
Automatic Composition of E-services That
Export Their Behavior�

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Massimo Mecella

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

lastname@dis.uniroma1.it

Abstract. The main focus of this paper is on automatic e-Service com-
position. We start by developing a framework in which the exported
behavior of an e-Service is described in terms of its possible executions
(execution trees). Then we specialize the framework to the case in which
such exported behavior (i.e., the execution tree of the e-Service) is rep-
resented by a finite state machine. In this specific setting, we analyze the
complexity of synthesizing a composition, and develop sound and com-
plete algorithms to check the existence of a composition and to return
one such a composition if one exists. To the best of our knowledge, our
work is the first attempt to provide an algorithm for the automatic syn-
thesis of e-Service composition, that is both proved to be correct, and
has an associated computational complexity characterization.

1 Introduction

Service Oriented Computing (SOC [16]) aims at building agile networks of col-
laborating business applications, distributed within and across organizational
boundaries.1 e-Services, which are the basic building blocks of SOC, represent
a new model in the utilization of the network, in which self-contained, modular
applications can be described, published, located and dynamically invoked, in a
programming language independent way.

The commonly accepted and minimal framework for e-Services, referred
to as Service Oriented Architecture (SOA [17]), consists of the following ba-
sic roles: (i) the service provider, which is the subject (e.g., an organization)
providing services; (ii) the service directory, which is the subject providing a
repository/registry of service descriptions, where providers publish their services
and requestors find services; and, (iii) the service requestor, also referred to as
client, which is the subject looking for and invoking the service in order to fulfill
� This work has been partially supported by MIUR through the “Fondo Strategico

2000” Project VISPO and the “FIRB 2001” Project MAIS. The work of Massimo
Mecella has been also partially supported by the European Commission under Con-
tract No. IST-2001-35217, Project EU-PUBLI.com.

1 cf., Service Oriented Computing Net: http://www.eusoc.net/

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 43–58, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.eusoc.net/

44 D. Berardi et al.

some goals. A requestor discovers a suitable service in the directory, and then it
connects to the specific service provider and uses the service.

Research on e-Services spans over many interesting issues regarding, in par-
ticular, composability, synchronization, coordination, and verification [21]. In
this paper, we are particularly interested in automatic e-Service composition.
e-Service composition addresses the situation when a client request cannot be
satisfied by an available e-Service, but a composite e-Service, obtained by com-
bining “parts of” available component e-Services, might be used. Each composite
e-Service can be regarded as a kind of client wrt its components, since it (indi-
rectly) looks for and invokes them. e-Service composition leads to enhancements
of the SOA, by adding new elements and roles, such as brokers and integration
systems, which are able to satisfy client needs by combining available e-Services.

Composition involves two different issues. The first, sometimes called com-
position synthesis, or simply composition, is concerned with synthesizing a new
composite e-Service, thus producing a specification of how to coordinate the com-
ponent e-Services to obtain the composite e-Service. Such a specification can be
obtained either automatically, i.e., using a tool that implements a composition
algorithm , or manually by a human. The second issue, often referred to as
orchestration, is concerned with coordinating the various component e-Services
according to some given specification, and also monitoring control and data flow
among the involved e-Services, in order to guarantee the correct execution of the
composite e-Service, synthesized in the previous phase.

Our main focus in this paper is on automatic composition synthesis. In order
to address this issue in an effective and well-founded way, our first contribution is
a general formal framework for representing e-Services. Note that several works
published in the literature address service oriented computing from different
points of views (see [11] for a survey), but an agreed comprehension of what an
e-Service is, in an abstract and general fashion, is still lacking. Our framework,
although simplified in several aspects, provides not only a clear definition of
e-Services, but also a formal setting for a precise characterization of automatic
composition of e-Services.

The second contribution of the paper is an effective technique for automatic
e-Service composition. In particular, we specialize the general framework to the
case where e-Services are specified by means of finite state machines, and we
present an algorithm that, given a specification of a target e-Service, i.e., specified
by a client, and a set of available e-Services, synthesizes a composite e-Service
that uses only the available e-Services and fully captures the target one. We also
study the computational complexity of our algorithm, and we show that it runs
in exponential time with respect to the size of the input state machines.

Although several papers have been already published that discuss either a
formal model of e-Services (even more expressive than ours, see e.g., [7]), or
propose algorithms for computing composition (e.g., [15]), to the best of our
knowledge, the work presented in this paper is the first one tackling simulta-
neously the following issues: (i) presenting a formal model where the problem
of e-Service composition is precisely characterized, (ii) providing techniques for
computing e-Service composition in the case of e-Services represented by finite

Automatic Composition of E-services That Export Their Behavior 45

state machines, and (iii) providing a computational complexity characterization
of the algorithm for automatic composition.

The rest of this paper is organized as follows. In Section 2 and 3 we define our
general formal framework, and in Section 4 we define the problem of composition
synthesis in such a framework. In Section 5 we specialize the general framework
to the case where e-Services are specified by means of finite state machines, and
in Section 6 we present an EXPTIME algorithm for automatic e-Service com-
position in the specialized framework. Finally, in Section 7 we consider related
research work and in Section 8 we draw conclusions by discussing future work.

