
An Architectural Pattern to Extend the
Interaction Model between Web-Services:

The Location-Based Service Context

P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano

Department Of Computer Science And Systems Engineering
University Of Zaragoza

Maŕıa de Luna 1, 50018 Zaragoza (Spain)
{alvaper, banares, prmuro}@unizar.es

http://iaaa.cps.unizar.es

Abstract. Internet has succeeded as a global information system
mainly because of its availability and openness, and the simplicity
of its standards and protocols. However, the current use of Internet
as universal middleware has clearly shown the lack of maturity of
Web technology to support distributed applications, which involve
communication, cooperation, and coordination. This paper proposes an
architectural solution to solve these interaction restrictions. It is based
on an extension of the service-oriented architectures, adding a new
coordinator role that allows more flexible relationships between service
providers and requestors than the provided by the client/server model.
This role is inspired by the Blackboard architectural pattern and it is
the conceptual basis of a Web-Coordination service able to coordinate
distributed and heterogeneous applications through Internet. To prove
the effectiveness of this proposal, the Web-Coordination service has
been used in an highly dynamic and collaborative application context,
the Location-Based Services.

Keywords: Web-service architectures, Web-service coordination,
Location-based services

1 Introduction

The World Wide Web was born to provide a minimal technology for the delivery
of simple multimedia hypertext documents across the Internet. For this reason,
its architecture has been kept as simple as possible, with a elementary communi-
cation protocol (HTTP), a simple hypertext description language (HTML), and
an addressing schema for document resources globally valid all over the Inter-
net (URLs). Nowadays, Internet has become the de facto standard distributed
platform for rapid application development by integrating network-accessible
services. This new tendency has shown that the current state of Internet pro-
vides little to support the collaborative work of Web-distributed applications
owing to the passive nature of the World Wide Web [7]. Therefore, it requires to

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 271–286, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



272 P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano

redesign the Web technology to provide enough support for building Web-based
applications which involve communication, cooperation, and coordination.

These interaction restrictions are more obvious in highly dynamic and coop-
erative application-context, such as Location-Based Service (LBS) context. Our
experiences in this context have become apparent that the integration of Web
services and applications requires new interaction models more complex than the
provided by the client/server model: 1) many-consumer models, 2) asynchronous
models based on events, or 3) reactive models that allow to the server to have the
initiative of the interaction [2]. Traditionally, these interaction requirements have
been resolved using solutions based on wrapping techniques or/and middlewares.
These ad-hoc solutions are hardly reusable and their results are a collection of
highly coupled and cohesive services and applications. Therefore, the modern
Web must be based on alternative architectural-solutions.

It is basic to understand the Web-based architectures, particularly the
Service-Oriented Architectures (SOA) [10], because they encapsulate the de-
cisions about the architectural elements and their relationships [15]. These Web
architectures must be improved without changing their original capabilities to
support these interaction models. The main aim of this paper is to describe an ar-
chitectural solution to support more flexible relationships between Web service.
It is based on an extension of the SOA model and on concepts of architectural
patterns, coordination models and event-based technology.

This paper is structured like is described below. In the section 2 it is presented
the architectural solution to support the required models (many-consumer, asyn-
chronous, and reactive models). A new coordinator role has been added to the
model. From a conceptual point of view, this coordinator role encapsulates a
coordination model able to communicate and coordinate Web-services. This co-
ordination model, called Linda, has been modified to be used in open and dis-
tributed environments. The coordination model and its extension are presented
in the section 3. From this conceptual solution, it has been designed a Web-
Coordination service to play the coordinator role in any Web-service framework
built according to the SOA model. Details about its design are presented into
the section 4. This coordination service has been used in the development of a
LBS complete solution based on the integration of two Web-service frameworks.
The suitability of the solution has been tested in an use case to improve a parcel
service. Details are described in the section 6. Finally, conclusions and future
work are described.

2 An Extension of the Service-Oriented Architecture

The architectural solution to support the new interaction models is based on an
extension of the service-oriented architecture. As shown in figure 1, a new archi-
tectural role was added to the model to communicate and synchronize requester
and provider services. This new role, called Service Coordinator, is inspired by
the Blackboard architectural pattern [5]. It allows a collection of independent
services to work cooperatively on a common data structure or blackboard using



An Architectural Pattern to Extend the Interaction Model 273

a shared vocabulary. These services communicate by putting data messages into
the common structure, which can be retrieved later on by other services asking
for a certain template message. The Blackboard architectural pattern determines
the next process that will change the common data structure according to an
opportunistic strategy.

