the verifier. For soundness, assume first
that t = 1, that G is cyclic, and that we have h �= gs and some proof v. Writing
everything as a power of a generator a of G, we have g = ai, h = aj , v = am.
The assumption h �= gs implies si − j �= 0 mod ql for some prime factor q in the
order of G, where ql is the maximal q-power dividing |G|. In order to have the
proof accepted, the prover must arrange it such that

gβ = hαv

Secret-Key Zero-Knowlegde and Non-interactive Verifiable Exponentiation 229

which means that βi = αj + m mod ql. Now, since key generation ensures that
β = αs + y we find that

α(si − j) = (m − iy) mod ql.

Let qb be the maximal q-power dividing both sides of this equation. By choice
of α, it is non-zero modulo q, so we have

α
si − j

qb
=

m − iy

qb
mod ql−b.

The assumption si − j �= 0 mod ql implies b < l. It follows that

α =
m − iy

qb
· (

si − j

qb
)−1 mod ql−b.

in other words, to have the false g, h accepted, the prover must guess α mod ql−b.
However, α was randomly chosen among 2k0 < q possibilities, and by the specifi-
cation of G, the prover has no a priori information on α. So accept happens with
probability at most 2−k0 . If G is not cyclic, we can write G as a direct product
of r cyclic components G1, ..., Gr and g, h as r-tuples (g1, ..., gr), (h1, ..., hr) in
the standard way. If h �= gs, this means that hi �= gs

i for some i, and we can then
use the argument above in the cyclic subgroup Gi.

Finally we consider the case of proving several statements: if a cheating prover
sends any correct g, h where h = gs, he can compute from his secret key what the
correct proof should be, and since this is the only value the verifier will accept,
the prover can predict the verifier’s reaction to any proof he might choose to
send along with g, h.

Now consider the situation where the prover is about to compute a new
proof, assuming that he has not yet made the verifier accept a false statement.
By the above, the new information the prover could have learned earlier must
come cases where a proof of a false statement was rejected. Assuming that t false
proofs were already rejected, the prover can exclude t possible values of α, so the
next proof will be accepted with probability at most 1/(2k0 − t). This implies
the claimed error probability by an easy induction argument.

Zero-knowledge follows since we can simulate the choice of α, β by first choos-
ing α ∈]0..2k0] based on inpV in the same way as G would have done it. Then
we choose at random β ∈ [0..2k0+k1+k]. This simulates α perfectly and β with
statistically close (in k) distribution, since in real life β = αs + y and y is k bits
longer than αs. Furthermore, given correctly distributed α, β and (g, h) ∈ L, the
(uniquely determined) proof that the honest prover would send is v = gβh−α.

2.1 Some Variations

From the proof of the above theorem, it is clear that we do not really need to
fix the group G in advance. The same key set-up can be reused for any Abelian
group, the only price to pay may be that the soundness error probability can be

230 R. Cramer and I. Damg̊ard

larger: if the group has a prime factor q in its order smaller than 2k0 , the error
probability for one proof will be θ(1/q).

A variation on this: Suppose G is a direct product G = H × K, where |H|
has only primes factors > 2k0 . And furthermore for some publically known γ, it
holds that eγ = 1 for all e ∈ K. Then given an instance (g, h), we can use the
original proof system on the pair (gγ , hγ), in order to prove that gsγ = hγ . For
some applications, including threshold RSA, this is sufficient.

Finally, we note that some generalizations are possible of the form of state-
ment proved: suppose we have two secrets s, s′ and have set up keys y, y′ and
(α, β), (α′, β′) just as above, except that we have designed the key generation
such that α = α′. It is then possible for the prover to send g, g′, h and prove
that h = gsg′s′

. The proof would be v = gyg′y′
and the verifier would check that

gβg′β′
= vhα.

3 Key Set-Up Protocol

Suppose now that P, V want to agree on a set of keys for the SKZK proof system
we have described, assuming that the public string pk has already been generated
(i.e., some group has been chosen) and P knows the secret s he will be using.
We sketch here an efficient protocol that that securely realizes the G we specified
earlier.

