
Supporting Dynamic Changes in Web Service
Environments

Mohammad Salman Akram, Brahim Medjahed, and Athman Bouguettaya

Department of Computer Science, Virginia Tech
7054 Haycock Road, Falls Church VA 22043, USA

{salman,brahim,athman}@vt.edu

Abstract. The Web has become the universal medium for publishing
and using of Web accessible services called Web services. The widespread
adoption of XML standards including WSDL, SOAP, and UDDI has
spurred an intense research activity to deal with issues related to Web
services. One of the most important issues is the management of changes
that occur in Web service environments. Web services operate in a highly
dynamic environment where changes can be initiated to adapt to evolv-
ing business climates. All changes performed to Web services must be
efficiently propagated to ensure global consistency. In this paper, we com-
bine Web services, ontologies, and agents to cater for the management of
changes in Web services. We address the challenging issues of detection,
propagation, and reaction to both internal and external changes to Web
services.

1 Introduction

The role of the Web is shifting from a distributed information storage to a
world wide service provider. This shift is being propelled by the current work
on Web service standards, both in industry and academia. A Web service is a
set of related functionalities that can be programmatically invoked through the
Web [1]. The Web service framework facilitates dynamic and efficient methods
of interactions on the Web. Web services are poised to be the foundation of the
envisioned service oriented architecture [2].

The Web service model involves three types of participants: requester,
provider, and registry [3]. In a simple scenario, the service provider first publishes
its WSDL (Web Service Description Language) description in a UDDI (Universal
Description, Discovery, and Integration) [4]. A service requester then searches the
UDDI for a Web service that matches a given criteria. If the search is successful
(i.e. one or more service providers are located), the service requester invokes the
service provider using SOAP (Simple Object Access Protocol) messaging. This
depicts a simplified model of service request processing. The ultimate goal of
Web services is to serve as independent components in loosely coupled systems
such as electronic marketplaces (or e-marketplaces) [5] and Web based Virtual
Enterprises [6]. These systems typically process requests that target more than
one Web service. Service requests in these systems become significantly more

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 319–334, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

320 M.S. Akram, B. Medjahed, and A. Bouguettaya

dynamic and complex as the number of target services increases [7]. The success
of fulfilling such service requests relies on dealing with the volatile and highly
dynamic nature of Web services. Additionally, the service request must interact
with an exploratory service space for locating Web services. We characterize the
Web service environment by the following features:

– Exploratory: Exploratory refers to the nondeterministic process of identi-
fying Web services necessary for a given request. Web services are a priori
unknown and may only be determined dynamically, i.e., after the need for
the service is established. It is not required that the interacting entities be
cognizant of each other prior to interaction.

– Volatile: Volatility implies that a Web service answering a request at any
given time may not be available to answer the same request at a later time.
Once provider services are selected, it is possible that those services may be
inaccessible before or during the execution of a request.

– Dynamic: Web services have highly dynamic content. The content of a Web
service refers to the information it provides through its operations (e.g., the
price of a given stock. This content may change frequently and unpredictably.
Furthermore, changes may occur while requests are being processed and
affect the overall execution of a request.

In this paper, we describe an architecture that supports requests over ex-
ploratory, volatile, and highly dynamic Web services. We propose the use of on-
tologies to select services from an exploratory service space [8,9,10]. We employ
agents to deal with Web service volatility and dynamism. This will be accom-
plished by managing change to Web services [6]. Our approach is illustrated
using an electronic stock market. In this example, we simulate user requests to
buy, sell, and inquire about stocks of one or more companies. The environment
where these requests are executed is characterized by three features: (i) Web
services that provide interaction with stock markets are a priori unknown, (ii)
Web services are volatile and their availability is uncertain, and (iii) the con-
tent (e.g. stock prices) of the Web services is highly dynamic (i.e., changes very
frequently).

The paper is organized as follows: In Section 2, we propose a model for
dynamic service requests. Section 3 is a detailed description of the proposed
conceptual architecture. In Section 4, we present the implementation of this
architecture within the context of an electronic stock market. We provide related
work in section 5. Finally, we provide some concluding remarks in Section 6.