Fig. 1. Extended SOA model

This proposal provides a collection of promising features to be used in dis-
tributed and open environments:

– It allows services distributed in space to cooperate distributed in time. The
cooperation is uncoupled because the writing services do not have any prior
knowledge about the readers and vice versa. The interaction style is adequate
enough to be used in environments where it is very important to reduce the
shared knowledge between different remote entities to the minimum, such as
Internet.

– Writing and reading services can cooperate without adapting or announcing
themselves. It allows flexible modelling of interactions among services in
highly-dynamic environments.

The key to this approach is the definition of a pure coordination model and
inspired by the Blackboard pattern that it is the conceptual basis of a Web-
Coordination service that plays the coordinator role. This new service must be
able to coordinate distributed and heterogeneous applications through Internet
supporting many data consumers and asynchronous and reactive interactions.
In this way, new communication and synchronization mechanisms complement
available ones. We did not consider the possibility of creating a new coordination
model from scratch because there are some proposed solutions that can be used
as starting points (the creation of a new model is a different goal and involves
other research areas). The LINDA model was selected [9]. It is based on Gen-
erative Communication that defines a model for inter-process communication
inspired by the Blackboard architectural pattern.



274 P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano

3 A Web-Coordination Service Based on the Linda
Model

In Linda, the common data structure and messages are called tuple-space and
tuples, respectively. A tuple is something as [”Gelernter”, 1989], a list of untyped
atomic values. The tuple space is a collection of tuples that acts as a shared
memory, to which certain operations, that able processes to read and take tuples
from and write them to it, can be applied in a decentralized manner. For instance,
the operation in(x?) tries to match the tuple x? with a tuple in the shared space.
If there is a match, a tuple is extracted from the tuple space; otherwise, it blocks
until a convenient tuple appears. The parameter for in() can be a query tuple
with a wildcard, like [”Gelenter”, ???] (these query tuples are called templates).
The match is then free for the wildcard and literal for the constants values.
To use this coordination model in an open and hostile environment, it must
be extended. Our proposal is based on this obvious observation: if this simple
matching strategy is replaced with a complex matching, then very general kinds
of interoperability can be achieved.

3.1 Linda for Open Environments

Improving data representation capability. Due to the fact that distributed
processes over Internet communicate exchanging XML-encoded data, the idea
of tuple has been extended to be able to represent data according to this stan-
dard format. Tuples are extended to be described by means of attribute/value
pairs, like: [(author, ”Gelernter”), (year, 1989)]. Although this is still an untyped
setting, this bit of structure, allows recovering information from a distributed
context. For the presented approach, it is important to remark that the ”top-
level” structure of any XML document admits the expression

[(att1,<val 1>),...,(attN,<val N>)],
but where each <val i> is structured (in particular, it may be XML-based).

Supporting reactive operations. The reading operations are blocked if no
desired tuple is available in the space, which can involve long waits. An event-
based approach suggests the possibility of improving the collection of operations
of the tuple-space interface, adding a more reactive coordination style. Processes
can subscribe their interest in receiving event notifications when other writing
entities insert specific tuples into the shared space, instead of being blocked until
tuples appear.

Now Linda can be used in a XML context supporting a structured match-
ing, and providing a collection of operations that promise an interesting way to
coordinate, communicate and collaborate on Internet. Besides, this structured
matching can be applied to support semantic interoperability (in [1], a semantic
matching for distributed heterogeneous environments has been described). Thus,
if an operation in() is invoked on a different entity, where the term ”author” is



An Architectural Pattern to Extend the Interaction Model 275

not used, but ”creator” is used in its place, and if there is a convenient map-
ping between ontologies, then the request [(creator, ???), (year, 1989)] can be
successfully satisfied. This kind of semantic matching is implemented through
Internet, using XML as transfer format.

