
Drawing Series-Parallel Graphs on Restricted
Integer 3D Grids�

Emilio Di Giacomo

Dipartimento di Ingegneria Elettronica e dell’Informazione,
Universitá degli Studi di Perugia, Perugia, Italy

digiacomo@diei.unipg.it

Abstract. A k-track drawing is a crossing-free 3D straight-line grid
drawing of a graph G on a set of k parallel lines called tracks. The
minimum value of k for which G admits a k-track drawing is called the
track number of G. In the existing literature a lower bound of five and an
upper bound of fifteen are known for the track number of series-parallel
graph. In this paper we reduce this gap for a large subclass of series-
parallel graph for which the lower bound remains five but we show an
upper bound of eight. We also describe a linear time drawing algorithm
that computes a 3D straight-line grid drawing of these graphs in volume
4× 4× 2n.

1 Introduction

In this paper we study the problem of computing 3D straight-line crossing-free
grid drawings of series-parallel graphs with linear volume. Many recent papers
devoted to the study of this problem have been presented(see, e.g., [5,6,7,8,9]).

The first subquadratic volume bound for series-parallel graphs was presented
in [6] where it is proved that every series-parallel graph admits a drawing in
O(n log2 n) volume. In [9] Wood gives the first O(n) volume bound for series-
parallel graphs. The hidden multiplicative constant in the volume bound pro-
vided in [9] is in the order of 1016.

Both papers [6,9] study the problem of computing small-volume 3D drawings
by using the following approach, introduced by Felsner Liotta and Wismath [8].
A grid consisting of k parallel lines, called tracks, is considered. A drawing of
a graph G on such a grid is called a k-track drawing of G and the minimum
value of k such that G admits a k-track drawing is called the track number of
G. In [6] it is proved that if a graph has constant track number then it admits
a drawing with linear volume. This result suggests that in order to reduce the
volume bound one can minimize the track number.

Recent results about track number are due to Dujmović and Wood [7] who
proved that k-trees have constant track number, and therefore linear volume
bound. As a special case, Dujmović and Wood [7] refine the track number and
� Research supported in part by “Progetto ALINWEB: Algoritmica per Internet e per
il Web”, MIUR Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale.

G. Liotta (Ed.): GD 2003, LNCS 2912, pp. 238–246, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Drawing Series-Parallel Graphs on Restricted Integer 3D Grids 239

volume bounds of 2-trees (every 2-tree is a series-parallel graph and every series-
parallel graph can be augmented to become a 2-tree) and show that the track
number of a series-parallel graph is at most 18; as a consequence they show that
a series-parallel graph admits a 3D straight-line grid drawings of volume at most
36 × 37 × 37� n

18�.
Very recently, Di Giacomo, Liotta and Meijer [4] improved the results in [7]

by presenting new upper bounds on the track number of k-trees; as for series-
parallel graph it is proved a track number of at most 15. The corresponding
volume described in [4] is 30 × 31 × 31� n

15�. A lower bound of five for the track
number of series-parallel graphs is presented in [5].

This paper is motivated by the natural question of reducing the gap between
the lower and the upper bound on the track number of series-parallel graphs (i.e.
a 5 ÷ 15 gap). Our main results can be listed as follows:

– We study a large subclass of series-parallel graphs, called flat series-parallel
graphs, for which an upper bound of eight on the track number is proved.
The lower bound for this class is five.

– We present a linear time drawing algorithm that computes 3D straight-line
grid drawings of flat series-parallel graphs in volume 4 × 4 × 2n.

We remark that the class of flat series-parallel graphs have been the subject
of investigation in the literature for their interest in book-embedding and VLSI
applications (see, e.g., [1]).

