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Abstract. This work is focused on the design and evaluation of a suboptimal
classifier for dysarthria assessment. The classification relied on self organizing
maps to discriminate 8 types of dysarthria and a normal group. The classifica-
tion technique provided an excellent accuracy for assessment and enabled clini-
cians with a powerful relevance analysis of the input features. This technique
also allows a bi-dimensional map that shows the spatial distribution of the data
revealing important information about the different dysarthric groups.

1   Introduction

Dysarthria is a collective name given to a group of neurological diseases that are
originated by lesions in the peripheral or central nervous system. The location of the
lesions determines the perturbation induced on the speech signal. Therefore, there is a
relationship between the speech perturbations observed and the type of dysarthria.
The assessment of dysarthria is often performed based on features extracted from
recorded speech which reflect the perturbation patterns described by the different
types. The goal for dysarthria assessment is to obtain high sensitivity in the discrimi-
nation process while allowing clinicians to perform backward analysis of the feature
contribution to the final decision of the classifier. This analysis is necessary to estab-
lish a correlation between the most prominent features in each dysarthric group and
the neurological damage.
The main limitations encountered in dysarthria assessment can be defines as: the un-
availability of objective measures that describe efficiently the speech perturbations,
the lack of a gold standard to compare different techniques developed and the few
databases available for research. The first limitation mentioned is currently being
studied exhaustively where new digital signal processing algorithms are being devel-
oped to describe more accurately those perturbations used as clues for assessment [1],
[2], [3], [4], [5], [6]. The second limitation is still an unsolved problem in the research
community due to the existence of different severity levels of the speech perturbation,
the disagreement among researchers about the best set of features to use in the assess-
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ment and the interrelation between perturbations. However, steps have being given
toward this limitation with the workshop on acoustic voice analysis [6]. The last limi-
tation is a critical problem due to the difficulty of recording large population of sub-
jects with these diseases. New pathological speech databases are now available for
research but are not focused only on dysarthric patients, therefore, they provide lim-
ited information [7]. As a consequence of these limitations, the development of effi-
cient classification techniques for this application is highly desirable and necessary.

2   Experiences in Dysarthria Assessment

Several protocols have been used for dysarthria assessment considering a variety of
descriptive features. The diagnosis of the dysarthria has been traditionally performed
by the differential diagnosis of dysarthria [8]. This diagnosis method relies on per-
ceptual judgments (PJ) of the pathological speech as the main descriptors. The authors
defined 38 features or dimensions that describe more efficiently the speech perturba-
tions. The judgments are grouped into clusters according to the speech mechanism
affected and the combination of the clusters exhibited determines the type of dysar-
thria. The decision is based on minimal distance between the clusters manifested and
the combination of clusters that characterize each type of dysarthria.
A survey performed regarding the use of this assessment method showed that more
than 60% of clinicians in North America use this system in their clinical practice.
However, there are limitations reported for this method in the effectiveness to assess
subjects with mixed dysarthrias [9]. The PJ can also be imprecise an inconsistent when
certain speech features are analyzed, particularly when they are performed by clini-
cians which come from different schools and have different reference points. This way
of judging often leads to low reliability and repeatability of the process of describing
the speech perturbations, causing low assessment rates and difficulties standardizing
the results of the research in this area.

Other assessment methods, summarized in [10], describe similar protocols based on
linear analyses of different sets of features. The definition of the descriptive features is
also different but provides information of similar speech perturbations. Most of these
protocols rely also on perceptual judgments of speech and suffer from similar limitations
as the traditional method. Some assessment protocols reported perform the discrimina-
tion between classes using linear discriminant analysis (LDA). This approach provides
better performance than the traditional clustering method. However, the relevancy analy-
sis of the input feature has been found imprecise [3].

More recent studies reported by Callan et al. 1999 [11], implemented the assessment
of few dysarthric groups using a small set of objective measures and self-organizing
maps (SOM). Despite the small number of subject and groups of dysarthrias assessed the
study revealed the effectiveness of the method and opened new options in the assessment
of dysarthria.

Nowadays, the trend in dysarthria assessment is the use of different tools to provide
objective measures of the speech perturbations and implement non-linear classification
techniques to differentiate the different groups [5]. This approach could lead to better and
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more consistent judgments. However, the backward analysis on the decision of the clas-
sification is an important requirement that the classification method has to meet to pro-
vide a global picture these diseases.

3   Self-Organizing Maps

A self-organizing map is an unsupervised neural network that learns to recognize
regularities and correlations in its input data and adapts future responses according to
that input. This network (see block diagram in Fig. 1.) not only learns to recognize
groups of similar input vectors but also neighboring neurons learn to recognize neigh-
boring sections of the input space. Therefore, the SOM learns both the distribution and
topology of the input vectors on which they are trained.