2 General Framework

Generally speaking, an e-Service is a software artifact (delivered over the Inter-
net) that interacts with its clients in order to perform a specified task. A client
can be either a human user, or another e-Service. When executed, an e-Service
performs its task by directly executing certain actions, and interacting with other
e-Services to delegate to them the execution of other actions. In order to address
SOC from an abstract and conceptual point of view, several facets may be iden-
tified [5], each one reflecting a particular aspect of an e-Service during its life
time. Here, we focus on two of them, namely, (i) the e-Service schema, specifying
functional requirements2, i.e., what an e-Service does; (ii) an e-Service instance,
that is an occurrence of an e-Service effectively running and interacting with a
client. In general, several running instances corresponding to the same e-Service
schema may exist, each one executing independently from the others.

In order to execute an e-Service, the client needs to activate an instance from
a deployed e-Service. In our abstract model, the client can then interact with
the e-Service instance by repeatedly choosing an action and waiting for either
the fulfillment of the specific task, or the return of some information. On the
basis of the information returned, the client chooses the next action to invoke. In
turn, the activated e-Service instance executes (the computation associated to)
the invoked action; after that, it is ready to execute new actions. Under certain
circumstances, i.e., when the client has reached his goal, he may explicitly end
(i.e., terminate) the e-Service instance. However, in principle, a given e-Service
instance may need to interact with a client for an unbounded, or even infinite,
number of steps, thus providing the client with a continuous service. In this case,
no operation for ending the e-Service instance is ever executed.

When a client invokes an e-Service instance e, it may happen that e does not
execute all of its actions on its own, but instead it delegates some or all of them
to other e-Service instances. All this is transparent to the client. To precisely
capture the situations when the execution of certain actions can be delegated to
other e-Service instances, we introduce the notion of community of e-Services,
which is formally characterized by:

2 An e-Service schema may also specify non-functional requirements, such as those
concerning quality or performance. However, non-functional requirements go beyond
the scope of this paper.

46 D. Berardi et al.

– a finite common set of actions Σ, called the action alphabet, or simply the
alphabet of the community,

– a set of e-Services specified in terms of the common set of actions.

Hence, to join a community, an e-Service needs to export its service(s) in terms
of the alphabet of the community. The added value of a community is the fact
that an e-Service of the community may delegate the execution of some or all
of its actions to other instances of e-Services in the community. We call such an
e-Service composite. If this is not the case, an e-Service is called simple. Simple
e-Services realize offered actions directly in the software artifacts implementing
them, whereas composite e-Services, when receiving requests from clients, can
invoke other e-Service instances in order to fulfill the client’s needs.

Notably, the community can be used to generate (virtual) e-Services whose
execution completely delegates actions to other members of the community. In
other words, the community can be used to realize a target e-Service requested by
the client, not simply by selecting a member of the community to which delegate
the target e-Service actions, but more generally by suitably “composing” parts
of e-Service instances in the community in order to obtain a virtual e-Service
which “is coherent” with the target one. This function of composing existing
e-Services on the basis of a target e-Service is known as e-Service composition,
and is the main subject of the research reported in this paper.

3 E-service Schema

From the external point of view, i.e., that of a client, an e-Service E, belonging to
a community C, is seen as a black box that exhibits a certain exported behavior
represented as sequences of atomic actions of C with constraints on their invoca-
tion order. From the internal point of view, i.e., that of an application deploying
E and activating and running an instance of it, it is also of interest how the
actions that are part of the behavior of E are effectively executed. Specifically,
it is relevant to specify whether each action is executed by E itself or whether
its execution is delegated to another e-Service belonging to the community C
with which E interacts, transparently to the client of E. To capture these two
points of view we introduce the notion of e-Service schema, as constituted by
two different parts, called external schema and internal schema, respectively.

Also e-Service instances can be characterized by an external and an internal
view: further details can be found in [5].

3.1 External Schema

The aim of the external schema is to specify the exported behavior of the e-
Service. For now we are not concerned with any particular specification formal-
ism, rather we only assume that, whatever formalism is used, the external schema
specifies the behavior in terms of a tree of actions, called external execution tree.
The external execution tree abstractly represents all possible executions of all
possible instances of an e-Service. Therefore, any instance of an e-Service exe-
cutes a path of such a tree. In this sense, each node x of an external execution

Automatic Composition of E-services That Export Their Behavior 47

tree represents the history of the sequence of actions of all e-Service instances3,
that have executed the path to x. For every action a belonging to the alphabet
Σ of the community, and that can be executed at the point represented by x,
there is a (single) successor node x·a. The node x·a represents the fact that,
after performing the sequence of actions leading to x, the client chooses to ex-
ecute action a, among those possible, thus getting to x·a. Therefore, each node
represents a choice point at which the client makes a decision on the next action
the e-Service should perform. We call the pair (x, x·a) edge of the tree and we
say that such an edge is labeled with action a. The root ε of the tree represents
the fact that the e-Service has not yet executed any action. Some nodes of the
execution tree are final : when a node is final, and only then, the client can stop
the execution of the e-Service. In other words, the execution of an e-Service can
correctly terminate only at these points4.

