
Single Sign-On in Service-Oriented Computing

Kurt Geihs1, Robert Kalcklösch1, and Andreas Grode2

1 Intelligent Networks and Management of Distributed Systems
Berlin University of Technology, D-10587 Berlin

{geihs, rkalckloesch}@ivs.tu-berlin.de
2 DIN IT Service GmbH

Burggrafenstr. 6
D-10787 Berlin

andreas.grode@dinits.de

Abstract. Support for Single Sign-On (SSO) is a frequently voiced
requirement for Service-Oriented Computing. We discuss SSO strategies
and approaches, their requirements and constraints. The two most
prominent approaches in this field are presented, i.e. Microsoft Passport
and Liberty Alliance. Because implementations of Liberty were not
widely available and in order to understand the conceptual implications
and practical requirements of SSO we have built our own SSO solution.
Its modular and flexible design is compatible with the Liberty specifi-
cations. The prototype reveals valuable insights into SSO design and
operations.

Keywords: Service oriented computing, security, service authentication,
single sign on

1 Introduction

Service-oriented Computing and Web Services are critical ingredients in making
the Internet a universal platform for electronic commerce [1]. The new technol-
ogy supports a loosely coupled collaboration style for business to business and
business to consumer scenarios. New technical challenges and requirements arise
primarily from the inherent autonomy of actors as well as the heterogeneity of
components. Clearly, security concerns are uttermost important in such an open
environment. On the one hand we need effective security mechanisms to protect
the individual business assets. On the other hand we clearly want to lower the
inconvenience hurdles for using the new application potential.

The authentication of a service user to a service provider is one area where
this dilemma is evident: While one has to acknowledge the autonomy of services
to choose their own authentication mechanism, one should also avoid inefficient
and insecure repetitions of service sign-on procedures. Password proliferation is
a frequent consequence of multi-service environments. It often leads to violations
of security policies and thus weakens the security. Ideally, service users want to
sign on to ”the distributed system” only once, just like the user of an operating
system logs on to a computer once and may then use the different operating

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 384–394, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Single Sign-On in Service-Oriented Computing 385

system services. An SSO mechanism should not only provide the necessary level
of security but also should be easy to use and should work for arbitrary service
types.

This paper addresses Single Sign-On (SSO) strategies for service-oriented
computing environments. Solving the SSO problem is much harder in such en-
vironments due to the inherent distribution and heterogeneity as well as the
autonomy and independence of the involved actors.

The paper is structured as follows. In Section 2 we analyse the SSO require-
ments and constraints, and we provice a classification of SSO approaches. Section
3 discusses the two most prominent approaches for SSO in Service-Oriented Com-
puting, i.e. Microsoft Passport and Liberty Alliance. Because implementations
of Liberty were not widely available and in order to understand the conceptual
implications and practical requirements of SSO we have built our own SSO solu-
tion. Section 4 describes our prototype system and reports on the lessons learnt.
Section 5 concludes the paper and points to further work.

2 Single Sign On

A SSO system enables users to access multiple services or computer platforms
after being authenticated just once [12]. This does not mean that a SSO system
unifies the account information (e.g., username and password) for all services,
even if this is a popular interpretation for many people. Instead, it hides the
account information for the participating services behind only one account. Thus,
the user logs on to the SSO system once and the system manages the logins
for the specific services the user chooses to work with. Especially, the system
does not automatically perform a login for the user at all services managed
by the SSO system. A login takes place only at those services that the user
chooses to work with. The SSO system has to maintain a list of username-
password pairs for the services. Obviously, this list is a remunerative target for
an attacker. If an attacker gains access to the SSO system he therefore has access
to all participating applications. This is also true, if an attacker gets the account
information from a specific user. With this information he is able to access all
services the genuine user is allowed to access.

Consequently, security is a major aspect of a SSO system. The accounting
information has to be stored in a secure way, ensuring that only the owner has
access to it. Also, the login to participating services must take place in a secure
way.

There exist three major mechanisms for user authentication. First, user and
service share a not commonly known secret (e.g., a password) which is bound
to a special identity. The second mechanism involves some material token, in-
cluding personal characteristics (e.g., a driving license or a magnetic card). The
third one is a variation of the token, whereby the token is a biometric attribute
(e.g., the fingerprint or the signature). The main point is that no mechanism
is per se better than the other. A carefully chosen password which is changed
regularly may be better than a token which can be easily faked. Thus, not only



386 K. Geihs, R. Kalcklösch, and A. Grode

the mechanism itself, but also the behavior of the user contributes to the level
of security of the authentication.