Fig. 1. Diagram of a self-organizing map Network

SOMs are made up of an input layer that interfaces with the multidimensional features
and a representational layer. This second layer is a two-dimensional array of nodes which
has a weight matrix associated. A distance box is used to estimate the negative distance
between the input vectors (V) and the weight matrix. This estimates the neuron that more
likely represents the characteristics of the input case (winning neuron). The competitive
level produces a one for the output element corresponding to the winning neuron while
all other elements are set to zero. However, neurons close to the winning neuron are
updated along with the winning neuron using the Kohonen learning rule [12] expressed
as:

where mi is the connection weights of node i for time step t, x(t) is the input vector for
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The characteristics described previously allow this type of network not only to learn the
distribution of the input vector but also to gain information regarding the neighborhood.
The way that neighbors’ neurons are updated depends on the topology selected, which
can vary between rectangular, hexagonal or random. The weight values are determined

(t)]m-(t)[x(t)  (t)m1)(tm iii α+=+ (1)
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by an unsupervised learning algorithm that offers the advantage that a gold standard
target is not required.
Iteratively, the network learns the distribution of the input vector while the data are pre-
sented and the weighted connection of the representational layer is corrected. Each win-
ning neuron is obtained through a process of determining which of the nodes in the repre-
sentational layer is closer to the input vector, according to the distance criteria [12].

3.1   Design of the Classifier

A SOM network designed for this type of application requires two layers, an input layer
and the representational layer (Fig. 1). The input layer contains 20 inputs neurons corre-
sponding to the 20 observations obtained from perceptual and acoustic analysis1, de-
scribed more precisely in [3]. The representational layer consisted of a 9-by-9-node layer
with a hexagonal lattice configuration. A bubble neighborhood function type was used in
the training phase as recommended by Kohonen (1995) [12]. This bubble function is
reported to provide a configuration that can show better visual information in the map.

Fifteen SOMs were trained using different initial random weights and the configura-
tion that provided the lowest overall quantization error was selected for further studies.
The SOMs were trained in two steps as recommended by Kohonen (1995), the ordering
phase and the convergence phase. The ordering phase refers to the task of ordering the
reference vectors. In this phase, the neighborhood radius is close to the diameter of the
map and is decreased during the training. The learning rate is large and decreases toward
zero as the network is trained. The initial radius used in the network was 9 with a learn-
ing factor of 0.09 and 2000 iterations. This phase established a gross association between
the nodes and the input vectors.

The convergence phase is the step in which the reference vector on each node con-
verges to an ‘optimal’ location. The radius and the learning rate are usually smaller in
this phase while the number of iterations is usually larger than in the ordering phase. The
radius used in this phase of the design decreased from 1 to 0 with a learning rate of 0.008
decreasing to 0 as well. The number of iterations in this phase was 52000 to allow time
for the convergence to the optimal position. This phase allows a fine tuning between the
vectors and the nodes. The SOM_PAK software [13] was used for both phases of the
training.

3.2   Evaluation of the Performance of the Classifier

The performance of the classifier was evaluated using a set of 127 subjects from 9
target classes (AD: Ataxic dysarthria, ALS: Amyotrophic Lateral Sclerosis, FD: Flac-
cid dysarthria, HC: Chorea, HD: Dystonia, OVT: Organic Voice Tremor, HP: Parkin-

                                                          
1 Observations: Pitch level, pitch break, tremor, excess of loudness variation, harsh voice,

breathy voice, voice stoppages, audible inspirations, speech rate, short phrases, short rushes
of speech, monoloudness, hypernasality, reduced stress, variable rate, prolonged intervals,
inappropriate silences, excess or equal stress, articulatory breakdowns and distorted vowels.
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son’s disease, SD: Spastic dysarthria and NS: Control Group). A cross-validation tech-
nique was used to prevent an overly optimistic classification rate. This technique
works by omitting one subject’s data, then retraining the neural network using the
remaining data and finally classifying the omitted observation. In this way, more data
samples participate in the network training and a more realistic performance measure
is obtained. The main disadvantage of this method is that a set of networks is obtained
from the training process. However, the network that provided the lowest overall quan-
tization error was kept as the most representative network. The distribution of the vec-
tors across the SOM map for this network is shown in Fig. 2.

Fig. 2. Distribution of the classified groups across the SOM. The dots represent the nodes of the
9x9 map implemented and the lines represent the Euclidean distances between each node. The
colored areas enclose the most probable neurons for each group

It is observed that the SOM performed a good separation between the different
groups. The shaded areas represent the zones in which a larger number of nodes of
each class tends to concentrate. The normal group is the most concentrated in its area
with HP, AD, HD, and OVT having very well defined areas. As expected, the HC
group is observed close to HD since both are hyperkinetic dysarthrias sharing common
typical dimensions. Similarly, the area of the groups FD and SD are overlapped due to
both share many similar dimensions. It is noticeable that there are some ALS neurons
in between the area defined for FD and SD. This is explained from the clinical view
point based on the fact that ALS is a mixed dysarthria made of a combination of FD
and SD.
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The confusion matrix observed in Table 1 shows the performance of the classifica-
tion technique. The lowest classification rates are observed for HD and HC groups due
to the great overlap among its speech deviations. It is observed that although ALS
class was the most scattered across the map, its percent of correct classification (PCC)
was not the worst. The quantization error of each sample of the dataset with respect
the selected map was 1.916 for the network that performed worst.