Notably, an execution tree does not represent the information returned to the
client by the e-Service instance execution, since the purpose of such information
is to let the client choose the next action, and the rationale behind this choice
depends entirely on the client.

Given the external schema Eext of an e-Service E, we denote with T (Eext)
the external execution tree specified by Eext .

3.2 Internal Schema

The internal schema specifies, besides the external behavior of the e-Service,
the information on which e-Service instances in the community execute each
given action. As before, for now, we abstract from the specific formalism chosen
for giving such a specification, instead we concentrate on the notion of internal
execution tree. An internal execution tree is analogous to an external execution
tree, except that each edge is labeled by (a, I), where a is the executed action and
I is a nonempty set denoting the e-Service instances executing a. Every element
of I is a pair (E′, e′), where E′ is an e-Service and e′ is the identifier of an
instance of E′. The identifier e′ uniquely identifies the instance of E′ within the
internal execution tree. In general, in the internal execution tree of an e-Service
E, some actions may be executed also by the running instance of E itself. In this
case we use the special instance identifier this. Note that, since I is in general
not a singleton, the execution of each action can be delegated to more than one
other e-Service instance.

An internal execution tree induces an external execution tree: given an in-
ternal execution tree Tint we call offered external execution tree the external
execution tree Text obtained from Tint by dropping the part of the labeling de-
noting the e-Service instances, and therefore keeping only the information on
the actions. An internal execution tree Tint conforms to an external execution
tree Text if Text is equal to the offered external execution tree of Tint .

3 In what follows, we omit the terms “schema” and “instance” when clear from the
context.

4 Typically, in an e-Service, the root is final, to model that the computation of the
e-Service may not be started at all by the client.

48 D. Berardi et al.

a t

l

t a t

l

a

l

l

a = search by author

t = search by title

l = listen

.

.

.
.
.
.

.

.

.
.
.
.

(a) External tree

(a, E1, e1)

(l, E1, e1)

(a, E1, e1)

(l, E1, e1)

(t, E2, e2)

(t, E2, e2)

(l, E2, e2)

(t, E2, e2)
(a, E1, e1)

(l, E2, e2)

.

.

.

.

.

.
.
.
.

.

.

.

(b) Internal tree

Fig. 1. E-service execution trees

Given an e-Service E, the internal schema Eint of E is a specification that
uniquely represents an internal execution tree. We denote such an internal exe-
cution tree by T (Eint).

We now formally define when an e-Service of a community correctly delegates
actions to other e-Services of the community. We need a preliminary definition:
given the internal execution tree Tint of an e-Service E, and a path p in Tint
starting from the root, we call the projection of p on an instance e′ of an e-Service
E′ the path obtained from p by removing each edge whose label (a, I) is such
that I does not contain e′, and collapsing start and end node of each removed
edge.

We say that the internal execution tree Tint of an e-Service E is coherent
with a community C if:

– for each edge labeled with (a, I), the action a is in the alphabet of C, and
for each pair (E′, e′) in I, E′ is a member of the community C;

– for each path p in Tint from the root of Tint to a node x, and for each pair
(E′, e′) appearing in p, with e′ different from this, the projection of p on e′

is a path in the external execution tree T ′
ext of E′ from the root of T ′

ext to a
node y, and moreover, if x is final in Tint , then y is final in T ′

ext .

Observe that, if an e-Service of a community C is simple, i.e., it does not
delegate actions to other e-Service instances, then it is trivially coherent with
C. Otherwise, it is composite and hence delegates actions to other e-Service
instances. In the latter case, the behavior of each one of such e-Service instances
must be correct according to its external schema.

Example 1. Figure 1(a) shows (a portion of) an (infinite) external execution tree
representing an e-Service that allows for searching and listening to mp3 files5.
5 Final nodes are represented by two concentric circles.

Automatic Composition of E-services That Export Their Behavior 49

In particular, the client may choose to search for a song by specifying either its
author(s) or its title (action search by author and search by title, respec-
tively). Then the client selects and listens to a song (action listen). Finally,
the client chooses whether to perform those actions again.

Figure 1(b)6 shows (a portion of) an (infinite) internal execution tree,
conforming to the previous external execution tree, where all the actions
are delegated to e-Services of the community. In particular, the execution of
search by title action and its subsequent listen action are delegated to in-
stance e2 of e-Service E2, and search by author action and its subsequent
listen action to instance e1 of e-Service E1. �

4 Composition Synthesis

When a user requests a certain service from an e-Service community, there may
be no e-Service in the community that can deliver it directly. However, it may
still be possible to synthesize a new composite e-Service, which suitably dele-
gates action execution to the e-Services of the community, and when suitably
orchestrated, provides the user with the service he requested. Formally, given an
e-Service community C and the external schema Eext of a target e-Service E ex-
pressed in terms of the alphabet Σ of C, a composition of E wrt C is an internal
schema Eint such that (i) T (Eint) conforms to T (Eext), (ii) T (Eint) delegates
all actions to the e-Services of C (i.e., this does not appear in T (Eint)), and
(iii) T (Eint) is coherent with C.