2 Preliminaries

A series-parallel digraph (also called as an SP-digraph in the following) is a
directed planar graph recursively defined as follows [2]: (i) A directed edge e =
(s, t) is an SP-digraph; s is the source pole and t is the sink pole of the SP-
digraph. (ii) Let G′ and G′′ be two SP-digraphs, whose source poles are s′ and
s′′, respectively, and whose sink poles are t′ and t′′, respectively; the digraph G
obtained by identifying t′ with s′′ is also an SP-graph; s′ is the source pole of
G and t′′ is the sink pole of G. (iii) Let G′ and G′′ be two SP-digraphs, whose
sources are s′ and s′′, respectively, and whose sinks are t′ and t′′, respectively;
the digraph G obtained by identifying s′ with s′′ and t′ with t′′ is also an SP-
digraph; s′ = s′′ is the source pole and t′ = t′′ is the sink pole of G. The source
pole and the sink pole of an SP-digraph G are also called the poles of G. The
undirected graph underlying an SP-digraph is a series-parallel graph, also called
SP-graph.

Let G be an SP-digraph. A split pair of G is either a separation pair or a
pair of adjacent vertices of G. A split component of G with respect to a split pair
{s, t} is either an edge (s, t) or a maximal subgraph C of G such that C is an
st-graph [2] and {s, t} is not a split pair of C.

We briefly recall the definition of the SPQ-tree of G, also called the decom-
position tree of G (see [3] for a complete definition). A SPQ-tree is an ordered
rooted tree T whose nodes are of three types: S,P , or Q. A S-node corresponds

240 E. Di Giacomo

to a series composition of blocks, and it has a child for each block; A P -node
corresponds to a parallel composition of split components with respect to a sep-
aration pair and it has a child for each split component; A Q-node corresponds
to a single edge and it has no child. The pertinent digraph of a node µ of T is
the subgraph of G whose decomposition tree is the tree rooted at µ. We call
poles of a node µ of T the poles of the pertinent digraph of µ. Also, to simplify
the description of our algorithms we shall distinguish the S-nodes having only
Q-nodes as children from the others. Namely, an S-node whose children are all
Q-nodes will be called an S∗-node.

Two parallel components of an SP-digraph G are said to be nested if they
share a pole and they are not in series. Let v be a vertex of G, the depth of v is
the number of nested parallel components having v has a pole. An SP-digraph
has depth k if each pole has depth at most k. An SP-digraph of depth 1 is said
to be flat. An SP-graph G is flat if there exists an st-orientation [2] of G such
that the resulting SP-digraph is flat.

A track is a set of 3D grid points on a straight line of infinite length. We
always assume that a track is parallel to the x-axis, thus a track is the set of all
the grid points having the same y- and z-coordinate. We denote as (x, Y, Z) a
track whose points have y-coordinate Y and z-coordinate Z. A k-track drawing
of a graph G is a 3D straight-line crossing-free grid drawing of G such that each
vertex of G is drawn on one of k tracks. The minimum value of k such that G
admits a k-track drawing is called the track number of G.

An 8-prism is the 3D integer grid consisting of the eight tracks T0 = (x, 0, 2),
T1 = (x, 0, 1), T2 = (x, 3, 2), T3 = (x, 3, 1), T4 = (x, 1, 0), T5 = (x, 1, 3), T6 =
(x, 2, 0), and T7 = (x, 2, 3). A strip σij is the portion of plane delimited by
tracks Ti and Tj . The 8 tracks of an 8-prism can be grouped in two subgrids:
the first one, called even ingot, consists of the four tracks with even numbers;
the second one, called odd ingot, consists of the four tracks with odd numbers.
A track drawing on the eight tracks of an 8-prism will be called 8-prism drawing
in the following. Also, an 8-prism drawing will be specified by assigning to each
vertex two numbers: track(v) is an integer that denotes the track to which v
is assigned; x(v) is the x-coordinate assigned to v. Finally, |G| will denote the
number of vertices of a given digraph G.

3 8-Prism Drawings of Flat SP-Digraphs

In this section we present an algorithm that computes an 8-prism drawing of a
flat SP-graph. Since a flat st-orientation of a flat SP-graph can be computed in
polynomial time we focus on flat SP-digraphs.