Although an authentication maps a network identity to a real life person, it is
not necessary that all services behind a Single Sign-On know exactly with whom
they are dealing. Thus, a SSO system should support pseudonymity in a way,
that the user can decide, based on the specific needs of an application, to which
extend he is willing to reveal his identity. However, it must be ensured that at
least at one point the mapping between the pseudonym and the real identity
can take place. Pseudonymity is an issue especially in the European Community
with its strong privacy policies.

2.1 Cooperative vs. Non-cooperative SSO

Basically, there exist two different approaches for SSO: cooperative and non-
cooperative SSO. In a cooperative SSO system the participating services know
about the SSO system. SSO is not transparent for the services in this case. Nor-
mally, the services have to be modified, at least regarding the login procedure,
to cope with the requirements of the cooperative SSO system. Through cooper-
ation among themselves the services are able to build a network, where a user,
once successfully logged in, could move from one service to another, without fur-
ther login procedures. Also, it is possible to link the different identities together
building a group of services and enriching each others services.

The alternative is non-cooperative SSO. In this approach the participating
services do not know about the SSO system. This is no contradiction, if one
looks at the desired behavior of a Single Sign-On mechanism. It should group
together services and offer the user a single authentication point to login to all
services. Such a system could be a local application at the user-side or a server-
side proxy, managed and operated by an administrator who manages the login
on behalf of the user. This can be fully transparent to the involved services.
Obviously, not all services may be suited to be unified in such a way. There are
several requirements they have to match. The usage of standardized techniques
for the authentication is the major requirement. If the service provider is using
proprietary software for the authentication, the provider of the Single Sign-On
may not be able to map his account information to the desired procedure. Also,
the service entry point and the authentication procedure should be stable and
not change to often, as this would lead to an increasing effort in keeping the SSO
up-to-date.

A rather straightforward approach to build such a non-cooperative SSO is
conceivable for the World Wide Web. User login can be handled by an appropri-
ately enhanced proxy such that the SSO is transparent for the services. Assuming
that the login procedure for a service is known, it can be automated through an
intercepting proxy that provides the authentication information automatically
to the service. The proxy retrieves the authentication data from e.g. a configura-
tion file set up by the system administrator. Thus, after the login to the proxy,
the login to the services is hidden from the user.



Single Sign-On in Service-Oriented Computing 387

3 Related Work

Today, for Web-based service environments two major approaches to SSO exist:
Microsoft Passport and Liberty Alliance. Both systems are based on the coop-
erative SSO model. Their differences lie in the architectural structure. Passport
is using a centralized approach, where only one entity (e.g. Microsoft) is able to
authenticate a user. In contrast to that Liberty is designed to operate in a de-
centralized way. There may be many (cooperating) entities, that are allowed to
authenticate a user. Both approaches are described briefly in the next sections.

A good taxonomy for SSO systems is given in [10], where the authors try to
categorize different SSO approaches.

3.1 Microsoft Passport

The main objective of Passport [8] is the centralized storage of account informa-
tion in order to simplify the login procedures and thus to ease the eCommerce
activities of registered partner applications. Therefore, the Passport Server man-
ages the authentication of users and only transmits a unique user identifier to
the services.

Both the user and the service provider have to register themselves on the
Microsoft Passport Server in order to use this SSO service. As part of the reg-
istration a service provider has to provide Microsoft with information about his
safety guidelines and the offered service, and he has to comply with the techni-
cal requirements of Passport. Microsoft then assigns a unique ID to this service
provider and transmits it to the provider together with a symmetric key, which
is used for the encrypted communication between Passport and the provider.
The encryption is done by a software provided by Microsoft, which has to be
installed on the server side.

The users register with a valid email address and a password. The email ad-
dress is used to transmit a confirmation mail which therefore checks the validity
of the address. After that the user gets assigned a Passport Unique Identifier
(PUID). Subsequently, this PUID is used to identify the user in all participating
applications. It is a perfect pseudonym which does not reveal any links to the
original user. As it is not told to the user, the user account is the valid email
address.