3.2 Using Linda to Coordinate Web-Services

Once LINDA has been extended, a Web-Coordination Service (WCS) has been
designed to play the coordinator role in any Web-service framework built accord-
ing to the SOA model. The WCS encapsulates the shared tuple-space, and offers
the reading, writing and reactive operations of the extended Linda model as a
part of its interface. These operations are accessible via ubiquitous and standard
Internet protocols, such as HTTP or SOAP, and exchanged tuples are stated us-
ing standard data formats, like XML. Web-services implemented in accordance
with different computation models (written in several programming languages,
or running over heterogeneous hardware or software platforms), can cooperate
if they share a common XML-based vocabulary. The Web Coordination service
ensembles them in an orthogonal way to their heterogeneous features.

Recently, a similar solution has been presented by IBM, Microsoft Corpora-
tion, and BEA Systems [6]. They propose a framework to create coordination con-
texts. A coordination context provides functionality to registry: 1) Web-services
and applications that require to coordinate; and 2) coordination protocols to
make their coordination requirements possible. According to this proposal, Web
services and applications are responsible to define the used protocols. This solu-
tion is more flexible than ours, because it is possible to create many coordination
contexts using different protocols (we propose an only free-context protocol based
on Linda to coordinate any Web resource). However, it ignores the complexity of
defining new coordination protocols and promote the spread of ad hoc protocols.

Another similar Linda-based approach is XSpaces 1. It allows the exchange
of SOAP data messages across the Internet using shared spaces. The stored
messages can be retrieved from spaces specifying a key associated with them, in-
stead of using a matching strategy based on template tuples. Therefore, XSpaces
demands a greater shared knowledge between remote entities than our proposal.

4 Design and Implementation of the Web-Coordination
Service

In a more detailed description, the designed WCS is composed by three software
components (see the figure 2):

The XML-based Space component encapsulates the tuple-space. Its interface
provides a collection of operations for writing XML tuples into and reading them
from the tuple-space, and being notified of the writing of a new XML tuple
into the encapsulated space, according to the presented extension of Linda. This
1 http://www.xmethods.net/ve2/XSpace.po



276 P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano

Fig. 2. Software Components of the coordination service

component has been built from JavaSpaces technology [8], a Java implementation
of Linda, and its detailed description is the focus of this section.

On the other hand, the Java Coordination component is the core of the
service. It has two different interfaces: the Basic Coordination Interface (BCI),
which provides the collection of writing and reading operations proposed by
Linda and encourages a cooperative style based on blocking readings; and the
Reactive Coordination Interface (RCI), whose operations allow a process ad-
vertising its interest to generate a specific type of XML tuples, publishing the
advertised XML tuples and subscribing its interest to receive XML tuples of a
specific XML schema, encouraging a reactive style of cooperation among pro-
cesses.

This component is a repository of agents (a computational entity which acts
on behalf of other entities in a semi-autonomous fashion, and performs its tasks
cooperating with other agents; the mobility and learning attributes have been
excluded in this context). Every time an external Web service or application
invokes a coordination operation, it is created an internal agent. These agents
are able to coordinate with another agents exchanging XML tuples through
XML-based spaces. Therefore, the required cooperation by external entities is
executed by their respective internal agents. The result of this cooperation is
communicated from agents to external entities using an event-based mechanism
scalable to Internet (more details can be consulted in [2])

Finally, the HTTP Coordination component plays as a Web-accessible inter-
face of the Java Coordination component, providing through its HTTP interface
the same collection of operations.



An Architectural Pattern to Extend the Interaction Model 277

4.1 Building XML-Based Spaces

According to the described design, the interactions between Web service and
applications happen into the XML-based Space component. This component has
been built using JavaSpaces, which provides a shared repository of Java objects
and operations to read and write objets from/into it. This saves rewriting of
routine code to manage tuple-spaces. Nevertheless, it was necessary to enrich
JavaSpaces to work with XML tuples.

A generic Java object has been designed to encode any XML tuple. It is
composed by structured fields to store the nodes of the XML tuple. In more
detail, the generic object has two structured fields to store in ordering the tag
names and values of the XML tuple. The tag name of the first node of the XML
tuple is stored in the first component of the tag-name field and its value in
the first component of the tag-value field, and so on. But the matching rules of
JavaSpaces are not adequate for working with objects composed by structured
fields. Objects are matched by complete fields, not within the contents of the
filed. This is owing to objects are serialized for storing them into the space,
and the matching between objects is made applying the equal operator on the
corresponding field value. Therefore, it is required to extend the matching rules
of JavaSpaces to support this XML-based interoperability.