2 A Model for Dynamic Web Service Change
Management

Servicing requests is a challenging issue when targeting environments consisting
of volatile and dynamic Web services. The execution of service requests must be
supported by the (i) discovery and selection of Web services in an exploratory

Supporting Dynamic Changes in Web Service Environments 321

service space and (ii) an environment that adapts to changes to Web services.
Changes to Web services may be internal or external. Internal change refers the
dynamic nature of Web service content. Internal change includes change in the
information provided by a Web service. External change refers to the volatility
of the Web service. This type of change includes the unavailability of a service
and its operations during the execution of a request. The problem of supporting
dynamic service requests has two facets:

– Web service discovery and selection: An important step in the process
of answering a service request is to discover and select Web services with ap-
propriate functionality. A request may involve several distributed and remote
services that are determined on the fly (i.e., at run-time). Service discovery
and selection may be initiated when the request is first issued or it may be a
result of change. The challenge is to dynamically and efficiently discover the
appropriate services for a given request within an acceptable response time.

– Adapting to Web service changes: Any request dependent on a Web
service must deal with the issue of change management. Change manage-
ment is the timely detection, propagation, and reaction to both internal and
external changes. Detection is the method of identifying a change that is of
interest to the system. Propagation requires that all interested system com-
ponents be informed of those changes. Reaction is initiating a compensatory
process in response to a change.

2.1 Service Request Specification

The service space in our proposed model consists of a set of remote Web services
registered with a global service registry. Each Web service provides some stock
market functionality through its operations. In particular, it provides informa-
tion about the stocks available in that market and the ability to trade them.
In our scenario, Web services provide access to stock markets located in New
York (NYSE), London (FTSE), Paris (CAC), and Tokyo (TSE). Each Web ser-
vice specializes in one or more stock categories. Examples of categories include
bookstore, Internet service provider (ISP), and travel.

A service request is a list of atomic (sequential and concurrent) orders. Each
order is defined by the order type (type), stock identifier (stockID), stock cate-
gory (stockCatg), stock market (stockMarket), acceptable price (price), num-
ber of shares (quantity), and the duration of the order (time). A request may
consist of one or more of these orders. Furthermore, a single order may be di-
vided into one or more execution threads. An execution thread is an instance
of an order interacting with a single Web service. Formally, a request may be
represented by any expression generated by the following language:

Req ::= Req ; Req |
Req || Req |
Order

322 M.S. Akram, B. Medjahed, and A. Bouguettaya

Where:

– “;” denotes a set of two orders that must take place in the given sequence
– “‖” denotes the concurrent (i.e., parallel) execution of two orders
– Order is defined as the 7-uple:

(type, stockID, stockCatg, stockMarket, price, numShares,
time)

Example:

Req1: { ("sell", AMZN, Bookstore, NYSE, $21, 500, 00:30) ‖
("sell", YHOO, ISP, NYSE, $19, 350, 00:30) ;
("buy", NTC, Computer, CAC, $16.5, 950, 01:00) }

The previous request translates to concurrently attempt to sell 500 shares
of Amazon.com (AMZN) at a price not less than $21 and 350 shares of Yahoo!
(YHOO) at a price not less than $19 per share. The orders should be repeatedly
attempted until they are terminated by (i) a successful execution or (ii) the
thirty minute time limit (whichever comes first). If and only if the two previous
orders succeed, then attempt to buy 950 shares of Intel Corporation (NTC) at
a price not more than $16.5 per share. This order would be attempted for a one
hour interval.

Req1 provides an example of “buy” and “sell” order types. A user may also
issue an “inquiry” request that asks for information about a particular stock or
a stock category. Req2 is an example of a request that inquires about the values
of all the stocks in the ISP category at the NYSE. The inquiry will continue
for a period of one hour. The highest and lowest prices of each stock in the ISP
category will be reported to the user.
Req2: { ("inquiry", *, ISP, NYSE, *, *, 01:00) }

The asterix (*) represents an undefined value for the corresponding attribute.
For example, the first asterix implies that the stockID is unknown. The use of
asterix in service requests introduces flexibility and dynamism in user require-
ments. Service request may also target multiple stock markets. Req3 illustrates
a situation where a user is searching for the stock market that currently offers
NTC shares at $16 or lower. Notice that the asterix in the time attribute denotes
immediate execution of the request.
Req3: { ("inquiry", NTC, *, *, $16, 220, *) }

The examples above indicate that simple user requests may become extremely
complex at processing time. Figure 1 displays the process of resolving a service
request. The diamonds indicate the stages in request processing. Solid arrows
describe the control flow between stages. Dotted arrows represent the access and
update of service descriptions. All requests issued by the user are first parsed to
validate the format of the request. A parsed request is decomposed into atomic
orders, if needed. For example, Req1 illustrates situations where a request is
translated into three orders. Each order is evaluated to determine the required

Supporting Dynamic Changes in Web Service Environments 323

Web services. For instance, Req3 implies inquiry for NTC stocks in all available
services. In this case, the order will be divided into several execution threads
with each thread mapping to a single Web service. After service invocation,
the request enters the change management stage. If the execution is successful,
a response is generated and sent back to the user. In the next subsection, we
describe the use of ontologies for the service selection stage.