Let G be a flat SP-digraph and let T be the SPQ-tree of G. A level numbering
of T is a numbering of each node µ of T denoted by level(µ) and computed as
follows. The root ρ of T has level(ρ) = 0. For each non-root node µ, if µ is an
S-node then level(µ) = level(parent(µ)) + 1, else level(µ) = level(parent(µ)).

Figure 1 depicts an SP-digraph G and the level numbering of its decompo-
sition tree. Using the level numbering of T we assign a number level(v) to each

Drawing Series-Parallel Graphs on Restricted Integer 3D Grids 241

7

30

33

34

10

9

624

58

29282726

32

14 15

35

23

13

25

11

12

24

21

22

2019

1816

17

31

1

3

(a)

(31,35)

(30,33)(15,30)(29,33)(15,29)(28,33)(15,28)(27,32)(14,27)(26,32)(14,26)

(7,14) (32,34) (7,15) (33,34)

(34,35)(3,7)

(23,25)(13,23)(22,25)

(25,31)

(3,35)

(21,22)(13,21)(20,25)(13,20)

(11,13)(24,31)

(12,24)

(17,24)(12,16)

(11,12)(9,11)

(10,9)(6,10)

(6,9)

(1,6)(5,11)(2,5)(1,2)(8,11)(4,8)(1,4)

(3,1)

(16,17) (12,18) (18,24)(13,19)(19,25)

0

0

11

2

2 2 2

2 2 2

22222

2

2

2 2

2222

1

2

2 2 2

22

1 1

11

1 1 1 1 1 1 2 2

2

2

2 2

2 2

1 1

11

2

222

2 2 2

2222222222222222222

S* S*

P

S

P

S* S* S*

P

S

S* S*

P

S

S

P

S* S* S*S*S*S*

PP

S S

P

S

P

µ3 µ4 µ5

µ1 µ2

µ6 µ7

S*

ρ

(b)

Fig. 1. (a) An SP-digraph G and (b) the level numbering of its decomposition tree.

vertex v of G, called level of v. Such number is the minimum among the levels of
all the nodes of T having v as a pole. We call jumping edges those edges whose
endvertices are assigned to different levels. Notice that the level numbering is
such that the level number changes in correspondence of the S-nodes.

Lemma 1. Let G be a flat SP-digraph, let T be the decomposition tree of G,
and let µ be an S-node of T such that level(µ) = j (j > 0). The leftmost child
and the rightmost child of µ are both Q-nodes and the edges associated with them
are both jumping edges.

Let µ be either an S-node or the root node of T and let level(µ) = j, we
call j-digraph of µ the subgraph Gj

µ of Gµ, induced by those vertices having
level number j. Notice that a j-digraph may not be connected . The subtree of
Tµ consisting of all nodes with level umber equal to j except, for the non-root
node, the leftmost child and the rightmost child is called j-tree rooted at µ and
is denoted as T j

µ. A j-component is the union of all the j-digraph of level j. By
Lemma 1, each j-digraph Gj

µ (j > 0) is connected to vertices of level j − 1 by
two jumping edges, corresponding to the rightmost child and the leftmost child
of µ.

We describe now how to compute a drawing of a single j-digraph. Each
j-digraph is drawn on one of the two ingots defined by the 8-prism. The four
tracks of the ingot are denoted as Ts, Tt, T0 and T1 and are arranged as shown
in Figure 3. Also, we refer to Ts as the source track and to Tt as the sink track.
Figure 2 shows Algorithm DrawJDigraph() and Figure 3 is an example of a
resulting drawing. In the algorithm, µ is an S-node or the root of T and ν0, . . . ,
νh are the children of µ in T j

µ. For a child νi (i = 0, . . . , h), the source pole is sνi

and the sink pole is tνi .