The protocol can be proved secure in Canetti’s model for secure function
evaluation[14], assuming a static adversary that corrupts P or V . We make no
claims here on composability of the protocol, other than the sequential com-
posability that follows from Canetti’s definiton. However, we believe that in the
common reference string model and using the techniques from [7], a universally
composable version could be designed without essential loss of efficiency.

3.1 A First Attempt

We first describe a solution that works if both parties follow the protocol. Sup-
pose V chooses a key pair for a semantically secure and additively homomorphic
public-key cryptosystem. As example we will use the one by Paillier[13]. He sends
the public key pkV to P , and also sends the encryption EpkV

(α) where α has
been chosen as described in the key generation for the SKZK proof system.

Then (assuming P knows s already) P chooses y as in the key generation for
SKZK, uses the homomorphic property to compute an encryption EpkV

(sα + y)
and sends this to V . Finally, V decrypts and defines the result to be β. Of
course, we want that β = sα + y as integers, and the Paillier cryptosystem is
only homomorphic w.r.t. addition modulo some RSA modulus - but as long as
the modulus is chosen large enough compared to the sizes of α, s and y, no
modular reductions will occur, and β will be the correct value.

Clearly, V learns nothing new except β, and a computationally bounded P
learns nothing new, assuming he cannot break the semantic security.

Secret-Key Zero-Knowlegde and Non-interactive Verifiable Exponentiation 231

3.2 The Real Solution

In order to make a solution secure even against active cheating, we assume that
we have available a public key pkC for an integer commitment scheme such as the
one by Damg̊ard and Fujisaki[3], allowing P or V to commit to an integer a of
any size and prove efficiently in zero-knowledge that a belongs to some interval
using the technique of Baudot[4]. We discuss below where pkC could come from.

Note that this commitment scheme is homomorphic: from commitments that
can be opened to integers a, b it is easy to compute a commitment that can be
opened to (only) a + b. It is also trapdoor, i.e., knowing a certain piece of side
information, it is possible to produce a commitment that can be opened to any
desired value. Notation: CompkC

(x, r) denotes a commitment under public key
pkC to x using random coins r.

A final tool we need is the efficient method outlined in [6] allowing a party to
make public a Paillier encryption EpkV

(α) and prove that α belongs to a given
interval. This involves making a commitment CompkC

(α, rα), proving that it
contains the same value as EpkV

(α) and proving that α is in the correct interval
using the technique from [4]. For details see [6].

Then we do the following:

1. V sends the key pkV , the encryption EpkV
(α) and proves in ZK that α is in

the correct interval.
2. P chooses s, y as in the key generation for SKZK, makes commitments

S = CompkC
(s, rs), Y = CompkC

(y, ry) and proves that he knows how to
open these commitments to integers in the correct intervals. Similarly, he
chooses s̄, ȳ as random numbers 2k bits longer than s respectively y, makes
commitments S̄ = CompkC

(s̄, rs̄), Ȳ = CompkC
(ȳ, rȳ), and proves that s̄, ȳ

were chosen in the correct intervals.
3. P uses the homomorphic property of the encryption scheme to compute

encryptions Epk(αs + y), Epk(αs̄ + ȳ), and sends these to V , who decrypts
to get results β, respectively β̄.

4. V sends a random k-bit challenge e. Both parties use the homomorphic prop-
erties of the commitment scheme to compute from S, Y, S̄, Ȳ commitments
Zs, Zyto zs = s̄ + es, zy = ȳ + ey. P opens Zs, Zy to reveal zs, zy to V .

5. V checks that the openings were correct, and that β̄ + eβ = αzs + zy. If so,
he accepts using α, β as keys to check proofs from P in the future. Output
for P is s, y.

Given an oracle that supplies pkC , this protocol can be proved to securely
realize G as specified above in Canetti’s model for secure function evaluation[14],
assuming a static adversary that corrupts P or V . Due to space limitaitons, we
only give informally the essential ideas needed for this:

By inspection, it is trivial to check that V always accepts if both parties
follow the protocol, and that the outputs generated have the same distribution
as G would have produced.

If a party is corrupt, we need to describe a simulator that interacts one one
side with the corrupt player and on the other side with the “ideal function” G

232 R. Cramer and I. Damg̊ard

as specified above. It must create a view for the corrupt player that is indistin-
guishable from the real conversation, and at the same time interact with G on
behalf of the corrupted player. The induced input/output behavior of G must be
consistent with the view generated for the corrupted player. In general, if this
game comes to a point where the corrupt player would make the honest player
reject and stop, the simulator handles this by sending an illegal value as input
to G. This causes G to stop without generating output, which is consistent with
what happens in real life.