User

Request Decompose

Request

Global Service

Registry

Consolidate

Response Participant

List

Parse

Request

Select

Services

Invoke

Services

Web Service

Web Service

.

.

.

Manage

Change

Response

Fig. 1. Request Processing

2.2 Using Ontologies for Locating Web Services

The problem of discovering and selecting the services necessary to answer re-
quests is particularly challenging in the dynamic Web context. Discovering ap-
propriate Web services dynamically is essential to answering a service request
(Figure 1). Our approach to the problem is based on the idea of organizing Web
services into ontologies. An ontology describes a coherent slice of the service
space, i.e., a collection of Web services that share the same domain of inter-
est [11]. In our stock market example, the category of a Web service defines
its domain of interest. For example, services that deal with AMZN stocks may
belong to a bookstore ontology.

DAML-S (DARPA Agent Markup Language for Web services) provides the
ability to organize Web services into ontologies [12]. DAML-S divides service
descriptions into the service profile, model, and grounding. The service profile
provides a high level description of a Web service. It expresses required input of
the service and the output the service will provide to the requester. The service
model defines the operations and their execution flow in the Web service. Service
grounding provides a mapping between DAML-S and the WSDL standard and
describes how the service may actually be invoked.

The service profile provides sufficient information for discovery. It is divided
into a description of the service, the functionalities, and the functional attributes.

324 M.S. Akram, B. Medjahed, and A. Bouguettaya

The description provides human understandable information about the Web
service. For example, a description includes the name of the service and its
textual description. A functionality in DAML-S describes properties like input,
output, precondition, effect, etc. The functional attributes provide information
such as response time and costs [13,12].

To understand how DAML-S may be used in our solution, let us refer to
our stock market example. Stock markets generally involve many categories of
businesses. Each Web service may belong to one or more categories. We define
these different categories for our Web services using DAML-S. Figure 2 depicts
an excerpt of a service profile description for our stock market example using
DAML-S.

(1) <daml:Class rdf:ID="NYSE">

(2) <rdfs:label>NewYorkStockExchange</rdfs:label>

(3) <rdfs:subClassOf rdf:resource="&service;"/>

(4) <daml:Class>

(5) <rdf:Property rdf:ID="Bookstore">

(6) <rdfs:label>Bookstore</rdfs:label>

(7) <rdfs:subPropertyOf rdf:resource="&profile;serviceCategory"/>

(8) <rdfs:domain rdf:resource="&service;serviceProfile"/>

(9) <rdfs:range rdf:resource="&daml;#Thing"/>

(10) </rdf:Property>

(11) <rdf:Property rdf:ID="Travel">

(12) <rdfs:label>Travel</rdfs:label>

(13) <rdfs:subPropertyOf rdf:resource="&profile;serviceCategory"/>

(14) <rdfs:domain rdf:resource="&service;serviceProfile"/>

(15) <rdfs:range rdf:resource="&daml;#Thing"/>

(16) </rdf:Property>

(17) <rdf:Property rdf:ID="ISP">

(18) <rdfs:label>ISP</rdfs:label>

(19) <rdfs:subPropertyOf rdf:resource="&profile;serviceCategory"/>

(20) <rdfs:domain rdf:resource="&service;serviceProfile"/>

(21) <rdfs:range rdf:resource="&daml;#Thing"/>

(22) </rdf:Property>

Fig. 2. DAML-S Description

This description is for the Web service that provides interactions with NYSE.
Lines 1-4 present the human understandable description of the service profile.
It defines the class name (NYSE) and also indicates that the class is a service.
The remaining lines define categories of the service. In this case, the Web service

Supporting Dynamic Changes in Web Service Environments 325

belongs to three categories. Lines 5-10 define a service property that implies the
Web service deals with stocks in the bookstore category. Lines 11-16 indicate
the Web service belongs to the travel ontology. Finally, lines 17-22 describe the
Web service’s membership in the ISP category.

