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Abstract. We show that an outerplanar graph G with n vertices and
degree d admits a planar straight-line grid drawing with area O(dn1.48)
in O(n) time. This implies that if d = o(n0.52), then G can be drawn in
this fashion in o(n2) area.

1 Introduction

A drawing Γ of a graph is a straight-line drawing, if each edge is drawn as a single
line-segment. Γ is a grid drawing if all the vertices have integer coordinates. Γ
is a planar drawing, if edges do not intersect each other. Here, we concentrate on
grid drawings. So, we assume that the plane is covered by an infinite rectangular
grid consisting of horizontal and vertical channels. Let Γ be a grid drawing. Let R
be the smallest rectangle with sides parallel to the X-and Y -axes, respectively,
that covers Γ completely. The width (height) of Γ is equal to 1+ width of R
(1+height of R). The area of Γ is equal to (1+width of R)·(1+height of R),
which is equal to the number of grid points contained within R. The degree of a
graph is equal to the maximum number of edges incident on a vertex.

There has been little work done on the area-requirement of planar straight-
line grid drawings of outerplanar graphs. Currently, the best known upper bound
on the area of such a drawing of an outerplanar graph with n vertices is O(n2),
which is the same as for general planar graphs [3,8].

In this paper, we show that an outerplanar graph G with n vertices and
degree d admits a planar straight-line grid drawing with area O(dn1.48) in O(n)
time. This implies that if d = o(n0.52), then G can be drawn in this fashion in
o(n2) area.

In Section 4, we give a brief description of our drawing algorithm (for more
details, see [6]). It is based on a tree-drawing algorithm of [2], and uses the fact
that the dual of a maximal outerplanar graph is a tree.

2 Related Results

Let G be an outerplanar graph with n vertices. [1] shows that G admits a planar
polyline drawing as well as a visibility representation with O(n log n) area. [7]
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shows that G admits a planar polyline drawing with O(n) area, if G has degree
at most 4. The technique of [7] can be easily extended to construct a planar
polyline drawing of G with O(d2n) area, if G has degree d [1]. Also, in 3D, G
admits a crossings-free straight-line grid drawing with O(n) volume [4,5].

3 Preliminaries

We denote by |G|, the number of vertices (nodes) in a graph (tree) G. An ordered
tree is one with a pre-specified counterclockwise ordering of edges incident on
each node. A path P = v0v1 . . . vq is a root-to-leaf path of a binary ordered tree
T , if v0 is the root of T , and vq is a leaf of T . A left (right) subtree of P is a
subtree of T rooted at the left (right) child c of a node of P , such that c does
not belong to P . The size of a subtree of T is equal to the number of nodes in it.
The following lemma, which follows directly from Lemma A.1 of [2], defines the
concept of a spine, which is a special kind of a root-to-leaf path (see also [6]).

Lemma 1 (Lemma A.1 of [2]). Let p = 0.48. Given any binary ordered tree
T with n nodes, there exists a root-to-leaf path P , called spine, such that for any
left subtree α and right subtree β of P , |α|p + |β|p ≤ (1−δ)np, for some constant
δ > 0. Also, assuming that we have already pre-computed the size of the subtree
rooted at each node v of T and stored it in v, we can compute P in O(|P |) time.

Let G be a maximal outerplanar graph, i.e., an outerplanar graph to which
no edge can be added without destroying its outerplanarity. It is easy to see that
each internal face of G is a triangle. The dual tree TG of G is defined as follows:

– there is a one-to-one correspondence between the nodes of TG and the inter-
nal faces of G, and

– there is an edge e = (u, v) in TG if and only if the faces of G corresponding
to u and v share an edge e′ on their boundaries. e and e′ are duals of each
other.

(Figure 1(b) shows the dual tree of the outerplanar graph of Figure 1(a).)
Let P = v0v1 . . . vq be a path of TG. Let H be the subgraph of G correspond-

ing to P . A beam drawing of H is shown in Figure 2, where the vertices of H are
placed on two horizontal channels, and the faces of H are drawn as triangles.

A line-segment with end-points a and b is a flat line-segment if a and b
are grid points, and either belong to the same horizontal channel, or belong to
adjacent horizontal channels. Let B be a flat line-segment with end-points a and
b, such that b is at least one unit to the right of a. Let G be an outerplanar
graph with two distinguished adjacent vertices u and v, such that the edge (u, v)
is on the external face of G; u and v are called the poles of G. Let D be a planar
straight-line drawing of G. D is a feasible drawing of G with base B if:

– the two poles of G are mapped to a and b each,
– each non-pole vertex of G is placed at least one unit above the lower of a

and b, at least one unit to the right of a, and at least one unit to left of b.