The problem of composition existence is the problem of checking whether
there exists some internal schema Eint that is a composition of E wrt C. Observe
that, since for now we are not placing any restriction of the form of Eint , this
corresponds to checking if there exists an internal execution tree Tint such that
(i) Tint conforms to T (Eext), (ii) Tint delegates all actions to the e-Services of
C, and (iii) Tint is coherent with C.

The problem of composition synthesis is the problem of synthesizing an in-
ternal schema Eint for E that is a composition of E wrt C.

An e-Service Integration System delivers possibly composite e-Services on
the basis of user requests, exploiting the available e-Services of a community C.
When a client requests a new e-Service E, he presents his request in the form of
an external e-Service schema Eext for E, and expects the e-Service Integration
System to execute an instance of E. To do so, first a composer module makes the
composite e-Service E available for execution, by synthesizing an internal schema
Eint of E that is a composition of E wrt the community C. Then, following
the internal execution tree T (Eint) specified by Eint , an orchestration engine
activates an (internal) instance of E, and orchestrates the different available e-
Services, by activating and interacting with their external view, so as to fulfill
the client’s needs.

6 In the figure, each action is delegated to exactly one instance of an e-Service schema.
Hence, for simplicity, we have denoted a label (a, {(Ei, ei)}) simply by (a, Ei, ei), for
i = 1, 2.

50 D. Berardi et al.

The orchestration engine is also in charge of terminating the execution of
component e-Service instances, offering the correct set of actions to the client,
as defined by the external execution tree, and invoking the action chosen by the
client on the e-Service that offers it.

All this happens in a transparent manner for the client, who interacts only
with the e-Service Integration System and is not aware that a composite e-
Service is being executed instead of a simple one.

5 E-services as Finite State Machines

Till now, we have not referred to any specific form of e-Service schemas. In what
follows, we consider e-Services whose schema (both internal and external) can
be represented using only a finite number of states, i.e., using (deterministic)
Finite State Machines (FSMs).

The class of e-Services that can be captured by FSMs are of particular in-
terest. This class allows us to address an interesting set of e-Services, that are
able to carry on rather complex interactions with their clients, performing useful
tasks. Indeed, several papers in the e-Service literature adopt FSMs as the basic
model of exported behavior of e-Services [7,6]. Also, FSMs constitute the core
of statecharts, which are one of the main components of UML and are becoming
a widely used formalism for specifying the dynamic behavior of entities.

In the study we report here, we make the simplifying assumption that the
number of instances of an e-Service in the community that can be involved in
the internal execution tree of another e-Service is bounded and fixed a priori.
In fact, wlog we assume that it is equal to one. If more instances correspond
to the same external schema, we simply duplicate the external schema for each
instance. Since the number of e-Services in a community is finite, the overall
number of instances orchestrated by the orchestrator in executing an e-Service
is finite and bounded by the number of e-Services belonging to the community.
Within this setting, in the next section, we show how to solve the composition
problem, and how to synthesize a composition that is a FSM. Instead, how to
deal with an unbounded number of instances remains open for future work.

We consider here e-Services whose external schemas can be represented with a
finite number of states. Intuitively, this means that we can factorize the sequence
of actions executed at a certain point into a finite number of states, which are
sufficient to determine the future behavior of the e-Service. Formally, for an
e-Service E, the external schema of E is a FSM Aext

E = (Σ, SE , s0
E , δE , FE),

where:

– Σ is the alphabet of the FSM, which is the alphabet of the community;
– SE is the set of states of the FSM, representing the finite set of states of the

e-Service E;
– s0

E is the initial state of the FSM, representing the initial state of the e-
Service;

– δE : SE × Σ → SE is the (partial) transition function of the FSM, which
is a partial function that given a state s and an action a returns the state
resulting from executing a in s;

Automatic Composition of E-services That Export Their Behavior 51

l

a

t
l = listen

a = search by author

t = search by title

(a) External FSM

(a, 1)

(t, 2)

(l, 2)

(l, 1)

(b) Internal MFSM

Fig. 2. E--service specification as FSM

– FE ⊆ SE is the set of final states of the FSM, representing the set of states
that are final for the e-Service E, i.e., the states where the interactions with
E can be terminated.

The FSM Aext
E is an external schema in the sense that it specifies an external

execution tree T (Aext
E). Specifically, given Aext

E we define T (Aext
E) inductively on

the level of nodes in the tree, by making use of an auxiliary function σ(·) that
associates to each node of the tree a state in the FSM. We proceed as follows:

– ε, as usual, is the root of T (Aext
E) and σ(ε) = s0

E ;
– if x is a node of T (Aext

E), and σ(x) = s, for some s ∈ SE , then for each a
such that s′ = δE(s, a) is defined, x ·a is a node of T (Aext

E) and σ(x ·a) = s′;
– x is final iff σ(x) ∈ FE .

Figure 2(a) shows a FSM that is a specification for the external execution
tree of Figure 1(a). Note that in general there may be several FSMs that may
serve as such a specification.