To resolve these rule restrictions, the matching is made in two steps. In the
first step, the matching rules of JavaSpaces are used. The original template is
saved for the second step and a copy of it is created for being used in the first
step. The tag-value field of this copy is set to null value. When it executes
a read operation (provided by the JavaSpaces interface) using this template
object, a returned object represents an XML tuple with the same XML-Schema
as the template because the tag-name field is only consider for the matching.
In a second step, it is invoked a particular matching method of the retrieved
object, using the original template as a real parameter. This method checks that
each not-null component of the template’s value-field have the same value in
the corresponding component of the retrieved object’s value-field. If it returns
true value, the retrieved object matches the template according the XML-tuple
matching rules. Otherwise, the retrieved object has the same XML-Schema as
the template but it does not match the template according the second matching
rule for XML tuples. Following, the first step is made again until an object
matches according the XML-tuple matching rules. In [4], a matching strategy
in two steps is also described to exchange encrypted data among distributed
processes.

It is important to realize that this matching proposal does not guarantee the
semantic of Linda model because objects are retrieved from the space according
to a non-deterministic strategy. For example, the first step could retrieve again
and again from the space a set of objects that return false value in the second
step. Nevertheless, another different object stored into JavaSpaces could match
the template.



278 P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano

4.2 A Pattern to Guarantee the Semantic of the Linda Model

To resolve these semantic problems, a communication pattern has been designed
which partitions the tuple-space in accordance with the XML-Schema of the
stored tuples. All tuples with the same XML-Schema are stored in the same
partition. A new Java object, called Channel, has been designed to manage a
partition. Its responsibility is to guarantee the access to all the tuples stored
into the partition. To achieve this aim, a channel is composed by a structured
field that stores a collection of references to the tuples stored into the partition
(tuples are stored as Java objects). The figure 3 shows an example of tuple-space
partitioned by two different channels.

Fig. 3. Partition based on channels of JavaSpaces

When a writing operation is invoked, it is checked if there is any channel
into the tuple-space that stores XML tuples with the same XML-Schema. If it
exists, then the XML tuple is stored into the channel (a reference to the inserted
tuple-object is saved into the channel object); or else, a new channel is created
and the XML tuple is inserted into it.

On the other hand, when a reading operation is invoked, it is retrieved a
copy of the channel that stores all the tuples with the same XML-Schema than
the reading template. This copy is used to: 1) access all the XML-tuple objects
stored into the partition; and 2) mark those XML-tuple objects that have been
retrieved from the space, but they do not match the reading template. This
internal strategy based on marking the checked tuples allows to retrieve an only
time an XML-tuple object in the first step of the matching. If it exists a tuple
into the space that matches the reading template, it will be found; or else, the
reading operation will be blocked. Therefore, it is guaranteed the semantic of
the reading operations of the Linda model.

The time costs involved in performing the reading operations have been eval-
uated for analyzing the efficiency of the proposed pattern. It is important to
define a cost time categorization which represents the execution time of a Linda
primitive from the user process’s point of view. In this work, the categorization
proposed by Bonita, a Linda implementation for distributed environment, has
been used [17]. For our analysis, the most important time-cost is TReadingProcess,



An Architectural Pattern to Extend the Interaction Model 279

Fig. 4. Efficiency of the reading primitives

which is the time taken for the execution of a reading operation on the XML-
based space finding the suitable tuple (a tuple that matches the reading template
is always available into the space). To evaluate this time cost have been created
partitions composed by a changeable number of tuples with the same XML-
Schema, but with different content. The figure 4 shows the TReadingProcess for
the proposed pattern. This time cost shows a linear increase according to the
number of tuples stored into the partition. As this number increases, a greater
number of tuples must be checked by the matching until finding a tuple that
matches the reading template. Therefore, this pattern based on channels is inef-
ficient when the created partitions store a high number of tuples (for example,
for partitions composed by more than one thousand tuples).