Now, assume P is honest and V may actively cheat. The simulator can use
rewinding to extract α from the ZK proof of knowledge given in Step 1 and give
this to G as inpV . Note that it happens with only negligible probability that α is
an illegal value simultaneously with the proof being accepted. So we may assume
that α is in the correct interval, and and G will return β to the simulator. From
the protocol description, it then follows that β, β̄ have distribution statistically
close to that of y, ȳ, i.e., uniform and independent. In particular, they convey
only negligible information on s̄. It follows that zs has distribution statistically
close to that of s̄, i.e., uniform and independent from y, ȳ. Finally, zy always
satisfies β̄ + eβ = αzs + zy. It follows that the opened values V sees in the
protocol can be simulated with statistically close distribution by choosing β̄, zs

uniformly and independently with the same distribution as y, ȳ, s̄ and setting
zy = β̄ + eβ − αzs. So if the simulator knows the trapdoor for pkC , it can
simulate efficiently V ’s view of the protocol given only pk, pkC .

Then, assume that V is honest. P ’s view of Step 1 can be simulated by sup-
plying a random encryption and commitment and simulating the zero-knowledge
proof to be given. Step 2 forces P to choose values s, y, s̄, ȳ in the correct inter-
vals, and these values can be extracted by a simulator using the ZK proofs of
knowledge given in Step 2, and s, y can be given as input to G. Note that in the
following steps, P learns no new information, the simulator can just play the
game following V ’s part of the protocol. Hence, the only remaining question is
whether the protocol ensures that β = αs+ y. The probability that the protocol
completes successfully while this condition is violated must be negligible since
otherwise it will not be consistent with what the ideal G produces. We argue
that if β �= αs+y, then V accepts with negligible probability. For this, it is suffi-
cient to show that if in Step 4, P can give satisfying answers to a non-negligible
fraction of the possible challenges, then β = αs + y. Under this assumption, by
rewinding P , we can efficiently obtain acceptable replies to two distinct values
e, e′. Because V accepts in both cases, P has opened values zs, zy, z′

s, z
′
y such

that
β̄ + eβ = αzs + zy β̄ + e′β = αz′

s + z′
y

from which we conclude that

(e − e′)β = α(zs − z′
s) + zy − z′

y

Now, by the binding property of the commitment scheme, except with negligible
probability, it holds that zs = s̄ + es, zy = ȳ + ey, z′

s = s̄ + e′s, z′
y = ȳ + e′y.

Plugging this in, we immediately obtain β = αs + y as desired.

Secret-Key Zero-Knowlegde and Non-interactive Verifiable Exponentiation 233

On efficiency, it is straightforward to check by inspection of the above and [4,
6,3] that the protocol requires communicating only a constant number of encryp-
tions and commitments, and can be executed in a constant number of rounds.

Finally, we discuss how to set up the key pkC . This key consists of an RSA
modulus n and two elements g0, h0 ∈ Z∗

n with only “large” prime factors in
their order, and such that h0 is in the group generated by g0. Fortunately, in
our main application, namely threshold RSA, an RSA modulus n is already
available. Therefore the key set-up will work, assuming that elements g0, h0 have
been chosen once and for all. It requires only little effort to do this at the time
when n is set up. For instance, if n is a product of safe primes, simply choosing
g0, h0 as random squares will be correct, except with negligible probability.

Another possibility consists in letting P choose a public key w.r.t. which V
can commit, and vice versa. Two-party protocols for setting up a key in this way
are described in detail in [3]. Compared to the previous solution, this costs a
factor of k in round- and communication complexity, but does not assume any
previous key set-up at all.

4 Applications

4.1 Undeniable Signatures

In the original scheme for undeniable signatures by Chaum [2], the public key
is a safe prime p, i.e., such that (p − 1)/2 = q is also a prime, and elements
g, h ∈ Z∗

p , where s, such that h = gs mod p is the private key. A signature on
message m is h(m)s, where h is some appropriate hash function that maps into
Z∗

p . Signatures seem to hard to forge under the Diffie-Hellman assumption, but
furthermore the idea is that it is hard to verify a signature unless the signer is
willing to help you, by engaging in a protocol where he proves that the discrete
log of h base g equals that of z base h(m) where z is the purported signature.
This is called a confirmation protocol.