The sequence chart of a successful login is depicted in figure 1. After initiating
the login process on the webpage of a service provider the user will be redirected
to a Passport server. There, the actual login form is created and the user performs
the login. For the transmission of the user data a ssl connection is used. If the
provided pair of username and password is valid, the server sends a redirect to the
service provider and places some cookies on the users computer. These cookies
are encrypted using 3DES and contain among other information the PUID of
the user. With this PUID the service provider is able to identify the user and
can thus be sure that the user has successfully logged in to the Passport server.

If the user now wants to use another Passport-enabled service he just needs
to push the ”login with Passport”-Button on the according web-site. With the



388 K. Geihs, R. Kalcklösch, and A. Grode

following redirect the already existing Passport-cookie will be sent to a Passport
server. Instead of creating the login form, the server now checks the cookie and,
if it is valid, acts like after a successful login depicted in figure 1.

Fig. 1. Passport Single Sign-On Protocol

3.2 Project Liberty

The Liberty Alliance was founded to set up a SSO standard which should lead
to different interoperable products from different vendors. The main objective
is the coupling of multiple user identities distributed over cooperative service
providers. The standard aims to support all popular operating systems, pro-
gramming languages, and network structures [7] and is designed to ensure the
compability and security between Liberty-aware applications [11]. As this was
a new standard, no Liberty-aware applications existed in a productive environ-
ment when we started our work. Only a reference implementation from SUN [13]
had been released. Today, there are several Liberty-enabled products1.

The benefits for the users are given mainly through three points. First of all,
Liberty allows the coupling of identities a user has for different service providers
without announcing these to other providers. Within this group the user is able
1 http://www.projectliberty.org/resources/enabled.html



Single Sign-On in Service-Oriented Computing 389

to stretch a single login for one provider to all coupled providers leading to
a single sign-on. Also, a single log-out is possible where a user logs out of all
participating providers simultaneously.

A special service provider in the sense of Liberty is the Identity Provider (IP).
It offers the management of user accounts for other service providers and users.
Additionally, it offers authentication mechanisms. The Liberty standard does not
prescribe any particular authentication mechanism. The choice of mechanisms
is up to the Identity Providers. Naturally, a service provider could demand a
specific method for the authentication as a minimum requirement for a successful
login.

The SSO protocol used by Liberty is depicted in figure 2. After navigating
to a service provider, the user chooses one of the proposed Identity Providers,
that a service provider is willing to work with. The user is then redirected to
that IP. Contained within the redirect is a defined XML structure (AuthRe-
quest) which controls the behavior of the IP for that specific service provider
and user. If the user is not yet logged in to the IP, he has to login first. After the
successful authentication the user is redirected to the service provider. This redi-
rect contains a SAML artifact with a random number. SAML is an XML-based
framework for exchanging authentication and authorization information [9]. The
random number in the SAML artifact serves as a handle for the service provider
to access information about the user. After decoding the artifact, typically the
service provider issues a SOAP-Request to the IP to fetch this information. In
the SOAP-Response an authentication assertion is included, which holds the
information. Among other things it includes the user ID. With this the service
provider is now able to identify the user.

A group of service providers can build a so-called ”Circle of Trust” in which
a user, once authenticated can move easily from one service to another. Thus,
the user can choose from a list provided by the service provider to which other
provider within this circle he wants to go. By clicking of the according link, his
profile is sent to the new provider. If the authentication level is acceptable for
the new provider, that means, that the authentication mechanism chosen by the
original provider meet his own security requirements, the user is automatically
logged in without the need for any other interaction.

4 SSO Prototype

In order to study the practical requirements and limitations of SSO in a WWW
environment, we have built our own prototype SSO system. In particular, we
were looking for a general and comprehensive, but nevertheless easy to use and
easy to administer solution. We aimed at a non-cooperative SSO system that
does not require modification of the participating target services. Thus, it should
transparently maintain individual passwords for each service.



390 K. Geihs, R. Kalcklösch, and A. Grode

Fig. 2. Liberty Single Sign-On Protocol

4.1 Overview

The implemented SSO system provides an non-cooperative SSO service, where
remote, protected web-applications are encapsulated through a ”normal” pro-
tected intermediate SSO service. The different services do not need to know
each other and do not get any information about the users outside of their
scope. The service-internal implementation and authentication mechanisms con-
tinue to function as before. Therefore, the web applications are still usable even
without the SSO server. The SSO server himself stores information about each
user and his credentials for each of the participating web application. A proxy
server in between the user’s browser and the service is the key component. The
desired content is proxied to the user’s http-client (browser). Hence, no direct
connection between remote service and user browser will be established. To pre-
vent the browser from connecting to the remote server directly by following an
absolutely addressed link, every tag with embedded hyperlink attributes has to
be changed (transcoded) to ”point” to the SSO-Server, preserving the informa-
tion which remote document should be fetched. The SSO-Server therefore acts
as a ”transcoding reverse proxy” or ”transcoding surrogate”. Different authenti-
cation mechanisms, access restrictions and session-tracking techniques may be
employed and are hidden from the user, who only needs to authenticate to the
SSO server using one authentication scheme.