4.3 Partitioning Interaction Spaces to Improve the Efficiency

To improve the previously pattern, making more efficient the XML-based space,
it is necessary to minimize the amount of search required for the matching.
This solution must be transparent for processes that cooperate through the
XML-based space, and orthogonal to the Linda model. The idea is to make
an hierarchical partition of the tuple-space based on meta-channels and chan-
nels (see figure 5). A meta-channel stores all the XML tuples with the same
XML-Schema. This partition level of the tuple space is created at run-time. To
make more efficient the reading operations, a meta-channel is divided into one
or more channels. A channel stores all the XML-tuples with a specific value into
an XML-node, called reference node. This node must be specified at compile
time (a good choice of the reference node is a determining factor to improve the
efficiency; it is important to choose a node whose value is usually not-null in the
reading templates).

In a more detail, a new object has been designed to manage partitions. The
Meta-channel object is composed by a structured field able to save a collection
of references to channel objects. On the other hand, the channel object has been
reused from the previously pattern, and therefore, it stores a set of references
to Java objects that represent XML tuples. However, an improvement has been
added to control the size of the channels. It is possible to set up a maximum size
of channel, storing into it the most recent XML tuples.



280 P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano

Fig. 5. Partition based on meta-channels and channels

When a writing operation is invoked, it checks if there is any meta-channel
into the tuple-space that stores XML tuples with the same XML-Schema. If it
exists, the tuple is inserted into the adequate channel according to the value of
its reference node (if the channel does not exist, then it is created in run-time);
or else, a new meta-channel and a channel indexed by the value of the tuple’s
reference node are created, and then, the XML tuple is inserted.

On the other hand, when a reading operations is invoked, it is retrieved a copy
of the meta-channel that stores all the tuples with the same XML-Schema than
the reading template. This copy is used to check if it exists into the meta-channel
a channel indexed by the same value than the reading template’s reference node.
If it exist, a copy of the channel is retrieved and used to look up the required
tuple according to the tuple-marking strategy of the pattern based on channels;
or else, the reading operation will be blocked. Finally, to remark that it is possible
to specify a reading template with a wildcard in the reference node. In this case,
the search is applied over the meta-channel (a meta-channel is the union of all
its channels) instead of being applied over a specific channel.

Fig. 6. Efficiency of the reading primitives making a hierarchical partition



An Architectural Pattern to Extend the Interaction Model 281

To evaluate this new proposal, a meta-channel composed by a changeable
number of channels has been created (the maximum size of a channel is one hun-
dred XML tuples). In the figure 6, the graph on the left shows the TReadingProcess

for the proposal. The time cost does not show a linear increase according to the
number of tuples stored into the meta-channel, because channels reduce the
search space. Beside, it is important to remark that the great size of channels
will be conditional on increased time cost. In the figure 6, the graph on the right
shows how the size of a channel has an influence on the TReadingProcess.

5 The Location-Based Service Context

Geographic Information Services (GIS) and Location-based Services (LBS) are
two prototypical technological contexts where many standardization initiatives
have arisen. LBS extend GIS spatial processing capabilities by integrating wire-
less communications, location data and Internet technology [11]. In this context,
two well-positioned organizations have emerged as the leaders of the LBS interop-
erability: LIF (Location-Interoperability Forum2) and OGC (Open GIS Consor-
tium3, and its Open Location Service Initiative (OpenLS)). Both are promoting
and defining standard interfaces for a collection of wireless, Location and GIS
services to provide the required LBS functionality. In more detail, LIF specifies
the Mobile Location Protocol (MLP) that defines a simple but complete inter-
face between location-data acquisition services (called, Location services) and
location-based applications. On the other hand, OGC provides specifications for
GIS and geoprocessing services.

OGC and LIF are aware of the necessity of integrating their standardization
initiatives, but they have not reached an agreement on the integration strategy
yet. In more detail, their work has focused on the definition of service interfaces,
but they have ignored how to resolve the difficulty in ”gluing together” these
standard services. Our proposal tries to provide an architectural solution to this
gap.

Starting from the work of LIF and OGC specifications we have designed
two Web-service frameworks to provide LBS functionality (see figure 7). Service
interfaces have been specified according to previous standards to ensure the
interoperability, and are accessible via standard Internet protocols and data
formats, such as SOAP, HTTP or XML. As result of this Web standard-based
approach, the resulting functionality has been easily integrated into different
location-dependent applications, such as a Web-enabled fleet tracking system,
and a Customer Relationship Management system [3].