Since we have assumed that each e-Service in the community can contribute
to the internal execution tree of another e-Service with at most one instance,
in specifying internal execution trees we do not need to distinguish between e-
Services and e-Service instances. Hence, when the community C is formed by n e-
Services E1, . . . , En, it suffices to label the internal execution tree of an e-Service
E by the action that caused the transition and a subset of [n] = {1, . . . , n} that
identifies which e-Services in the community have contributed in executing the
action. The empty set ∅ is used to (implicitly) denote this.

We are interested in internal schemas, for an e-Service E, that have a finite
number of states, i.e., that can be represented as a Mealy FSM (MFSM) Aint

E =
(Σ, 2[n], Sint

E , s0
E

int
, δint

E , ωint
E , F int

E), where:

– Σ, Sint
E , s0

E
int

, δint
E , F int

E , have the same meaning as for Aext
E ;

– 2[n] is the output alphabet of the MFSM, which is used to denote which
e-Service instances execute each action;

– ωint
E : Sint

E × Σ → 2[n] is the output function of the MFSM, that, given a
state s and an action a, returns the subset of e-Services that executes action
a when the e-Service E is in the state s; if such a set is empty then this
is implied; we assume that the output function ωint

E is defined exactly when
δint
E is so.

52 D. Berardi et al.

The MFSM Aint
E is an internal schema in the sense that it specifies an internal

execution tree T (Aint
E). Given Aint

E we, again, define the internal execution tree
T (Aint

E) by induction on the level of the nodes, by making use of an auxiliary
function σint(·) that associates each node of the tree with a state in the MFSM,
as follows:

– ε is, as usual, the root of T (Aint
E) and σint(ε) = s0

E
int ;

– if x is a node of T (Aint
E), and σint(x) = s, for some s ∈ Sint

E , then for
each a such that s′ = δint

E (s, a) is defined, x · a is a node of T (Aint
E) and

σint(x · a) = s′;
– if x is a node of T (Aint

E), and σint(x) = s, for some s ∈ Sint
E , then for each

a such that ωint
E (s, a) is defined (i.e., δint

E (s, a) is defined), the edge (x, x · a)
of the tree is labeled by ωint

E (s, a);
– x is final iff σint(x) ∈ F int

E .

As an example, Figure 2(b) shows a MFSM that is a specification of an
internal execution tree that conforms to the external execution tree specified by
the FSM of Figure 2(a). Indeed the MFSM in the figure compactly represents the
e-Service whose internal execution tree is shown in Figure 1(b). In general, an
external schema specified as FSM and its corresponding internal schema specified
as MFSM may have different structures, as the example shows.

Given an e-Service E whose external schema is an FSM and whose internal
schema is an MFSM, checking whether E is well formed, i.e., whether the in-
ternal execution tree conforms to the external execution tree, can be done using
standard finite state machine techniques. Similarly for coherency of E with a
community of e-Services whose external schemas are FSMs. In this paper, we
do not go into the details of these problems, and instead we concentrate on
composition.

6 Automatic E-service Composition

We address the problem of actually checking the existence of a composite e-
Service in the FSM-based framework introduced above. We show that if a com-
position exists then there is one where the internal schema is constituted by a
MFSM, and we show how to actually synthesize such a MFSM. The basic tool
we use to show such results is reducing the problem of composition existence
into satisfiability of a suitable formula of Deterministic Propositional Dynamic
Logic (DPDL), a well-known logic of programs developed to verify properties of
program schemas [12].

We start from a set P of atomic propositions and a set A of deterministic
atomic actions and we define DPDL formulas as follows:

φ −→ P | ¬φ | φ1 ∧ φ2 | 〈r〉φ | [r]φ

where P is an atomic proposition in P and r is a regular expression over the set of
actions in A. That is, DPDL formulas are composed from atomic propositions by
applying arbitrary propositional connectives, and modal operators 〈r〉φ and [r]φ.

Automatic Composition of E-services That Export Their Behavior 53

The meaning of the latter two is, respectively, that there exists an execution of r
reaching a state where φ holds, and that all terminating executions of r reach a
state where φ holds. Let u be an abbreviation for (∪a∈Aa)∗. Then [u] represents
the master modality, which can be used to state universal assertions.

A DPDL interpretation is a (deterministic) Kripke structure of the form
I = (∆I , {aI}a∈A, {P I}P∈P), where aI ⊆ ∆I × ∆I is a partial function from
elements of ∆I to elements of ∆I , and P I ⊆ ∆I are all the elements of ∆I

where P is true. Such interpretation is then extended to formulas and complex
actions in a standard way, see [12] for details.

DPDL enjoys two properties that are of particular interest for our aims. The
first is the tree model property, which says that every model of a formula can be
unwound to a (possibly infinite) tree-shaped model (considering domain elements
as nodes and partial functions interpreting actions as edges). The second is the
small model property, which says that every satisfiable formula admits a finite
model whose size (in particular the number of domain elements) is at most
exponential in the size of the formula itself.

Given the target e-Service E0 whose external schema is a FSM A0 and a
community of e-Services formed by n component e-Services E1, . . . , En whose
external schemas are FSMs A1, . . . , An respectively, we build a DPDL formula
Φ as follows. As set of atomic propositions P in Φ we have (i) one proposition
sj for each state sj of Aj , j = 0, . . . , n, that is true if Aj is in state sj ; (ii)
propositions Fj , j = 0, . . . , n, denoting whether Aj is in a final state; and (iii)
propositions moved j , j = 1, . . . , n, denoting whether (component) automaton
Aj performed a transition. As set of atomic actions A in Φ we have the actions
in Σ (i.e, A = Σ). The formula Φ is built as a conjunction of the following
formulas.