Throughout the rest of this paper, for simplicity, by the term outerplanar
graph, we will mean a maximal outerplanar graph.
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(a) (b)

Fig. 1. (a) An outerplanar graph G. Here, H, K1, K2, K′
1, K′

2, L1, L2, M1, N1, N2,
N3, N4, Qe1, Qe2, Qe4, and Qe5 are subgraphs of G, and are themselves outerplanar
graphs. (b) The dual tree TG of G. The edges of TG are shown with dark lines. Note
that v0v1 . . . v13 is a spine of TG.

Fig. 2. (a) A path P and its corresponding graph H. (b) A beam drawing of H.

4 Outerplanar Graph Drawing Algorithm

The drawing algorithm, which we call Algorithm OpDraw, is recursive in nature.
In each recursive step, it takes as inputs an outerplanar graph G with pre-
specified poles, and a long-enough flat line-segment B, and constructs a feasible
drawing D of G with base B. D is constructed by constructing a drawing M of
the subgraph Z corresponding to a spine of TG, splitting G into several smaller
outerplanar graphs after removing Z and some other vertices from it, construct-
ing feasible drawings of these smaller outerplanar graphs, and then combining
their drawings with M to obtain D.
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Fig. 3. The drawing of the outerplanar graph of Figure 1(a) constructed by Algorithm
OpDraw, in the case, where v is one unit above u.

Let u and v be the poles of G. Let TG be the dual tree of G. Let r be the
node of TG that corresponds to the internal face F of G that contains the edge
(u, v). Convert TG into an ordered tree by making r its root, and assigning the
edges incident on each node o the same counterclockwise order as the one that
their dual edges have in the face of G corresponding to o. Note that TG is a
binary tree because each internal face of G is a triangle.

Let P = v0v1v2 . . . vq be a spine of TG, where v0 = r. In general, we can
interpret the structure of G with respect to P as follows (see Figure 1): Let u, v, w
be the vertices belonging to face F . Assume that the edge (v0, v1) of P is the dual
of the edge (v, w) (the case, where (v0, v1) is the dual of (u, w), is symmetrical).
Let u, w = c0, c1, . . . , cm = c′

0, c
′
1, . . . , c

′
s be the clockwise order of the neighbors

of v, where m is the integer such that for each i (1 ≤ i ≤ m), the face ci−1civ
corresponds to the spine node vi, and for each i (1 ≤ i ≤ s), the face c′

i−1c
′
iv

corresponds to a non-spine node of TG (In Figure 1, m = 3, and s = 2). Let
H, Ki, and K ′

i be the maximal biconnected subgraphs of G that contains edges
(u, w), (ci−1, ci), and (c′

i−1, c
′
i), respectively, but not the faces uvw, vci−1ci, and

vc′
i−1c

′
i, respectively. Let α0, α1, . . . , αh, αh+1, αt be the vertices of Km different

from cm−1 and cm such that α0, α1, . . . , αh is the clockwise order of the neighbors
of cm−1, and αh, αh+1, αh+2, αt is the clockwise order of the neighbors of cm.
For example, in Figure 1, h = 4, and t = 5. Let j be the index such that the
dual of edge (αj−1, αj) belongs to P (if no such j exists, then we can do the
following: if Km consists of only one internal face, namely, cm−1cmα0, then set
j = 0. Otherwise, the leaf vq of P will correspond to either the face α0α1cm−1 or
the face αt−1αtcm; in the first case, set j = 1, and in the second case, set j = t).
For example, in Figure 1, j = 3. Let Li be the maximal biconnected subgraph of
G that contains the edge (αi−1, αi), but not the face αi−1αicm−1 or αi−1αicm

(whichever exists). Let S = β0, β1, . . . , βµ be the clockwise order of the neighbors
of αj−1, αj , . . . , αt (in that order) in the subgraphs Lj , Lj+1, . . . , Lt, where each
βk is different from αj−1, αj , . . . , αt. For example, in Figure 1, µ = 8. Let ε
be the index such that the dual of the edge (βε−1, βε) belongs to P (if no such
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ε exists, then we can do the following: if Lj consists of only one internal face,
namely, αj−1αjβ0, then set ε = 0. Otherwise, the leaf vq of P will correspond
to either the face β0β1αj−1 or the face βµ−1βµαj ; in the first case, set ε = 1,
and in the second case, set ε = µ). For example, in Figure 1, ε = 2. For each
i, where 1 ≤ i ≤ ε − 1 (ε + 1 ≤ i ≤ µ), if there is an edge (βi−1, βi), then let
Mi (Ni−ε) be the maximal biconnected subgraph of G that contains (βi−1, βi),
but not the face βi−1βiαk, where k = j − 1 or j. Let (vρ−1, vρ) be the edge of
P that is the dual of the edge (βε−1, βε). For example, in Figure 1, ρ = 9. Let
R be the subgraph of G that corresponds to the subpath vρvρ+1 . . . vq of P . Let
e �= (βε−1, βε) be an edge on the external face of R. Let Qe be the maximal
biconnected subgraph of G than contains e but not the face of R containing e.