Clearly, our proof system can be directly used to build a non-interactive
confirmation protocol for this scheme, which was not known before, except in the
random oracle model. Furthermore, it also applies to the convertible scheme of
Rabin et al. [9], since this scheme is essentially the same but where Z∗

p is replaced
by Z∗

n, where n is a safe prime product. The idea being that by revealing the
“public exponent” corresponding to s, all signatures can be instantly converted
to ordinary signtures. Some minor technical problems, related to the fact that
the order of Z∗

n contains a small prime factor 2, are handled in [9], and their
solutions to this translate easily to our case.

4.2 Pseudorandom Functions

In [11], Naor and Reingold present a pseudorandom function construction based
on the DDH assumption. The construction takes place in the same group Z∗

p

mentioned above. This has proved a very useful idea for making efficient pro-
tocols, for instance, Nielsen [12] describes a variant that can also be computed

234 R. Cramer and I. Damg̊ard

in a threshold fashion, and shows how this can be used to build efficient asyn-
chronous Byzantine agreement protocols and threshold RSA signatures without
random oracles.

The variant from [12] has a private key k consisting of l pairs of random
elements from Zq, (α1,0, α1,1), ..., (αl,0, αl,1). Also, a random public g ∈ Z∗

p of
order q is given. The function can take any string σ = (σ1, .., σm) where m ≤ l
as input, and the output is

fk(σ) = g
∏m

i=1
αi,σi

Clearly, our proof system can be used to set up key pairs allowing the party who
knows the private key k to prove that some element in the subgroup of order q
has been raised to powers αj,b, j = 1..l, b = 0, 1, respectively.

This leads to a way to non-interactively verify values of fk when evaluated
on strings of length precisely l. Namely, on input σ = (σ1, ..., σl), send

gα1,σ1 , gα1,σ1α2,σ2 , ..., g
∏m

i=1
αi,σi = fk(σ)

plus a proof that the j element on the list is the previous one raised to αj,σj
.

Note that the first elements on the list are fk evaluated on substrings of σ,
so it is secure to reveal these by pseudorandomness of fk(). Some applications
allow to evaluate the function on consecutive values 0, 1, 00, 01, 10, 11, 000, .., or
in general such that we never evaluate the function on an input that is a prefix
on a previously calculated value. In this case, is secure to use the domain of all
strings of length at most l. With consequtive values, one can exploit the fact
that most of the required list of function values needed to verify a new one are
already known, so only a single new value and proof needs to be sent.

This gives a functionality similar to that of verifiable pseudorandom functions
(VRF), as proposed by Micali, Rabin and Vadhan[10], although of course at
the expense of having to set up keys for our proof system first. With a VRF,
one can simply publish a public key and then send function values and non-
interactive proofs of correctness. However, VRF’s are only known to exist under
the strong RSA assumption, or under various strong and non-standard variants
of the DH/DDH assumptions [5,8]. Moreover, most of these solutions are rather
complicated and inefficient – with the exception of [8]. An alternative to the
VRF concept would be to commit on the key and use standard non-interactive
zero-knowledge to prove that the funcion value is correct, but this would be very
inefficient. In contrast, our technique allows us to assume only standard DDH
and have a reasonably efficient and conceptually simple solution.

It is easy to adapt our technique also to the threshold pseudorandom function
from Nielsen[12]. This gives a non-interactive solution with a smaller communi-
cation complexity than the interactive protocol from [12].

5 Non-interactive Verifiable Exponentiation

We consider the following problem: a set of l servers, of which t are corrupt, hold
shares of a secret integer d. A client C specifies g in some finite Abelian group

Secret-Key Zero-Knowlegde and Non-interactive Verifiable Exponentiation 235

G, and the servers want to allow the client to compute gd non-interactively, i.e.,
by sending information to C only once and with no communication between
servers. This has immediate connections to threshold cryptography, and can be
applied directly to distributed El-Gamal and RSA. Below, we two solutions with
different properties.