– The formulas representing A0 = (Σ, S0, s
0
0, δ0, F0):

• [u](s → ¬s′) for all pairs of states s ∈ S0 and s′ ∈ S0, with s 	= s′; these
say that propositions representing different states are disjoint (cannot
be true simultaneously).

• [u](s → 〈a〉true ∧ [a]s′) for each a such that s′ = δ0(s, a); these encode
the transitions of A0.

• [u](s → [a]false) for each a such that δ(s, a) is not defined; these say
when a transition is not defined.

• [u](F0 ↔ ∨
s∈F0

s); this highlights final states of A0.
– For each component FSM Ai = (Σ, Si, s

0
i , δi, Fi), the following formulas:

• [u](s → ¬s′) for all pairs of states s ∈ Si and s′ ∈ Si, with s 	= s′; these
again say that propositions representing different states are disjoint.

• [u](s → [a](moved i ∧s′ ∨¬moved i ∧s)) for each a such that s′ = δi(s, a);
these encode the transitions of Ai, conditioned to the fact that the com-
ponent Ai is actually required to make a transition a in the composition.

• [u](s → [a]¬moved i) for each a such that δi(s, a) is not defined; these
say that when a transition is not defined, Ai cannot be asked to execute
in the composition.

• [u](Fi ↔ ∨
s∈Fi

s); this highlights final states of Ai.

54 D. Berardi et al.

– Finally, the following formulas:
• s0

0 ∧ ∧
i=1,... ,n s0

i ; this says that initially all e-Services are in their initial
state; note that this formula is not prefixed by [u]·.

• [u](〈a〉true → [a]
∨

i=1,... ,n moved i), for each a ∈ Σ; these say that at
each step at least one of the component FSM has moved.

• [u](F0 → ∧
i=1,... ,n Fi); this says that when the target e-Service is in a

final state also all component e-Services must be in a final state.

Theorem 1. The DPDL formula Φ, constructed as above, is satisfiable if and
only if there exists a composition of E0 wrt E1, . . . , En.

Proof (sketch). “⇐” Suppose that there exists some internal schema (with-
out restriction on its form) E0

int which is a composition of E0 wrt E1, . . . , En.
Let Tint = T (E0

int) be the internal execution tree defined by E0
int .

Then for the target e-Service E0 and each component e-Service Ei, i =
1, . . . n, we can define mappings σ and σi from nodes in Tint to states of A0 and
Ai, respectively, by induction on the level of the nodes in Tint as follows.

– base case: σ(ε) = s0
0 and σi(ε) = s0

i .
– inductive case: let σ(x) = s and σi(x) = si, and let the node x · a be in Tint

with the edge (x, x · a) labeled by (a, I), where I ⊆ [n] and I 	= ∅ (notice
that this may not occur since Tint is specified by a composition). Then we
define

σ(x · a) = s′ = δ0(s, a)

and

σi(x · a) =

{
si

′ = δi(si, a) if i ∈ I

si if i 	∈ I

Once we have σ and σi in place we can define a model I =(∆I , {aI}a∈Σ ,

{P I}P∈P) of Φ as follows:

– ∆I = {x | x ∈ Tint};
– aI = {(x, x · a) | x, x · a ∈ Tint}, for each a ∈ Σ;
– sI = {x ∈ Tint | σ(x) = s}, for all propositions s corresponding to states of

A0;
– sI

i = {x ∈ Tint | σi(x) = si}, for all propositions si corresponding to states
of Ai;

– movedI
i = {x · a | (x, x · a) is labeled by I with i ∈ I}, for i = 1, . . . , n;

– F I
0 = {x ∈ Tint | σ(x) = s with s ∈ F0};

– F I
i = {x ∈ Tint | σi(x) = si with si ∈ Fi}, for i = 1, . . . , n.

It is easy to check that, being Tint specified by a composition Eint , the above
model indeed satisfies Φ.

“⇒” Let Φ be satisfiable and I = (∆I , {aI}a∈Σ , {P I}P∈P) be a tree-like
model. From I we can build an internal execution tree Tint for E0 as follows.

Automatic Composition of E-services That Export Their Behavior 55

– the nodes of the tree are the elements of ∆I ; actually, since I is tree-like we
can denote the elements in ∆I as nodes of a tree, using the same notation
that we used for internal/external execution tree;

– nodes x such that x ∈ F I
0 are the final nodes;

– if (x, x · a) ∈ aI and for all i ∈ I, x · a ∈ movedI
i and for all j 	∈ I,

x · a 	∈ movedI
j , then (x, x · a) is labeled by (a, I).

It is possible to show that: (i) Tint conforms to T (A0), (ii) Tint delegates all ac-
tions to the e-Services of E1, . . . , En, and (iii) Tint is coherent with E1, . . . , En.
Since we are not placing any restriction on the kind of specification allowed for
internal schemas, it follows that there exists an internal schema Eint that is a
composition of E0 wrt E1, . . . , En.