Web services needed to answer a request are discovered using descriptions
provided in DAML-S registries. The selection criteria for the service is first ex-
tracted from the order. For example, Req2 needs all Web services from the ISP
category that provide services for NYSE. In this case, a search is initiated in the
DAML-S registry for a class name that matches “NYSE”. If such a class name is
located, the search will continue to check the properties of the Web service. The
service property must match ISP. The fulfillment of these steps indicate that a
Web service has been located successfully. After a service has been located, it
may be invoked by using the service grounding in DAML-S and its mapping to
WSDL [12].

Individual services may join or leave the formed ontologies at their own dis-
cretion. An overlap of two ontologies implies that a service provides information
that is of interest to both ontological domains. For example, the intersection
between the two ontologies bookstore and ISP may contain services that are
involved in both types of companies.

2.3 Managing Changes

Requests targeting service providers require mechanisms to detect, propagate,
and react to changes in the provider services. Changes to Web services can be
planned or unexpected. They may occur in several forms. We classify the changes
that need to be managed in a request as:

– External: External change primarily refers to temporary or permanent un-
availability of a service or its operations. This unavailability may occur before
or during the execution of the request. It may be a result of a network failure,
service relocation, request overload, operation rename, etc. In this case, the
request needs to be rolled back and an alternate service must be selected to
fulfill the request.

– Internal: Any change in the content of a Web service may need to be de-
tected to fulfill a request constraint. In our example of stock markets, the
values for stocks change very frequently. Important (financial) consequences
may result if the mechanism handling change management fails to react
promptly to fluctuations in the markets. These reactions may only be re-
quired if the change reaches a certain threshold [14].

Consider the following request:
Req4: { ("buy", AMZN, *, *, *, 150, 00:15) }
Req4 translates into an order to buy 150 shares of AMZN (from any market)

with the lowest price in the interval of fifteen minutes. Assume that while the
system is executing this order at NYSE (because the lowest price for AMZN was
quoted there), a change occurred at CAC that made AMZN’s price fall below its

326 M.S. Akram, B. Medjahed, and A. Bouguettaya

price at New York. To react to this change and fulfill the user’s constraint (i.e.,
buying at the lowest price), the execution of purchase order at NYSE must be
aborted and performed at CAC. In the previous example, the replacement was
not the result of a failure but, rather, the result of a constraint violation. Using
the same request, let us assume that while a service request is executing at the
CAC Web service, a network failure occurs and the service becomes unavailable.
In order to fulfill the request, the execution at the respective CAC Web service
needs to be rolled back and an alternate service (that meets given constraints)
should be invoked.

The examples illustrate a need for change management in a Web service envi-
ronment. Change management consists of detection, propagation, and reaction to
changes. Our approach to solving this problem is based on using agents that play
the role of monitors and notifiers [15,6]. These agents are background processes
that monitor the participant Web services for relevant changes (e.g. changes in
stock price, unavailability of Web service) and notify entities concerned with the
change.

Change detection: Change detection is the awareness that a change has oc-
curred and the subsequent identification of its cause. It deals with changes that
occur (i) before a provider service is invoked and (ii) during execution of a Web
service. For changes that occur before service invocation, we employ change
detection through soft states [16]. Soft states is a method used to maintain
membership of entities in a loosely coupled system. This method requires that
a member periodically send “refresh” messages to renew its membership. These
messages are sent to a node that maintains the membership list.

In our case, the provider Web services are members or participants in the
loosely coupled system. The membership information is stored in the participant
list. A participant list is generated for every request. Agents act as intermediaries
between the participant list and the Web services. They also maintain the par-
ticipant list by updating the list at time of change. An participating Web service
is assigned to each agent that monitors changes in the status of that service.
This agent periodically verifies the availability of the service and its operations,
and the contents of the Web service [14]. To verify changes in the availability of
a service, the agent will send “alive” messages to the Web service. If the Web
service responds, the service is assumed to be available. However, if a response
message is not received from the Web service within an acceptable time limit,
the service is considered as unavailable.

Changes to operations are detected by retrieving the service descriptions
from the UDDI. Any change to a service operation (e.g., rename, change of
parameters, etc.) implies that the change was made explicitly by the Web service
programmers. This justifies our assumption that the Web service description in
the UDDI will be appropriately updated after an operation change. Change in
content of a Web service requires the assigned agent to repeatedly invoke an
operation that provides the respective content. Let us take the example where a
service request is inquiring for the price of AMZN stocks in the next half hour.