As it is illustrated in figure 7, the OGC-based framework is composed by
three functional levels of services. The Data Management level is the base of the
designed framework. Its services must be able of providing the necessary support
for the storage and recovery of a wide variety of geodata: maps, location descrip-
tors (street addresses, roads, place names, telephone numbers, etc.), sensor data
such as immediate locations of mobile devices, or more specific data of the LBS
2 http://www.locationforum.org/
3 http://www.opengis.org/



282 P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano

Fig. 7. Standard-based LBS framework based on LIF and OGC orchestration.

context, such as traffic conditions or road repairs. A collection of services are in-
tegrated to fulfill these requirements: Web Map Servers (WMS), able to visualize
digital map on the Internet; Web Feature Servers (WFS) [12], to store geodata
and execute spatial and non-spatial queries over them; and Web Traffic Servers
(WTS), that provide a interface to gain access to a variety of traffic information
sources. The result of a query to a WFS or WTS is a collection of GML-encoded
data (an XML-based standard specified by OGC to encode geographical infor-
mation [13]). These GML data can be directly visualized on the user interface
of a Web-based application.

Geodata provided by these Data Management services are not usually used
in an isolated way, instead they are used by the Data Processing services for gen-
erating more complex and elaborate data. It is interesting to have services for
combining different kinds of geodata, such as maps and location descriptors; for
linking many location descriptors; or for calculating structured geodata, such as
ideal routes. Services of this level include geodata presentation (such as, Styled
Layer Descriptor Server), utility (Gazetteers and Geocoders), and determina-
tion (Route Server). Details about them can be found in [14]. A Styled Layer
Descriptor Server (SLD) visualizes the result of a WFS query over a digital
map returned by the WMS, applying a visualization style specified by the ser-
vice client to the displayed geodata. On the other hand, the implementation of
the WFS has been utilized as the baseline for developing another geoservices [3]:
Gazetteers, used to link text-based location descriptions to geographic locations;
Geocoders, used to transform a textual term or code, such as an address, place
name, or telephone number, into a geographic location; and Route server, used
to calculate ideal routes.



An Architectural Pattern to Extend the Interaction Model 283

Finally, the higher level of the OGC framework, called Data Analysis level,
is composed by a collection of application services. These services are built on
the lower level services and integrate their functionality into a wide variety of
location-dependent Web-based applications.

Our strategy to integrate the OGC and LIF frameworks lies in the incorpo-
ration of mobile location data into the functional chain of the OGC framework.
This strategy has been materialized with the design and implementation of a
Tracking service like a WFS able to store location data of mobile entities. The
mobile resources may be seen as ”dynamic” features whose geographical infor-
mation changes throughout the time. This decision makes possible to perform
spatial queries over location data of mobile entities exploiting the OGC standard
geospatial query language.

This Tracking service requires to update the stored locations collaborating
with services able to acquire location data from remote mobile devices via wire-
less media. These acquisition services are called Location services and compose
the LIF-based framework. This collaboration with the Location services is de-
scribed by the MLP protocol proposed by LIF, which can be used by an Internet
application to request location information from a Location Server. Although
from a functional point of view the Tracking service (or Web-based application,
in general) and Location services are all compatible and standards guarantee
their interoperability, some orchestration problems have been identified when
they cooperate through Internet such as it has been previously mentioned [2].
It is possible and easy to find solutions to them based on ad-hoc or wrapping
techniques. However, the proposed WCS is a an adequate and more reusable
solution to solve them as it will be illustrated in the next section.

The figure 7 shows examples of application services that uses the underlay-
ing infrastructure: Fleet Tracking service, Trip Planner, location-based Yellow
Pages, etc. A Fleet Tracking service has been developed to support the required
functionality of the LBS use case presented in this paper. This service allows
to make tracking tasks of mobile resources with an installed location-sensor de-
vice (such as, vehicles or employees with a mobile phone with an integrated
GPS-receptor), to visualize their real-time positions, to plan a route and track-
ing it, or to generate operational reports. To provide these operations through
its interface, it is necessary that data and geoprocessing services of lower levels
collaborate among them in an adequate way as an only global system.