D is constructed as shown in Figure 3 (in this figure, we show the construction
when v is one unit above u. The other two cases, where u is one unit above v, and
where u and v are in the same horizontal channel are similar. For more details,
see [6]): w is placed one unit above u, and c1, c2, . . . , cm = c′

0, c
′
1, c

′
s are placed

in the same horizontal channel one unit above w. α0 (αt) is placed in the same
vertical channel as cm−1 (cm). α0, α1, . . . , αj−1 are placed in the same horizontal
channel. αj−1, αj , . . . , αt are placed along a line making 45◦ with the horizontal
channels, such that each αk is one unit above and one unit to the left of αk+1.
β0, β1, . . . , βε−1 are placed one unit above αj−1 in the same horizontal channel.
βε, βε+1, . . . , βµ are placed one unit below αt in the same horizontal channel.
βε−1 and βε are placed in the same vertical channel. A beam drawing E of R is
constructed. Feasible drawings of H with base uw, and each Ki (1 ≤ i ≤ m−1),
K ′

i (1 ≤ i ≤ s), Li (1 ≤ i ≤ j − 1), Mi (1 ≤ i ≤ ε − 1), Ni (1 ≤ i ≤ µ − ε), and
Qe, with bases ci−1ci, c′

i−1c
′
i, αi−1αi, βi−1βi, βi+ε−1βi+ε, and e, respectively, are

recursively constructed, with the horizontal distances between the end-points of
the line-segments uw, ci−1ci, c′

i−1c
′
i, αi−1αi, βi−1βi, βi+ε−1βi+ε, and e, equal to

|H| − 1, |Ki| − 1, |K ′
i| − 1, |Li| − 1, |Mi| − 1, |Ni| − 1, and |Qe| − 1, respectively.

The drawing of each Ni, and Qe, where e is on the bottom boundary of E, is
flipped upside-down before placing it in D. Also note that β0 and βµ are placed
such that they are either in the same vertical channel as, or to the right of c′

s.
Also note that αt is placed 1 + θ units above the horizontal channel containing
c′
s, where θ is maximum height of the feasible drawings of K ′

i, Ni, and Qe, where
e is on the bottom boundary of E.

Let h(n) and w(n) be the height and width, respectively, of D, as constructed
by Algorithm OpDraw. Here, n is the number of vertices in G. Let d be the degree
of G. Note that, by the definition of feasible drawings, w(n) will be equal to one
plus the horizontal separation between the end-points of B.

It is easy to prove using induction that w(n) = n is sufficient. As for h(n),
first notice that, because G has degree d, t − (j − 1) is less than 2d, and hence,
the distance between βε−1 and βε is less than 2d + 2. Let h′ be a function, such
that h′(f) = h(n), where f is the number of internal faces in G, i.e., the number
of nodes in the dual tree TG of G. From the construction of D, we have that:

h′(f) ≤ max{ max
1≤i≤µ−ε

{h′(|TNi |)}, max
edge e on bottom boundary of E

{h′(|TQe |)},
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max
1≤i≤s

{h′(|TK′
i
|)}} + max{h′(|TH |), max

1≤i≤m−1
{h′(|TKi |)}, max

1≤i≤j−1
{h′(|TLi |)},

max
1≤i≤ε−1

{h′(|TMi |)}, max
edge e on top boundary of E

{h′(|TQe |)}} + O(d),

The dual trees of H, Ki, Li, Mi, and Qe (where edge e is on top boundary of E)
are either right subtrees of P , or belong to right subtrees of P . The dual trees
of K ′

i, Ni, and Qe (where edge e is on bottom boundary of E) are either left
subtrees, or belong to left subtrees of P . Hence, from Lemma 1, it follows that:

h′(f) ≤ max
fp
1 +fp

2 ≤(1−δ)fp
{h′(f1) + h′(f2) + O(d)}.

Using induction, we can show that h′(f) = O(df0.48) (see also [2]). Since
f = O(n), h(n) = h′(f) = O(df0.48) = O(dn0.48).

Theorem 1. Let G be an outerplanar graph with degree d and n vertices. G
admits a planar straight-line grid drawing with area O(dn1.48) in O(n) time.

Proof. Arbitrarily select any edge e = (u, v) on the external face of G, and
designate u and v as the poles of G. Let B be any horizontal line-segment
with length n − 1, such that the end-points of B are grid points. Construct
a feasible drawing D of G with base B using Algorithm OpDraw. From the
discussion given above, it follows immediately that the area of D will be equal
to n·O(dn0.48) = O(dn1.48). Using Lemma 1, we can easily implement Algorithm
OpDraw such that it will run in O(n) time.

Corollary 1. Let G be an outerplanar graph with n vertices and degree d, where
d = o(n0.52). G admits a planar straight-line grid drawing with o(n2) area in
O(n) time.
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