5.1 Using Secret-Key Zero-Knowledge

To illustrate how we can use secret-key zero-knowledge in this context, the easiest
way is to consider Shoups threshold RSA scheme[15], where indeed the purpose is
to do non-interactive verifiable exponentiation in the group Z∗

n, where n = pq is
a product of safe primes, and where we assume that t < l/2. To make this scheme
robust (verifiable), each server Si needs to prove that a given input number was
raised to a secret share si (of the private RSA exponent) held by Si. By squaring
the inputs, Shoup makes sure that this proof can be done assuming we work in
a group with only large prime factors in its order. It is therefore clear that our
proof system can be directly plugged in, instead of the random oracle based
proofs that were used in [15]. This will even be more efficient by a constant
factor.

Of course, this can only used directly assuming there are keys set up for proofs
going from each server to the client. But we can also do something assuming the
client has no keys, but we have keys for pairwise interaction between the servers.
Namely, the clients requests from each server a signature share (gsi mod n) and
proofs of correctness for this share, directed to each of the other servers. Then
the client sends these signature shares and proofs back to the severs for approval.
He will only keep those signature shares that were approved by a majority of
the servers. By soundness of the proofs, this will leave the client with at least
t + 1 shares, all of which are correct, and this is sufficient to find gd mod n.

5.2 An Alternative without Secret Key Zero-Knowledge

The following solution is non-interactive and does not require the client to have
any secret keys. This comes at the price of more communication and assuming
t < l/3. For simplicity, we work over a group Gq of prime order q, and the secret
value d is an element of Zq.

Consider first a situation where some server S knows a secret value d̂, and
where the other l−1 servers Sr have correct shares ŝr in d̂, according to Shamir’s
scheme. S also knows the polynomial F (X) = d̂ + d1X + · · · + dtX

t according
to which d̂ was shared. Write ŝr = F (r).

Here is a simple protocol where the client C can easily check whether the
value h he receives from S is indeed equal to gd̂, with g ∈ Gq specified by
the client. There is no interaction between the servers. Each of the servers just
sends some information to C, and C performs an off-line check on the total of
this information to decide on the correctness of h. The protocol has zero error
probability, while C learns only the value gd̂.

236 R. Cramer and I. Damg̊ard

S sends the value h to C, equal to gd̂ if S is honest. Additionally, S sends
the values hj , equal to gdj if S is honest. Each other server Sr sends the value
fr to C, equal to gŝr if Sr is honest.

From the information sent by S and by performing “polynomial evaluation
in the exponent,” C now computes the values f ′

r, equal to gŝr if S is honest.
Concretely, C computes

f ′
r = h ·

∏
hrj

j . (1)

In the case that there are at most t inconsistencies

fr �= f ′
r,

C decides that h = gd̂ indeed. Otherwise he decides that S is corrupt.
It is easy to see that this works. First, consider the case that S is honest. This

implies that h and the hj are correct. If Sr is honest as well, then clearly fr = f ′
r.

Up to t of the servers Sr are corrupt, so there are at most t inconsistencies
fr �= f ′

r. Thus, C makes the correct decision.
Second, if S is corrupt and h �= gd̂, then there are more than t inconsisten-

cies and C correctly decides that S is corrupt. This is argued as follows. The
information sent by S does define, in “the exponents,” a polynomial of degree
at most t. However, since logg h �= d̂ by assumption, it must be a different one
from F (X). By Lagrange interpolation and the natural one-to-one correspon-
dence between Zq and Gq, it follows that at most t of the l − 1 values f ′

r equal
gŝr . Equivalently, f ′

r �= gŝr for at least (l − 1 − t) values of r. However, apart
from S, there may be t − 1 other corrupt servers Sr. Therefore, fr �= f ′

r for at
least (l − 1 − t) − (t − 1) = l − 2t values of r. But t < l/3, so this means that
there are more than t inconsistencies, and that C decides that S is corrupt.