Supporting Dynamic Changes in Web Service Environments 327

The agent will invoke the operation in regular intervals (e.g., thirty seconds) and
compare output values with values provided in the previous invocation.

Change that occurs during an interaction with a Web service is detected by
the failure of service invocation. The reason of the failure is identified by the
agent that manages the particular Web service. The technique for identifying
the cause consists of change detection through the process mentioned above.
For all changes that are detected, the agent uses appropriate mechanisms for
propagation and reaction as explained below.

Change propagation: We use the participant list to propagate changes in the
system. The participant list contains references to all Web services that have
been selected to answer the service request (i.e. that are part of the system).
Agents will update the participant list in case of any external change. The update
involves the removal of the service reference stored in the participant list. Since a
service reference must be present in the participant list before it can be invoked,
the removal of service reference terminates the membership of that service. If an
internal change (i.e. change in the data provided) is detected, the data used for
response consolidation is updated to reflect the change.

Reaction to changes: Reaction to change depends on the (i) type of change
and (ii) availability of alternate services. In case of an external change, an al-
ternate service must be selected to fulfill the user request. The service selection
stage is initiated and provided with the description of the required service. If an
appropriate service does not exist (or cannot be located), the request must be
canceled. However, if an alternate service is selected successfully, it is registered
with the participant list and request processing is resumed. In the event of an
internal change (e.g. change in stock prices), the previous data will be replaced
with the current response.

Change management algorithm: Figure 3 displays an algorithm that de-
scribes the change management process. The algorithm takes two parameters:
request time and participant list. request time is the time attribute ex-
tracted from the order. participant list contains the list of all Web services
that are currently participating in the system. The algorithm executes for the
duration of the request. The algorithm starts by verifying the availability of
each Web service by sending alive messages to the Web services in the the
participant list. If a Web service is not available, it is removed from the
participant list and an alternate service is selected. Second, the algorithm
requires checking for changes in operations. The respective agent retrieves the
current description of each Web service from the global service registry and com-
pares it with the description in the system. If the description has changed, the
agent removes the service description from the participant list and selects
an alternate service. Finally, the agent compares the contents returned by the
Web service with the contents of the previous response. If the agent detects any
change, the response must be reconsolidated.

328 M.S. Akram, B. Medjahed, and A. Bouguettaya

Input: request_time, participant_list
{
 time = request_time
 while (request_time != 0)
 {
 for each Web Service WS in participant_list
 {
 send alive message to WS
 if not alive then
 {
 remove WS from participant_list
 call (Service_Selection (service_description (WS)))
 break
 }

 global_description = WS service_description from global_service_registry
 if service_description (WS) not equals global_description
 {
 remove WS from participant_list
 call (Service_Selection (service_description (WS)))
 break
 }
 current_data = invoke WS.operation
 if current_data not equals previous_data
 {
 call (Response_Consolidation (current_Data))
 break
 }
 }
 decrement time
 }
}

Fig. 3. Change Management Algorithm

3 Proposed Architecture

The architecture proposed to support dynamic service requests is illustrated
through the electronic stock market example. A Graphical User Interface (GUI)
is used to interact with the user. A request broker serves as an intermediary
between the GUI and the participant Web services. The concept of a request
broker is very similar to a stock broker in a stock market and it serves as an
integral part of our architecture.

In our proposed architecture, the GUI allows users to specify and submit
their requests (Figure 4). It supports both short-lived requests (e.g., inquiry
about the current value of a given stock) and long-lived requests (e.g., inquiry
about the lowest value of a given stock in one hour). The GUI is also responsible
for parsing and validating requests and sending them to the Request Broker.
The Request Broker (RB) implements the remaining stages of request process-

Supporting Dynamic Changes in Web Service Environments 329

ing (Figure 1). Specifically, it performs decomposition, service selection, service
invocation, change management, and response consolidation.

Request Manager

(RM)

Communication

Interface (CI)

Request

Decomposer

(RD)

User

NYSE

Service

CAC

Service

FTSE

Service

TSE

Service

DAML-S Registry

UDDI

Participant

List

Agents

Fig. 4. Architecture

Every user is assigned a single instance of the RB. Communication between
RBs and the various registered Web services takes place using the SOAP stan-
dard (Simple Object Access Protocol). Each Web service corresponds to one
stock market (e.g. NYSE) and provides information about the stocks associated
with the stock market. In the remainder of this section, we first elaborate on the
functionality of the RB with reference to our stock market example and then
present the internal components of the RB.