Lemma 2. Let G be a flat SP-digraph, whose decomposition tree is T . Let µ be
an S-node of T or the root of T and let level(µ) = j. Let Gj

µ be the j-digraph of
µ. Algorithm DrawJDigraph() computes an ingot-drawing of Gj

µ in O(|Gj
µ|)

time.

242 E. Di Giacomo

DrawJDigraph(Gj
µ,xs)

Input: The j-digraph Gj
µ of an S-node or of the root µ of T and a starting x-coordinate

xs;
Output: A crossing-free straight-line grid drawing of Gj

µ on the ingot defined by Ts,
Tt, T0 and T1;
(1) track(sν0) := Ts; x(sν0) := xs; ∆x := 1;
(2) if ν0 is a P -node having S∗-nodes as children
(3) let µ0, . . . , µξ be the children of ν0 that are S∗-nodes;
(4) for g = 0 to ξ
(5) let {(sν0 , v1), (v1, v2), . . . , (vm, tν0)} be the pertinent digraph of µg;
(6) for y = 1 to m
(7) track(vy) := Tt; x(vy) := xs +∆x; ∆x := ∆x + 1;
(8) track(tν0) := T0; x(tν0) := xs +∆x; ∆x := ∆x + 1;
(9) for i = 1 to h − 1
(10) if νi is a P -node having S∗-nodes as children
(11) let µ0, . . . , µξ be the children of νi that are S∗-nodes;
(12) for g = 0 to ξ
(13) let {(sνi , v1), (v1, v2), . . . , (vm, tνi)} be the pertinent digraph of µg;
(14) for y = 1 to m
(15) track(vy) := Tt; x(vy) := xs +∆x; ∆x := ∆x + 1;
(16) α := i mod 2; track(tνi) := Tα; x(tνi) := xs +∆x; ∆x := ∆x + 1;
(17) if νh is a P -node having S∗-nodes as children
(18) let µ0, . . . , µξ be the children of νh that are S∗-nodes;
(19) for g = 0 to ξ
(20) let {(sνh , v1), (v1, v2), . . . , (vm, tνh)} be the pertinent digraph of µg;
(21) for y = 1 to m
(22) α := h mod 2; track(vy) := Tα; x(vy) := xs +∆x; ∆x := ∆x + 1;
(23) track(tνh) := Tt; x(tνh) := xs +∆x;

Fig. 2. Algorithm DrawJDigraph()

T0

T1

Tt

Ts

sν0
t ν4

sν0

t ν4

Fig. 3. A j-digraph and its drawing on an ingot.

Proof. We prove that the drawing computed by Algorithm DrawJDigraph() is
crossing-free. Suppose that two edges e1 = (u1, v1) and e2 = (u2, v2) cross each
other. Since all the vertices have different x-coordinates, a crossing is possible
only if one of the endvertices of e2 has x-coordinate between x(u1) and x(v1)
or one of the endvertices of e1 has x-coordinate between x(u2) and x(v2). There
are three types of crossings:

Drawing Series-Parallel Graphs on Restricted Integer 3D Grids 243

1. Crossing on a track (overlap). The only edges having both endvertices
on the same track are the edges of the simple paths connecting the poles of a
P -child of µ. The endvertices of these edges have consecutive x-coordinates (see
rows 4–8, 12–15, 19–22), thus a crossing of this type is not possible.

2. Crossing between edges lying on a strip. Without loss of generality,
suppose that e1 has endvertices with non-consecutive x-coordinates. At least
one of the endvertices of e1 is a pole of a P -child νi of µ. We consider only
the case in which u1 coincides with the source pole sνi

of νi, the other cases
are analogous. The vertex v1 can be either the first vertex of any simple path
which connects u1 = sνi to tνi , or it may coincide with tνi . If v1 = tνi then the
vertices having x-coordinates between x(u1) and x(v1) are the vertices of the
simple paths connecting u1 = sνi

to v1 = tνi
; no one of these vertices is either

on the track of u1 or on the track of v1, thus edge e2 cannot have an endvertex
with x-coordinate between u1 and v1 and a crossing is not possible. If v1 	= tνi

then the vertices having x-coordinates between x(u1) and x(v1) are a subset of
the vertices of the simple paths connecting u1 = sνi

to tνi
; these vertices are on

the same track of v1. The edges having one of these vertices as an endvertex,
and lying on the same strip as e1, have u1 as the other endvertex. The edge e2
must be one of these edges. Edges e1 and e2 cannot cross because they have a
common endvertex.