Observe that the size of Φ is polynomially related to the size of A0,
A1, . . . , An. Hence, from the EXPTIME-completeness of satisfiability in DPDL
and from Theorem 1 we get the following complexity result.

Theorem 2. Checking the existence of an e-Service composition can be done in
EXPTIME.

Observe that, because of the small model property, from Φ one can al-
ways obtain a model which is at most exponential in the size of Φ. From
such a model one can extract an internal schema for E0 that is a com-
position of E0 wrt E1, . . . , En, and has the form of a MFSM. Specifically,
given a finite model I = (∆I , {aI}a∈Σ , {P I}P∈P), we define such an MFSM
Ac = (Σ, 2[n], Sc, s

0
c , δc, ωc, Fc,) as follows:

– Sc = ∆I ;
– s0

c = d0 where d0 ∈ (s0
0 ∧ ∧

i=1,... ,n s0
i)

I ;
– s′ = δc(s, a) iff (s, s′) ∈ aI ;
– I = ωc(s, a) iff (s, s′) ∈ aI and for all i ∈ I, s′ ∈ movedI

i and for all j 	∈ I,
s′ 	∈ movedI

j ;
– Fc = F I

0 .

As a consequence of this, we get the following result.

Theorem 3. If there exists a composition of E0 wrt E1, . . . , E0, then there
exists one which is a MFSM of at most exponential size in the size of the external
schemas A0, A1, . . . , An of E0, E1, . . . , En respectively.

Proof (sketch). By Theorem 1, if A0 can be obtained by composing
A1, . . . , An, then the DPDL formula Φ constructed as above is satisfiable. In
turn, if Φ is satisfiable, for the small-model property of DPDL there exists a
model I of size at most exponential in Φ, and hence in A0 and A1, . . . , An.
From I we can construct a MFSM Ac as above. It is possible to show that the
internal execution tree T (Ac) defined by Ac satisfies all the conditions required
for Ac to be a composition, namely: (i) T (Ac) conforms to T (A0), (ii) T (Ac)
delegates all actions to the e-Services of E1, . . . , En, and (iii) T (Ac) is coherent
with E1, . . . , En.

56 D. Berardi et al.

In [4] a detailed example is provided, that explains the composition synthesis
algorithm step by step.

From a practical point of view, because of the correspondence between
Propositional Dynamic Logics (which DPDL belongs to) and Description Log-
ics (DLs [8]), one can use current highly optimized DL-based systems [3]7 to
check the existence of e-Service compositions. Indeed, these systems are based
on tableaux techniques that construct a model when checking for satisfiability,
and from such a model one can construct a MFSM that is the composition.

7 Related Work

Up to now, research on e-Services has mainly concentrated on the issues of
(i) service description and modeling, and (ii) service composition, including
synthesis and orchestration.

Current research in description and modeling of e-Services is mainly founded
on the work on workflows, which model business processes as sequences of (pos-
sibly partially) automated activities, in terms of data and control flow among
them (e.g., [18,19]). In [14] e-Services are represented as statecharts, and in [7],
an e-Service is modeled as a Mealy machine, with input and output messages,
and a queue is used to buffer messages that were received but not yet processed.

In our paper, we model e-Services as finite state machines, even if we do not
consider communication delays and therefore any concept of message queuing
is not taken into account. Indeed, from the survey of [11], it stems that the
most practical approaches for modeling and describing e-Services are the ones
based on specific forms of state machines. Additionally, our model of e-Service is
oriented towards representing the interactions between a client and an e-Service.
Therefore, our focus is on action sequences, rather than on message sequences
as in [7], or on actions with input/output parameters as in [15].

Orchestration requires that the composite e-Service is specified in a precise
way, considering both the specification of how various component e-Services are
linked and the internal process flow of the component one. In [11], different
technologies, standards and approaches for specification of composite e-Services
are considered, including BPEL4WS, BPML, AZTEC, etc. In [11] three differ-
ent kinds of composition are identified: (i) peer-to-peer, in which the individual
e-Services are equals, (ii) the mediated approach, based on a hub-and-spoke
topology, in which one service is given the role of process mediator, and (iii) the
brokered approach, where process control is centralized but data can pass be-
tween component e-Services. With respect to such a classification, the approach
proposed in this paper belongs to the mediated one. Analogously, research works
reported in [9,19,13] can be classified into the mediated approach to composi-
tion. Conversely in [10] the enactment of a composite e-Service is carried out
in a decentralized way, through peer-to-peer interactions. In [7], a peer-to-peer

7 In fact, current DL-based systems cannot handle Kleene star. However, since in Φ,
∗ is only used to mimic universal assertions, and such systems have the ability of
handling universal assertions, they can indeed check satisfiability of Φ.

Automatic Composition of E-services That Export Their Behavior 57

approach is considered, and the interplay between a composite e-Service and
component ones is analyzed, also in presence of unexpected behavior.