3.1 Request Broker Functionality

Request Brokers are the intermediaries between the GUI and service providers.
Each RB deals with requests from one particular user. In essence, the RB is
responsible for four major functions:

– Request Decomposition: When an RB receives a request from the user
(via GUI), it translates that request into one or more orders. These orders
are further broken down into execution threads that invoke operations at
the underlying Web services or participants. Consider the following request:
Req5: { ("inquiry", AMZN, *, *, *, *, *) }
When the RB receives the order corresponding to this request, it generates
multiple SOAP messages, each invoking a Web service that represents stock
markets dealing with AMZN stocks.

330 M.S. Akram, B. Medjahed, and A. Bouguettaya

– Service Selection: Once the order has been translated, the RB needs to
select the Web services that are required to fulfill the order. The RB will
search the UDDI registry if the name of the stock (AMZN) and the stock
market (e.g. NYSE) is explicitly provided. If a stock category is provided,
the RB will search the DAML-S registries for Web services that deal with
the required types of stocks (e.g. ISP, bookstore, etc.) in the specified stock
market. Consider the following request:
Req6: { ("inquiry", *, ISP, *, *, *, *) }
The above order will return a list of all Web services that represent stock
markets dealing with stocks in the ISP category. It will also return the lowest
available price and the number of shares available. Once a Web service is
selected by the RB, it registers the service with the Participants list.

– Change Management: The RB must capture significant changes that oc-
cur in its registered Web services and react to these changes. It also updates
its local Participants list when a service joins or leaves the system. Join
and Leave events may be voluntary or may occur as a result of transient or
permanent reconfiguration or failure at the underlying communication mid-
dleware. When reacting to changes, the RB may decide to abort a pending
operation (i.e., submitted but not committed or aborted yet) and re-submit
it to another participant that has become more suitable for that particular
operation.

– Response Consolidation: A request that is broken into several orders and
execution threads needs to be consolidated before the response is sent back
to the user. For example, a request may require buying a number of shares
at the lowest possible price. For these orders, the RB collects the results of
all execution threads and selects the thread that produces the lowest price
result.

3.2 Request Broker Components

User requests are processed by the Request Broker module. This module: (i)
handles communication between the GUI and the underlying layers of the sys-
tem, (ii) decomposes the requests into execution threads and dispatches each
thread to the appropriate Web service, (iii) manages changes in the system, (iv)
and consolidates a response for the user. The RB has five components:

– Communication Interface (CI): The CI is responsible for secure commu-
nication between the GUI and the underlying Web services. To communicate
with the RB, the GUI first establishes a secure channel with the CI. The CI
is responsible for encrypting and decrypting messages to and from the GUI.
The CI also has the task of formatting messages using SOAP standard for
communications with the Web services. The CI removes the SOAP envelopes
from response messages from the Web services.

– Request Decomposer (RD): This component decomposes the request
into a list of (sequential and parallel) orders. For example, if the user sends

Supporting Dynamic Changes in Web Service Environments 331

a request to search for the lowest price for a certain stock, the RD will
decompose the request into atomic orders for every stock market currently
in the system. In this process, the RD also determines the participant Web
services that will be used to fulfill this request. If the RD does not find any
participant for the order (e.g., no relevant Web service is currently available),
it informs the Request Manager which, in turn, aborts the execution of the
order and notifies the user.

– Request Manager (RM): The RM is in charge of receiving requests from
the Communication Interface and sending them to the Request Decomposer.
It receives atomic orders and a list of recommended Web services determined
by the Request Decomposer. These orders are then dispatched via the Com-
munication Interface to the appropriate Web service. The RM monitors the
execution of all orders sent to the Web services. When the execution of all
the orders terminates and the respective results are collected from the par-
ticipating Web services, the RM generates an aggregate result and verifies if
the service request was safe.
A service request’s commitment is safe if and only if:

• None of its orders have been interrupted as a result of the reception by
the RM of a notification message.

• All of its orders have been committed.
If the order is safe, the RM consolidated the response and sends it to the
GUI via the Communication Interface. If the RM cannot commit an order
within a system-set time, the RM aborts all the execution threads of the
order. The RM will also not commit an order if it receives an abort message
from one or more participating Web services. It then aborts all the relevant
threads executing at the participants and sends a notification to the Request
Decomposer to select another service(s).