3. Crossing between edges lying on two strips. For such a crossing,
edges e1 and e2 must lie on two different strips which cross each other along a
straight line which is not one of the four tracks Ts, Tt, T0, and T1. The only two
strips which cross in such a way are the strip σs,1, and the strip σt,0. On the
strip σs,1 we have no edges. Namely, the only vertex on track Ts is the source
pole sν0 of ν0 and it can be connected either to vertices on track Tt or to a vertex
on track T0. It follows that a crossing is not possible.

Since the algorithm visit a vertex at a time and executes a constant number
of operations for each vertex, its time complexity is O(|Gj

µ|).
�

Algorithm DrawJDigraph() draws a single j-digraph on an ingot. The
drawing of a j-component G(j) can be obtained by two different algorithms
called GrainedDrawing() and CounterGrainedDrawing(), respectively.
Both algorithms have two main steps: in the first step a drawing is computed
by Algorithm DrawJDigraph() for each j-digraph Gj

µi
∈ G(j), and all these

drawings are consecutively arranged on the four tracks, according to the left
to right order of the nodes µi (i = 1, . . . , nj) in T . In the second step vertices
on each track are shifted. More precisely, Algorithm GrainedDrawing() shifts
vertices so that: (i) all vertices on track T0 precede all vertices on track T1, which
precede all vertices on track Ts, which precede all vertices on track Tt; (ii) the
vertices on track T0 and T1 have odd coordinates, while the vertices on Ts and Tt

have even coordinates. Algorithm CounterGrainedDrawing() shifts vertices
so that: (i) all vertices on track T1 precede all vertices on track T0, which precede
all vertices on track Ts, which precede all vertices on track Tt; (ii) the vertices on
track T0 and T1 have odd coordinates, while the vertices on Ts and Tt have even
coordinates. We call a drawing produced by Algorithm GrainedDrawing()

244 E. Di Giacomo

grained and a drawing produced by Algorithm CounterGrainedDrawing()
counter-grained.

Lemma 3. Let G be a flat SP-digraph, with decomposition tree T , and let
G(j) = {Gj

µ1
, . . . , Gj

µnj
} be the j-component of level j. Then the Algo-

rithm GrainedDrawing() and the Algorithm CounterGrainedDrawing()
compute an ingot-drawing of G(j) in O(|G(j)|) time.

To conclude the description of our technique we present now an algo-
rithm, called 8PrismDrawing(), that draws all the j-components G(j) (j =
0, . . . , nmax) of an SP-digraph G on an 8-prism. The different j-components of
G are considered consecutively from G(nmax) to G(0). If j is odd G(j) is drawn
on the odd ingot and its drawing is a grained drawing. If j is even G(j) is drawn
on the even ingot and its drawing is a counter-grained drawing. Moreover the
source track of G(j) coincides with track Ta, where a = j mod 4; as a conse-
quence the sink track of the drawing coincides with track Tb, where b = (j + 2)
mod 4. Figure 4 depicts the arrangement of the j-components on the 8-prism.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

5T

0T

1T

4T
6T

T7

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������������
������
������

������
������
������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
����������������������

��������
��������
��������

��������
��������
��������
��������

counter−grained grained counter−grained grained

sinks track

sources track

j=0 mod 4 j=3 mod 4 j=2 mod 4 j=1 mod 4

T3

T2

Fig. 4. The arrangement of the drawings of the j-components on the 8-prism.