6 Use Case: Integration of LBS Functionality to Improve
a Parcels Service

The work presented in this paper has been applied in the integration of LBS
functionality into a parcel-service application to track mobile resources. Field
personal, which delivers parcels carrying a radio terminal with a GPS receptor,
could be on different radio coverage zones and move freely from one to another
at any time. Let’s suppose that due to the orographic characteristics, there are
some different zones of trunking radio coverage without any link among them.
It is necessary a ”real time” tracking, but there is no possibility of getting the
delivery men’s locations continuously via radio.



284 P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano

The characteristics of the wireless communication media, with limited band-
width and frequent disconnection, require a decoupled an opportunistic style of
computation [16]. In our use case, we need to use the last known location, with-
out the need to know the server that delivers this location. The proposed WCS
provides the required uncoupling and provides the data in a opportunistic way.

The best solution found has been to distribute the location-data acquisition
process using the deployment illustrated in figure 8. To achieve this purpose, the
system has a LIF Location service to acquire location data on each coverage zone.
LIF Location servers are configured in a first step (see figure 8). Remote devices
send its location to the receptor that is available at the moment, depending
on the coverage zone where they are. Location data received by any Location
service are immediately published into the Web Coordination service (WCS).
In the figure, the second step shows an example of HTTP request invoked by a
Location service to write an XML-encoded location into the WCS.

Fig. 8. Deployment architecture for tracking delivery parcels.

These location data stored into the WCS are integrated into the functional
chain of the proposed framework by a Tracking service. This service is subscribed
in the WCS to be notified when a new location is written into it. These notifica-
tions, third step in figure 8, trigger actions inside the Tracking service, being the
most regular the updating of the field personal locations stored into its database
(in this way, the last acquired and notified location is always accessible). The
subscribed service receives location data without having any knowledge about
the providers, and are unaware of the restrictions of the data-acquisition process.



An Architectural Pattern to Extend the Interaction Model 285

The interface of the Tracking service provides operations to know these latest
locations to make spatial or non-spatial queries. Remember that its interface has
been defined according to the WFS specification. Additionally, more elaborated
and filtered events can be published into the WCS taking advantage of the
spatial functionality of the services. For example, the Tracking service could
publish location-based events to notify that a delivery man has come into/out
an irregular geographical region (department/area of a city, a province, etc.), or
that it is a specific distance away from a geographical point.

Finally, with this technology it is possible to establish Web-based applica-
tions that dynamically access to network-accessible interoperable services, from
simple Web browser to complex client-systems. Additionally, other services can
be developed to recover the inserted locations from the WCS and to store them
into local database to analyze their routes and generate operational reports. The
combination of open architectures, domain standards and the ability to access
a wide variety of data sources are critical for the success of this Web-based
approach.

7 Conclusions and Future Work

This paper proposes an architectural solution to support new interaction models
between Web services and applications. This proposal is based on the creation of
a new role in the SOA model, interpreted by a Web coordination service, whose
functionality is orthogonal to the computing functionality offered by the coordi-
nated services. This coordination Web-service resolves the distributed computing
difficulty in ”gluing together” multiple and independent Web-services.

The key is the coordination model that defines how distributed entities col-
laborate. Linda has been extended to be used in open and hostile environments.
This extension is based on replacing its simple matching rules with a complex
matching able to support new kinds of interoperability (XML-based, semantic,
etc). From this model, a Web coordination service has been designed focusing the
main attention in the component that implements the interaction spaces, and
how to get an efficient implementation of it. The final results has been applied
in the LBS context.

Finally, open research issues are attempting to: (1) discover the real poten-
tial of the XML language to express synchronization restrictions and workflows
among services; and (2) tackle with the integration of XML data and pure coordi-
nation models such as Linda and Petri Nets, solving where and how to represent
coordination restrictions and XML data in a systematic way, and how to model
the internal behavior of the Web-services that cooperate externally through the
coordination service.

Acknowledgment. The basic technology of this work has been partially sup-
ported by the Spanish Ministry of Science and Technology through projects
TIC2000-1568-C03-01, TIC2000-0048-P4-02 from the National Plan for Scien-
tific Research.