Single Sign-On in Service-Oriented Computing 391

This approach of creating a SSO service is rather simple. By the modular de-
sign of the chosen components, which are created with open source software only,
integration of additional remote services with different protection schemes (such
as HTTP authentication or cookies) is relatively straightforward. If needed, new
transcoding rules have to implemented and added to the transcoding surrogate.
In addition, configuration data needs to be included for accessing the desired
URLs of the remote services.

The main objective of this first implementation was to provide a lightweight
and extendable prototype of a SSO server which can be installed and configured
easily. Extensions for a comfortable user and configuration management have to
be created separately. As an administrator for a specific SSO server knows best,
which applications are participating and what their configuration possibilities
are, the development of a sophisticated configuration interface would be up to
him. Naturally, a simple and generic interface could be provided as a starting
point.

Because of the danger that the SSO service might become a single point
of failure for many encapsulated services, the design payed careful attention
to availability concerns for the SSO server. For example, configuration and user
management is decoupled from the internal transcoding engine. This rather static
information is stored in a separate database with internal redundancy in a cen-
tral or distributed architecture. These ”helper applications” are accessed via a
defined API and are independent from the implementation of the SSO server
itself, which can be installed on a couple of servers to provide redundancy and
a higher availability.

4.2 Implementation

As mentioned above the implementation of the SSO server is built with open
source software only. The main component is the well known and popular Apache
HTTP Server [2]. One of its benefits besides stability and usability is its modular
design which supports the integration of modules from third parties in a rather
straightforward way. In our implementation we use mainly the Perl module to
extend the Apache API with Perl applications inside the HTTP server. The de-
velopment of the Apache module which drives the SSO server is done in the Perl
programming language with all well-known benefits for writing web applications
and the big number of available Perl modules from CPAN [3]. In the scope of
the SSO server the Apache HTTP server is used to provide the framework for
HTTP(S) transactions. It acts as a container for the reverse proxy (the so called
”surrogate”) with the internal rewriting engine. All communication activities
(proxy functions) and the transcoding of HTML documents is done with the
Perl modules LWP 2 and HTML::Parser 3 and their derivates within the devel-
oped module Apache::Transcode. The Apache HTTP server can be used in
conjunction with mod-ssl, which lets the HTTP server act as a HTTPS server
2 http://www.cpan.org/modules/by-module/LWP
3 http://www.cpan.org/modules/by-module/HTML



392 K. Geihs, R. Kalcklösch, and A. Grode

by the use of OPENSSL, the open source implementation of the SSLv3/TLS 1.0
[5,4] specification. HTTPS is needed for confidential communication between the
SSO server and the user’s browser. It also allows the use of client-side SSL cer-
tificates for user authentication. All data which has to be kept across multiple
HTTP transactions is stored outside the scope of the server application with use
of DBI 4, the database abstraction layer for Perl, available from CPAN [3].

4.3 Discussion

In our prototype implementation we have shown that SSO is possible in a way
that it is transparent for service providers. So far, this is working only for sites
built out of plain HTML, whereat it does not matter if the content is generated
dynamically or served from static files. Hence, more work has to be done to
integrate more sophisticated web techniques. Especially DHTML pages require
careful examination to guarantee that the user is not leaving the SSO server
during his session by accident.

Another subtle problem is the copyright issue. Although the service provider
does not know about the SSO system it is necessary to inform him and to get
his permission for the participation of his site, because the contents of the web
pages are under the copyright of the providers. A cooperation between the service
providers and the SSO service seems to be advisable here. In order to alleviate
the copyright problem, our SSO server would be suited best for an Intranet,
where many services with different authentication schemes are provided.