In order to prove that the jumping edges connecting the j-digraph of different
levels can be added to the drawing computed by Algorithm 8PrismDrawing()
without creating crossings, we recall some properties of jumping edges. Each j-
digraph Gj

µ (j > 0) is connected to vertices of level j − 1 by two jumping edges,
corresponding to the rightmost child and leftmost child of µ. We call core poles
the poles of a j-digraph and simple poles the poles that are not core poles. Thus,
given a jumping edge, the endvertex with the larger level number is a core pole
of a j-digraph Gj

µ. The other endvertex can be either a core pole or a simple
pole of a (j − 1)-digraph. If a jumping edge connect two core poles, then these
two core poles are of the same type, i.e. they are either both source core pole or
both sink core poles. The following lemma proves that the drawing obtained by
Algorithm 8PrismDrawing() is crossing-free.

Lemma 4. Let G be a flat SP-digraph. Algorithm 8PrismDrawing() computes
an 8-prism drawing of G.

Proof. The drawing of a single j-component G(j) (0 ≤ j ≤ nmax) computed
either by Algorithm GrainedDrawing() or by Algorithm CounterGrained-
Drawing() is crossing free by Lemma 3.

Drawing Series-Parallel Graphs on Restricted Integer 3D Grids 245

We show that the jumping edges do not cross each other and do not cross
any other edge. As pointed out the jumping edges connect either source (sink)
core pole to source (sink) core pole, or simple poles to core poles. Thus, the
jumping edges are drawn on strips σ1,2, σ0,3, σ0,1, σ2,3, σ0,5, σ0,7, σ2,5, σ2,7, σ1,4,
σ1,6, σ3,4, and σ3,6. First, we prove that jumping edges lying on the same strip
do not cross each other. Let e1 = (u1, v1) and e2 = (u2, v2) be two jumping
edges such that track(u1) = track(u2) and track(v1) = track(v2). It is either
level(u1) = level(v1)+1 and level(u2) = level(v2)+1 or level(v1) = level(u1)+1
and level(v2) = level(u2)+1. Assume without loss of generality that level(v1) =
level(u1) + 1 and level(v2) = level(u2) + 1. It follows that v1 is the core pole of
a j-digraph Gj

µ1
and that v2 is the core pole of a h-digraph Gh

µ2
. Consider the

case when j 	= h, and assume j < h. Since v1 and v2 are on the same track then
h is at least j + 2 and therefore level(u1) < level(v1) < level(u2) < level(v2).
It follows that x(u1) < x(v1) < x(u2) < x(v2) and a crossing is not possible. If
j = h then Gj

µ1
and Gh

µ2
are in the same j-component G(j). Since x(v1) < x(v2)

then µ1 is to the left of µ2 in the SPQ-tree. If µ1 and µ2 have the same parent ν
then u1 = u2 and the two edges can not cross since they have a common vertex.
If µ1 and µ2 have different parents ν1 and ν2, then since µ1 is to the left of µ2,
it follows that ν1 is to the left of ν2, and therefore x(u1) < x(u2). A crossing is
not possible either in this case.

L0 L2

L4 L6

L1 L3

L7L5

(a)

L0 L2

L4 L6

L3L1

L5 L7

(b)

L0 L2

L1

L6

L5 L7

L4

L3

(c)

L0 L2

L3L1

L4 L6

L7L5

(d)

Fig. 5. The possible crossings of the jumping edges.

Now we prove that the jumping edges do not cross any other edge on different
strips. Depending on the value of j the jumping edges between levels j and j + 1
are on different strips and therefore the possible crossings are different. Figure 5
shows all the possible cases depending on the value of j. In Figure 5(a) the
drawing on the even ingot has level j mod 4 = 0 and the drawing on the odd
ingot has level (j − 1) mod 4 = 3. In Figure 5(b) the drawing on the odd ingot
has level j mod 4 = 3 and the drawing on the odd ingot has level (j − 1)
mod 4 = 2. In Figure 5(c) the drawing on the even ingot has level j mod 4 = 2
and the drawing on the odd ingot has level (j − 1) mod 4 = 1. In Figure 5(d)
the drawing on the odd ingot has level j mod 4 = 1 and the drawing on the
even ingot has level j − 1 mod 4 = 0. The black dots represent the 30 possible
crossings.