Table 1. Confusion matrix of SOM classifier after cross-validating the dataset

Group True Groups
AD ALS FD HC HD OVT HP NS SD

AD 11 0 0 1 1 0 1 0 0
ALS 0 10 1 2 1 0 0 0 0
FD 2 0 12 0 1 1 0 0 0
HC 0 0 0 8 0 1 0 0 0
HD 0 0 0 2 10 0 0 0 0
HO 0 1 0 0 0 11 0 0 0
HP 0 0 0 0 0 0 15 0 0
NS 0 0 0 0 0 0 0 19 0
SD 0 2 0 0 1 0 0 0 13
Total 13 13 13 13 14 13 16 19 13
Correct 11 10 12 8 10 11 15 19 13
PCC 0.846 0.769 0.923 0.615 0.714 0.846 0.938 1.00 1.00

N total=127 N Correct=109 Proportion Correct=0.8583

The total PCC obtained with the SOM method is 0.86, which outperformed the re-
sults obtained with the traditional method (0.66) and the LDA method (0.81). The
difference in performance between the SOM and the LDA methods is not very signifi-
cant since some of the input features were measures made of linear combination of
different objective algorithms [3]. However, the SOM provided a more reliable rele-
vancy analysis of the input features and provided the bi-dimensional map.

4   Relevance Analysis of the Dataset Features

The contribution of the dimensions to the differentiation of the dysarthric groups can be
explained with the use of SOM networks. This has been the main drawback of many
non-linear analyses, such as those performed with some types of ANN, in which the
relevancy of the observations is not properly understood. The SOM emerged from a
vector quantization algorithm that places a number of reference codebooks into a high
dimensional input data space which is an organized approximation of the dataset struc-
ture. The self-organizing algorithm that shape this structure can be analyzed as a non-
linear regression of the reference vectors though the data points [12]. Therefore, the
node’s weight vectors corresponding to each group can provide information on the rele-
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vancy of the input dimensions to the group. Each neuron will have a set of weighs char-
acterizing each target group with a weight associated with each dimension.

Based on the previous explanation, the neurons closer to the centroid of each group
will have weights associated with similar characteristics to the mean values of each
group. The magnitude and sign of these weights will provide a clinically valuable rele-
vance indicator.

Table 2 shows an example of the most relevant dimensions obtained for the classifi-
cation of the FD group. The most clinically relevant dimensions found with the tradi-
tional and lineal discriminant analyses are also shown for comparison.

Table 2. Relevance analysis for the traditional method of dysarthria assessment (PA), linear
discriminant analysis and self-organizing map. ’*’ indicates coincidence in all studies

ORDER

Analysis 1 2 3 4 5 6 7 8 9 10 11 12 13
PA HN IC M AI SP ML BV NE HV R - - -

LDA HN DV RS ML IS IAB SP EES VR ELV VST R AI
SOM HN* SP BV R* AI* ML* PI PB HV EES - - -

The analysis shows, in agreement with the other methods, the dimension hypernasality
as the most prominent feature in this group. This is in correspondence with reported
studies based on physiological analysis of this type of disease [10]. Short phases (SP),
breathy voice (BV), rate (R), audible inspirations (AI), monoloudness (ML), harsh voices
(HV), prolonged intervals and excess of loudness variations are speech features also
typical in this Dysarthric group. This analysis shows the dimension PB as relevant al-
though it was not found relevant in the previous studies. However, PB is often heard in
subjects with FD (i.e. Darley, Aronson & Brown listened PB in 5 of their 30 FD subjects
[14]).

The other methods, especially the LDA method, show features that are not commonly
seen in this type of disease such as irregular articulatory breakdown (IAB), variable rate
(VR) and imprecise consonant (IC). These methods also partially disagree with other
physiological studies with respect to the relevancy order [10]. Similar relevancy analyses
can be implemented on the rest of the dysarthric groups. In all cases the SOM method
performed better than the others method studied demonstrating the feasibility of this
technique to perform the relevancy analysis of the input features.

5   Conclusions

The results of the classification process reveal the convenience of using SOM for the
assessment of dysarthria. A comparison with the implementation of the traditional and
LDA classification methods shows that the SOM classifier outperformed the other two
methods nearly by 5% and 20% respectively. The SOM also learned the topology of
the data, producing a bidimensional map that provides more complete information
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about the different dysarthric groups. The map obtained for the dysarthric database can
provide information no only about the type of disease or the contribution of the obser-
vation, but also about the evolution of the subjects after treatment. This is always an
issue in providing objective testimonies of the disease progress.

The SOM technique also bestows a more accurate relevancy analysis than the other
methods studied acting as a non-linear regression algorithm. The relevancy analysis
implemented in the form explained in Section 4 is simpler and easier to understand
than other methods reviewed. This is important to ensure that a system based on this
technique is used in regular practice by speech language pathologists. An assessment
tool implemented with this classification technique can also avoid exposure to radia-
tion or high magnetic fields in analysis commonly performed on subjects with these
diseases.
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