Another point is, that in heterogeneous environments where different HTTP-
based applications, using different approaches for the authentication and ad-
ministration of users, already exist, it could be difficult to migrate at once to a
centralized directory-based approach using for example LDAP as the underlying
protocol. Nevertheless, this technique does not implement SSO out of the box.
It just provides the simplification to use only one account for every application,
but the login itself has still to be done for each application. To address this
problem, as mentioned before, it is possible to automate the login process in two
ways: Firstly, on the client side, where a central database could be used as many
popular commercial SSO solutions do, or secondly on the server side with the
described SSO server.

Several points remain open at this stage of our investigations. First of all, the
system is only a prototype. Especially, the reliability and the scalability of the
system are issues we have to take a closer look at. For a productive system we will
also need to study more carefully the efficiency and the resource requirements
of our transcoding algorithms.

As the design of the prototype SSO server is quite modular, the current
authentication mechanism in the proxy could be easily exchanged. For example,
it could be replaced by a call to a Liberty Identity Provider. This would make
the participating services Liberty-aware, regardless of their own capabilities and
without changing their implementation.
4 http://www.cpan.org/modules/by-module/DBI



Single Sign-On in Service-Oriented Computing 393

To gain more experiences and to further improve our implementation, it is
envisaged to use the SSO server inside the Intranet of the DIN IT Service GmbH,
to group multiple document management systems (DMS) of the same vendor.
Therefore, the prototype is now used for local testing with one DMS.

5 Conclusion and Outlook

In future Service-Oriented Computing environments service users in B2B and
B2C scenarios need to sign on frequently to many different independent ser-
vices. Each service may have its own authentication procedure. Without support
for SSO, service users are forced to handle as many authentication credentials
and procedures as there are accessed services. Clearly, the more services a user
navigates, the greater the likelihood of user errors and thus compromised secu-
rity. With a properly configured SSO system, once authenticated the user has
immediate and convenient access to a number of services.

In this paper we have analysed the requirements and constraints of SSO for
web environments. Furthermore, we have presented a prototype SSO system that
works according to the non-cooperative model as a proxy that is transparent to
the service applications. The prototype demonstrates that SSO support can be
implemented effectively based on transcoding HTTP requests. No changes are
required for services in order to participate. Consequently, our prototype solution
works with arbitrary web-based services.

The future of SSO for Web Services and Service-Oriented Computing is not
clear today. While the need for SSO has been clearly identified and expressed by
many people, it is questionable whether and how fast users will overcome their
scepticism and will trust another service component that has full control over
the user’s credentials and decides about very sensitive authentication activities.
Microsoft’s Passport has faced a lot of headwind already [6]. The Liberty Alliance
undertakes great efforts to gain more acceptance. For e-commerce over the web,
SSO remains one of the great technical and personal challenges.

References

1. Communications of the ACM, 46(6), June 2003.
2. Apache Software Foundation. www.apache.org.
3. CPAN. Comprehensive Perl Archive Network. www.cpan.org.
4. T. Dierks and C. Allen. The TLS Protocol Version 1.0. January 1999.
5. Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Protocol Version

3.0. November 1996.
6. David P. Kormann and Aviel D. Rubin. Risks of the Passport Single Signon

Protocol. Computer Networks, Elsevier Science Press, 33:51–58, 2000.
7. Liberty Alliance. Liberty Architecture Overview Version 1.1. January 2003.
8. Microsoft. Microsoft .NET Passport Review Guide. March 2003.
9. OASIS. Assertions and Protocol for the OASIS Security Assertion Markup Lan-

guage (SAML) v1.1. July 2003.



394 K. Geihs, R. Kalcklösch, and A. Grode

10. Andreas Pashalidis and Chris J. Mitchell. A Taxonomy of Single Sign-On Sys-
tems. In The Eighth Australasian Conference on Information Security and Privacy
(ACISP 2003), volume 2727 of LNCS. Springer, January 2003.

11. Birgit Pfitzmann. Privacy in Enterprise Identity Federation - Policies for Liberty
Single Signon. Dresden, December 2003. 3rd Workshop on Privacy Enhancing
Technologies (PET 2003), Springer.

12. R. Shirey. RFC: 2828: Internet Security Glossary. May 2000.
13. SUN. Interoperability Prototype for Liberty. 2002.


	Introduction
	Single Sign On
	Cooperative vs. Non-cooperative SSO

	Related Work
	Microsoft Passport
	Project Liberty

	SSO Prototype
	Overview
	Implementation
	Discussion

	Conclusion and Outlook