– Notifying Agents (NA): Notifying agents are processes specialized in
monitoring changes in a distributed environment and propagating these
changes to entities that need to be notified of these changes. Their goal
is to detect, propagate, and initiate reactive processes to changes. They re-
spond to both internal and external change. For all pending orders (i.e.,
not committed yet), the Request Manager creates one Notifying Agent. This
agents periodically send queries to the associated Web service and if there
is a change, it notifies the Request Manager.

4 Implementation

The architecture described in the previous section is implemented within a pi-
lot stock market application. The implementation uses state-of-the-art database
technologies including Oracle, Informix, and DB2. It also uses Web service tech-
nologies, RMI, and database API (JDBC). Mobile agents (implemented using
IBM Aglets) are used to detect changes in the system. Web services are de-
scribed using WSDL and DAML-S. Example of Web services include, NYSE,
CAC, FTSE, and TSE services. Each service accesses a backend database to
provide the request service.

332 M.S. Akram, B. Medjahed, and A. Bouguettaya

We generate WSDL descriptions using Axis’s Java2WSDL utility provided in
the IBM Web Services Toolkit. These descriptions are published in a UDDI. We
implement the UDDI with Systinet’s WASP UDDI Standard 3.1. Cloudscape 4.0
database is used to create the registry for the UDDI. Communication between
Web services are encapsulated in SOAP envelopes. Apache SOAP provides the
tools necessary for deploying SOAP messaging.

To simulate the price fluctuation in stock markets, we use a Stock Market
Simulator. This simulator is a multi-thread Java application. It has four threads,
each thread invokes an operation from different types of Web services. The op-
eration updates the Bid and Ask prices of the stocks in a Web service database
every ten seconds. At each update time, the stocks and their update price are
randomly selected. Changes in stock prices do not exceed 5%. To make the sim-
ulation more realistic, Java threads are used to synchronize the price changes of
stocks.

For external changes, we are implementing a simulator function that will
randomly change Web service descriptions. Specifically, it changes the status
of operation availability in our local UDDI. By removing the description of a
service operation, we indicate that the operation is no longer available. Changes
are also randomly initiated in the DAML-S registry. We change the category
(property) of the Web service to indicate a change in service domain.

The Request Broker is the integral part of our application. It accesses the
UDDI and DAML-S registries to select appropriate services. Once services are
discovered, its operations are invoked through SOAP Binding Stub. The stub
is implemented with Apache SOAP API. All messages in the applications are
monitored by the agents to determine change.

Users access the system through a Graphical User Interface (GUI). The sys-
tem’s GUI was developed using Java 2/Swing. It consists of two panels. The left
panel displays the requests input by the user. The right panel displays all the
information returned by the system (e.g., request execution results, registration
and authorization information). Users may access the system from any Internet
host. All information transfers between the GUI and the Communication Module
of the Request Broker occur using a secure TCP connection.

5 Related Work

Web services are slated to be an active research area. We overview some of the
research on Web services that is closely related to our work. WebBIS proposes
composition and change management for services on the Web [6]. It focuses on
the issues of detection, propagation, and reaction to change in service communi-
ties. WebBIS uses ECA rules and change operations to enable change manage-
ment. WebBIS, however, lacks the support of change management for within the
Web service standards. XLANG implements exception handling and transaction
rollback by initiating a compensation process [17]. This compensation process
attempts to “undo” the effects of an incomplete business transaction. This con-
cepts relates to our approach of reacting to change. XLANG does not support

Supporting Dynamic Changes in Web Service Environments 333

our approach of detection and propagation of changes. It only handles reaction
through compensation. eFlow uses the notion of process template to model com-
posite services [18]. Composers need to browse the process library to search for
process templates of interest. Furthermore, they need to manually handle in-
teractions and change management between component services when defining
composite services.

Commercial platforms are increasingly targeting Web services [19]. Mi-
crosoft’s .NET enables service composition through Biztalk Orchestration tools
which use XLANG [20]. IBM’s WebSphere supports key Web service standards
[21]. IONA’s Orbix E2A includes the Orbix E2A Web Services Integration Plat-
form [22]. It provides a set of tools for business integration using Web service
standards. Developers create Web services from existing applications, including
EJBs and CORBA objects. Sun ONE (Sun Open Net Environment) is a plat-
form for Web services developed by Sun [23]. Sun began its Web services efforts
only recently. Most of these commercial platforms deal with service composi-
tion. Changes after composition need to be managed manually. To the best of
our knowledge, they provide little or no support for dynamically dealing with
changes to services.