286 P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano

References

1. P. Álvarez, J.A. Bañares, E. Mata, P.R. Muro-Medrano, and J. Rubio, Generative
communication with semantic matching in distributed heterogeneous environments,
Proceedings of the 9th International Workshop on Computer Aided Systems The-
ory. Extended Abstracts. (R. Moreno-Diaz jr., A. Quesada-Arencibia, and J.C.
Rodriguez, eds.), Universidad de las Palmas de Gran Canaria, February 2003,
pp. 237–239.

2. P. Álvarez, J.A. Bañares, P.R. Muro-Medrano, J. Nogueras, and F.J. Zarazaga,
Scientific engineering for distributed Java applications, Lecture Notes in Computer
Science, no. 2604, ch. A Java Coordination Tool for Web-Sercice Architectures: The
Location-Based Service Context, pp. 1–14, Springer Verlag, 2003.

3. P. Álvarez, J.A. Bañares, P.R. Muro-Medrano, and F.J. Zarazaga, Integration of
location based services for field support in CRM systems, GeoInformatics 5 (2002),
no. July/August, 36–39.

4. L. Bettini and R. De Nicola, Scientific engineering for distributed Java applica-
tions, Lecture Notes in Computer Science, no. 2604, ch. A Java Middleware gor
Guaranteeing Privacy of Distributed Tuple Spaces, pp. 175–184, Springer Verlag,
2003.

5. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, A system of
patterns, Wiley, 1996.

6. F. Cabrera, G. Coopeland, T. Freund, J. Klein, D. Langworthy, D. Orchand,
J. Schewchuk, and T. Storey, Web service coordination (ws-coordination), Tech.
report, IBM & Microsoft Corporation & BEA System, September 2002.

7. P. Ciancarini, R. Tolksdorf, and F. Vitali, Towards an interactive Web, Sub-
mitted for publication, IEEE Internet Computing. Available in http://flp.cs.tu-
berlin.de/pagespc/ieeeip/ciancarini.html, February 2003.

8. E. Freeman, S. Hupfer, and K. Arnold, Javaspaces. principles, patterns, and prac-
tice, Addison Wesley, 1999.

9. D. Gelernter, Generative communication in Linda, ACM Transactions on Program-
ming Languages and Systems 7 (1985), no. 1, 80–112.

10. S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura, and
R. Neyama, Building Web services with Java. Making sense of XML, SOAP,
WSDL, and UDDI, SAMS, 2002.

11. H. Niedzwiadek, All businesses are in pursuit of Java location services, Available
in http://www.geojava.com/, January 2000.

12. OpenGIS Project Document 01–065, Web feature server implementation specifica-
tion (version 0.0.14), Tech. report, OpenGIS Consortium Inc, 2001.

13. OpenGIS Project Document 02–023r4, Opengis geography markup language (GML)
implementation specification (version 3.0), Tech. report, OpenGIS Consortium Inc,
2003.

14. OpenLS, Call for participation in the open location services testbed. phase 1 (openls-
1), Tech. report, OpenGIS Consortium Inc, 2000.

15. D. E. Perry and A. L. Wolf, Foundations for the study of software architectures,
ACM SIGSOFT Software Engineering Notes 17 (1992), no. 4, 40–52.

16. G.P. Picco, A.L. Murphy, and G.C. Roman, LIME: Linda meets mobility, Pro-
ceedings of the 21st International Conference on Software Engineering (ICSE’99)
(D. Garlan and J. Kramer, eds.), ACM Press, May 1999, pp. 368–377.

17. A. I. T. Rowstron and A. M. Wood, Bonita: A set of tuple space primitives for dis-
tributed coordination, Proceedings of the 30th Annual Hawaii International Confer-
ence on System Sciences, vol. 1, IEEE Computer Society Press, 1997, pp. 379–388.


	Introduction 
	An Extension of the Service-Oriented Architecture 
	A Web-Coordination Service Based on the Linda Model 
	Linda for Open Environments 
	Using Linda to Coordinate Web-Services 

	Design and Implementation of the Web-Coordination Service 
	Building XML-Based Spaces 
	A Pattern to Guarantee the Semantic of the Linda Model 
	Partitioning Interaction Spaces to Improve the Efficiency 

	The Location-Based Service Context 
	Use Case: Integration of LBS Functionality to Improve a Parcels Service 
	Conclusions and Future Work 