Let e1 = (u1, v1) and e2 = (u2, v2) be two edges; if they cross each other, the
four endvertices are co-planar. The co-planarity condition of the four vertices

246 E. Di Giacomo

can be expressed by means of an equation on the x-, y- and z-coordinates of the
vertices and since the y- and z- coordinates are determined by the choice of the
tracks, the equation reduces to a co-planarity condition on the x-coordinates.
For each of the 30 cases the x-coordinates assigned to vertices are such that
the equation above is never satisfied. This is a consequence of the fact that
some vertices have even x-coordinates and some vertices have odd x-coordinates,
and of the relative position of the vertices induced by the grained and counter-
grained drawings. The analysis of the 30 cases is straightforward but tediousand
is omitted here for reasons of brevity.
�
Theorem 1. Let G be a flat series-parallel digraph with n vertices. Then G
has track number eight and there exists an algorithm that computes an 8-track-
drawing of G in O(n) time and with at most 4 × 4 × 2n volume.

Proof. The drawing computed by Algorithm 8PrismEmbedder() is crossing
free by Lemma 4. For what concern the time complexity of the algorithm: the
SPQ-tree T and the level numbering of G can be computed in O(n) time.
The drawing of each j-component G(j) can be computed in O(|G(j)|) time by
Lemma 3. It follows that Algorithm 8PrismEmbedder() has time complexity
O(n). For what concerns the volume of the drawing, we have that: (i) each vertex
has a different x-coordinate; (ii) the grained or counter-grained drawing of each j-
component G(j) requires a portion of the 8-prism of length 2|G(j)|−1, in order to
guarantee that some vertices have even x-coordinates and some other have odd x-
coordinates. The length of the drawing is then

∑nmax

j=0 (2|G(j)|−1) = 2n−nmax,
and the overall volume is at most 4 × 4 × 2n.
�

References

1. F. R. K. Chung, F. T. Leighton, and A. Rosenberg. Embedding graphs in books:
A layout problem with applications to VLSI design. SIAM J on Alg. and Disc.
Methods, 8:33–58, 1987.

2. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice
Hall, Upper Saddle River, NJ, 1999.

3. G. Di Battista and R. Tamassia. On-line maintenance of triconnected components
with SPQR-trees. Algorithmica, 15(4):302–318, 1996.

4. E. Di Giacomo, G. Liotta, and H. Meijer. 3D straight-line drawings of k-trees.
Submitted for publication.

5. E. Di Giacomo, G. Liotta, and S. K. Wismath. Drawing series-parallel graphs on a
box. In Proc. CCCG 2002, 2002.

6. V. Dujmović, P.Morin, and D. Wood. Pathwidth and three-dimensional straight
line grid drawings of graphs. In Proc. GD 2002, volume 2528 of LNCS, pages 42–53.
Springer-Verlag, 2002.

7. V. Dujmović and D. R. Wood. Tree-partitions of k-trees with application in graph
layout. In Proc. WG 2003, LNCS. Springer-Verlag, to appear.

8. S. Felsner, G.Liotta, and S. K. Wismath. Straight line drawings on restricted integer
grids in two and three dimensions. In Proc. GD 2001), volume 2265 of LNCS, pages
328–342. Springer-Verlag, 2001.

9. D. R. Wood. Queue layouts, tree-width, and three-dimensional graph drawing. In
Proc. FSTTCS ’02, volume 2556 of LNCS, pages 348–359. Springer-Verlag, 2002.

	Introduction
	Preliminaries
	8-Prism Drawings of Flat SP-Digraphs