Finally, we argue that a static adversary who corrupts C and at most t

servers (but not S) will not learn nothing except gd̂. We do this by simulating
his entire view given this value. From corrupting t servers the adversary will learn
ŝr, for t values of r. Suppose without loss of generality that these are ŝ1, ..., ŝt.
This can be simulated perfectly by choosing t uniformly random values modulo
q. These values together with d̂ define a polynomial F () of degree ≤ t where
F (0) = d̂, F (1) = ŝ1, ..., F (t) = ŝt. Since we have t + 1 values of F (), it follows
that for any coefficient dj of F (), there exists Lagrange interpolation coefficients
γ0, ..., γt such that

gdj = (gd̂)γ0

t∏

i=1

(gŝi)γi

and this value can easily be computed given gd̂, ŝ1, ..., ŝt, i.e., we can simulate
perfectly the extra information sent by S. Finally, we can use these values to
simulate the contribution from honest Sr’s using (1).

Now we return to the scenario of interest, non-interactive verifiable exponen-
tiation. Each of the l servers Si has a share si of d, according to Shamir’s scheme
with t < l/3. Let g ∈ Gq be the element specified by the client C.

Secret-Key Zero-Knowlegde and Non-interactive Verifiable Exponentiation 237

Additionally we now assume that, for each server Si, an instance of the above
verification protocol has been correctly set up, where Si plays the role of S, the
other servers play the roles of the Sr, and d̂ is replaced by si.

If we now run the verification protocol above for each server Si, the client
C can easily filter out an incorrect value sent by a corrupt Si, and remain with
at least l − t > t correct values gsi . By “interpolation in the exponent,” i.e.,
multiplying these correct values gsi together, raised to appropriate Lagrange
interpolation coefficients, C recovers the correct value gd.

References

1. Ronald Cramer, Victor Shoup: Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption. Proc. of EUROCRYPT 2002:
45–64, Springer Verlag LNCS.

2. David Chaum, Hans Van Antwerpen: Undeniable Signatures. Proc. of CRYPTO
1989, Springer Verlag LNCS. pp.212–217.

3. Ivan Damg̊ard, Eiichiro Fujisaki: A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. Proc. of ASIACRYPT 2002: 125–142,
Springer Verlag LNCS.

4. Fabrice Boudot: Efficient Proofs that a Committed Number Lies in an Interval.
Proc. of EUROCRYPT 2000: 431–444, Springer Verlag LNCS.

5. Anna Lysyanskaya: Unique Signatures and Verifiable Random Functions from the
DH-DDH Separation. Proc. of CRYPTO 2002: 597–612, Springer Verlag LNCS.

6. Ivan Damg̊ard, Mads Jurik: Client/Server Tradeoffs for Online Elections. Proc. of
Public Key Cryptography 2002: 125–140. Springer Verlag LNCS.

7. Ivan Damg̊ard and Jesper Nielsen: Efficient Universally Composable Multiparty
Computation, proc. of Crypto 03, Springer Verlag LNCS.

8. Yevgeniy Dodis: Efficient Construction of (Distributed) Verifiable Random Func-
tions, Proc. of PKC 2002, Springer Verlag LNCS.

9. Rosario Gennaro, Tal Rabin, Hugo Krawczyk: RSA-Based Undeniable Signatures.
Journal of Cryptology 13(4): 397–416 (2000).

10. Silvio Micali, Michael O. Rabin, Salil P. Vadhan: Verifiable Random Functions.
Proc. of IEEE FOCS 1999: 120–130.

11. Moni Naor, Omer Reingold: Number-theoretic Constructions of Efficient Pseudo-
random Functions. Proc. of IEEE FOCS 1997: 458–467.

12. Jesper Buus Nielsen: A Threshold Pseudorandom Function Construction and Its
Applications. Proc. of CRYPTO 2002: 401–416. Springer Verlag LNCS.

13. Pascal Paillier: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. Proc. of EUROCRYPT 1999: 223–238, Springer Verlag LNCS.

14. Ran Canetti: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1): 143–202 (2000).

15. Victor Shoup: Practical Threshold Signatures. Proc. of EUROCRYPT 2000: 207–
220, Springer Verlag LNCS

	Introduction
	Secret-Key Zero-Knowlegde
	Some Variations

	Key Set-Up Protocol
	A First Attempt
	The Real Solution

	Applications
	Undeniable Signatures
	Pseudorandom Functions

	Non-interactive Verifiable Exponentiation
	Using Secret-Key Zero-Knowledge
	An Alternative without Secret Key Zero-Knowledge