The DAML-S Coalition [2] is defining a specific ontology and a related lan-
guage for e-Services, with the aim of composing them in automatic way. In [20]
the issue of service composition is addressed, in order to create composite ser-
vices by re-using, specializing and extending existing ones; in [15] composition of
e-Services is addressed by using Golog and providing a semantics of the com-
position based on Petri Nets. In [1] a way of composing e-Services is presented,
based on planning under uncertainty and constraint satisfaction techniques, and
a request language, to be used for specifying client goals, is proposed. e-Service
composition is indeed a form of program synthesis as is planning. The main
conceptual difference is that, while in planning we are typically interested in
synthesizing a new sequence of actions (or more generally a program, i.e., an
execution tree) that achieves the client goal, in e-Service composition, we try to
obtain (the execution tree of) the target e-Service by reusing in a suitable way
fragments of the executions of the component e-Services.

8 Conclusions

The main contribution of this paper wrt research on service oriented computing
is in tackling simultaneously the following issues: (i) presenting a formal model
where the problem of e-Service composition is precisely characterized, (ii) pro-
viding techniques for computing e-Service composition in the case of e-Services
represented by finite state machines, and (iii) providing a computational com-
plexity characterization of the algorithm for automatic composition.

In the future we plan to extend our work both in practical and theoretical
directions. On one side, we are developing a DL-based prototype system that
implements the composition technique presented in the paper. Such system will
enable us to test how the complexity of composition in our framework impacts
real world applications. On the theoretical side, we will address open issues such
as the characterization of a lower bound for the complexity of the composition
problem. Additionally, we plan to extend our setting, by taking into account the
possibility that the target e-Service is underspecified, as well as the presence of
communication delays and of an unbounded number of active instances.

References

1. M. Aiello, M.P. Papazoglou, J. Yang, M. Carman, M. Pistore, L. Serafini, and
P. Traverso. A Request Language for Web-Services Based on Planning and Con-
straint Satisfaction. In Proc. of VLDB-TES 2002.

2. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. DAML-S:
Web Service Description for the Semantic Web. In Proc. of ISWC 2002.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook: Theory, Implementation and Applications. CUP,
2003.

58 D. Berardi et al.

4. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella.
Automatic Composition of e-Services. Technical Report DIS 22–03
(http://www.dis.uniroma1.it/˜berardi/publications/techRep/
TR-22-03.pdf).

5. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. A Foun-
dational Vision of e-Services. In Proc. of WES 2003.

6. D. Berardi, F. De Rosa, L. De Santis, and M. Mecella. Finite State Automata as
Conceptual Model for e-Services. In Proc. of IDPT 2003, to appear.

7. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification: A New Approach
to Design and Analysis of E-Service Composition. In Proc. of WWW 2003.

8. D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in Expressive
Description Logics. Handbook of Automated Reasoning, ESP, 2001.

9. F. Casati and M.C. Shan. Dynamic and Adaptive Composition of e-Services.
Information Systems, 6(3), 2001.

10. M.C. Fauvet, M. Dumas, B. Benatallah, and H.Y. Paik. Peer-to-Peer Traced Ex-
ecution of Composite Services. In Proc. of VLDB-TES 2001.

11. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look Behind the
Curtain. In Proc. of PODS 2003.

12. D. Kozen and J. Tiuryn. Logics of programs. Handbook of Theoretical Computer
Science — Formal Models and Semantics, ESP, 1990.

13. M. Mecella and B. Pernici. Building Flexible and Cooperative Applications Based
on e-Services. Technical Report DIS 21–2002
(http://www.dis.uniroma1.it/˜mecella/publications/
mp_techreport_212002.pdf).

14. M. Mecella, B. Pernici, and P. Craca. Compatibility of e-Services in a Cooperative
Multi-Platform Environment. In Proc. of VLDB-TES 2001.

15. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Compo-
sition of Web Services. In Proc. of WWW 2002.

16. M. Papazoglou. Agent-Oriented Technology in Support of e-Business. Communi-
cations of the ACM, 44(4):71–77, 2001.

17. T. Pilioura and A. Tsalgatidou. e-Services: Current Technologies and Open Issues.
In Proc. of VLDB-TES 2001.

18. H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and Com-
posing Service-based and Reference Process-based Multi-enterprise Processes. In
Proc. of CAiSE 2000.

19. G. Shegalov, M. Gillmann, and G. Weikum. XML-enabled Workflow Management
for e-Services across Heterogeneous Platforms. VLDB Journal, 10(1), 2001.

20. J. Yang and M.P. Papazoglou. Web Components: A Substrate for Web Service
Reuse and Composition. In Proc. of CAiSE 2002.

21. J. Yang, W.J. van den Heuvel, and M.P. Papazoglou. Tackling the Challenges of
Service Composition in e-Marketplaces. In Proc. of RIDE-2EC 2002.

http://www.dis.uniroma1.it/~berardi/publications/techRep/
TR-22-03.pdf
http://www.dis.uniroma1.it/~mecella/publications/
mp_techreport_212002.pdf

	Introduction
	General Framework
	{em E}-service Schema
	External Schema
	Internal Schema

	Composition Synthesis
	{em E}-services as Finite State Machines
	Automatic {em E}-service Composition
	Related Work
	Conclusions