6 Conclusion

We proposed in this paper an architecture that supports change management
in Web service environments. We describe a generic algorithm for change man-
agement in Web service environments. The proposed architecture is based on
two key ideas: (i) using ontologies to organize and efficiently select Web services,
and (ii) using agents as a mechanism to manage change within the information
space.

Acknowledgment. This research is supported by the National Science Founda-
tion under grant 9983249-EIA and a grant from the Commonwealth Information
Security Center (CISC).

References

1. Tsur, S., Abiteboul, S., Agrawal, R., Dayal, U., Klein, J., Weikum, G.: Are Web
Services the Next Revolution in e-Commerce? (Panel). In: VLDB Conf., Rome,
Italy (2001) 614–617

2. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A., Elmagarmid, A.:
Business-to-Business Interactions: Issues and Enabling Technologies. The VLDB
Journal 12 (2003) 59–85

3. Gottschalk, K., Graham, S., Kreger, H., Snell, J.: Introduction to the Web Services
Architecture. IBM Systems Journal 41 (2002)

4. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Un-
raveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing 6 (2002)

334 M.S. Akram, B. Medjahed, and A. Bouguettaya

5. Feldman, S.: Electronic Marketplaces. IEEE Internet Computing (2000)
6. Benatallah, B., Medjahed, B., Bouguettaya, A., Elmagarmid, A., Beard, J.: Com-

posing and Maintaining Web-based Virtual Enterprises. First VLDB Workshop on
Technologies for E-Services (2000)

7. Papazoglou, M., Aiello, M., Pistore, M., Yang, J.: Planning for Requests against
Web Services. IEEE Data Engineering Bulletin 25 (2002)

8. McIlraith, S.A., Martin, D.L.: Bringing Semantics to Web Services. IEEE Intelli-
gent Systems (2003)

9. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent
Systems (2001)

10. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing Web Services on
the Semantic Web. VLDB Journal to appear (2003)

11. Ouzzani, M., Benatallah, B., Bouguettaya, A.: Ontological Approach for Infor-
mation Discovery in Internet Databases. Distributed and Parallel Databases 8
(2000)

12. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D., McDermott, D.,
McIlraith, S.A., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: DAML-S:
Semantic Markup for Web Services,
(http://www.daml.org/services/pub-archive.html)

13. Payne, T.R., Paolucci, M., Sycara, K.: Advertising and Matching DAML-S Service
Descriptions. In: International Semantic Web Working Symposium, California,
USA (2001)

14. Deolasee, P., Katkar, A., Panchbudhe, A., Ramamritham, K., Shenoy, P.: Adaptive
Push-Pull: Disseminating Dynamic Web Data. IEEE Transactions on Computers
51 (2002)

15. Maes, P., Guttman, R.H., Moukas, A.G.: Agents that Buy and Sell. Communi-
cations of the ACM 42 (1999) 81–91

16. McCanne, S.R.S.: A model, analysis, and protocol framework for soft state-based
communication. Proceedings of the conference on Applications, technologies, ar-
chitectures, and protocols for computer communication (1999)

17. Thatte, S.: XLANG, http://www.gotdotnet.com/team/xml wsspecs/xlang-c/.
(2001)

18. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.C.: Adaptive and
Dynamic Service Composition in eFlow. In: CAiSE Conf., Stockholm, Sweden
(2000) 13–31

19. Vaughan-Nichols, S.J.: Web Services: Beyond the Hype. IEEE Computer 35 (2002)
18–21

20. Microsoft: .NET, http://www.microsoft.com/net. (2002)
21. IBM: WebSphere, http://www-3.ibm.com/software/info1/websphere. (2003)
22. IONA: Orbix E2A, http://www.iona.com. (2003)
23. Sun: Sun ONE, http://wwws.sun.com. (2003)

	Introduction
	A Model for Dynamic Web Service Change Management
	Service Request Specification
	Using Ontologies for Locating Web Services
	Managing Changes

	Proposed Architecture
	Request Broker Functionality
	Request Broker Components

	Implementation
	Related Work
	Conclusion

