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Abstract. This paper faces the problem of extracting knowledge from
raw text. We present a deep architecture in the framework of Learning
from Constraints [5] that is trained to identify mentions to entities and
relations belonging to a given ontology. Each input word is encoded into
two latent representations with different coverage of the local context,
that are exploited to predict the type of entity and of relation to which
the word belongs. Our model combines an entropy-based regularizer and
a set of First-Order Logic formulas that bridge the predictions on entity
and relation types accordingly to the ontology structure. As a result, the
system generates symbolic descriptions of the raw text that are inter-
pretable and well-suited to attach human-level knowledge. We evaluate
the model on a dataset composed of sentences about simple facts, that
we make publicly available. The proposed system can efficiently learn to
discover mentions with very few human supervisions and that the rela-
tion to knowledge in the form of logic constraints improves the quality
of the system predictions.

Keywords: Information Extraction · Learning from Constraints
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1 Introduction

Information Extraction (IE) is one of the most important fields in Natural Lan-
guage Processing (NLP), and it is about extracting structured knowledge from
unstructured text [17]. IE encompasses a large variety of sub-problems, and, for
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the purpose of this work, we mostly consider Named Entity Recognition (NER)
and Relation Extraction (RE).

The goal of NER systems is to detect and classify proper nouns according to
a predefined set of entity types, such as “Person”, “Organization”, “Location”,
and others. Many NER systems [10,18] rely on handcrafted features and external
knowledge, such as gazetteers or capitalization information. On one hand, they
can help in spotting named entities, but, on the other hand, these techniques
are usually tied to the considered task. Differently, Collobert et al. [4] deeply
studied a neural model requiring only minor feature engineering. Their model
was applied to several NLP problems, such as part-of-speech tagging, chunking,
semantic role labeling, NER, and language modeling. More recent approaches
make a wide use of recurrent neural networks (mostly LSTMs [6]), such as the
one of Lample et al. [8], Chiu and Nichols [2] exploited similar networks, but
character-level features are detected by convolutional nets, also used in [20].

Relation Extraction addresses the problem of finding and categorizing rela-
tions between entities in a given text document. This problem is even harder than
NER, since relations are expressed in much more ambiguous ways than entity
names. There is also a big issue related to RE, that is the lack of large collec-
tions of high quality labeled data. Relations can be implicit, they can have fuzzy
boundaries, and they can also be constituted of non-contiguous words. Labeling
can be hard even for humans, and it can be strongly inconsistent among dif-
ferent supervisors. Some approaches rely only on unsupervised models [16,19],
segmenting the word sequences (“mentions”) bounded by two defined entities.
Mintz et al. [13] proposed an alternative paradigm, the so called “distant supervi-
sion”, that is a simple form of weak supervision. Intuitively, the distant approach
is founded on the idea that sentences containing the same pair of entities are
likely to express the same relation. Entities are taken from Freebase1, and the
considered relations are the ones that link the entity pair in the knowledge base.
Miwa and Bansal [15] presented an end-to-end solution to extract both relations
and entities from sentences. Their approach is based on stacked bidirectional
tree structured LSTMs, where entities are extracted first, then relations are pre-
dicted.

This review shows that Deep Learning achieved serious improvements in NLP
and IE-related applications. The renewed interest in recurrent neural networks
and the introduction of distributed representations of words and sentences [1,4,
12] allowed researchers to construct several systems that can be trained end-to-
end, removing the costly efforts in feature engineering. However, these methods
require large amounts of data to work properly, that in most of the cases need to
be labeled. Supervisions are expensive, and, in the specific case of IE, researchers
tend to focus on precise sub-tasks that are well studied and defined. Some of them
(e.g. NER and RE) share several aspects, and addressing those problems jointly
can be fruitful.

This work faces the problem of linking text portions to a given ontology with
a known schema that is composed of entity and relation types. NER and RE can

1 https://developers.google.com/freebase/.
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be seen as special instances of the considered setting. The problems of recogniz-
ing and segmenting mentions to both entity and relation types are treated in a
uniform way, reformulating them as problems of making predictions on a word
given its context. While predicting the entity type of the mention to which the
word belongs usually requires just a local context, spotting the relation type in
which the word is involved needs a larger context. Following this intuition, we
propose the idea that every word in the sentence can be considered from two
different perspectives that we refer to as “narrow” and “broad” views. We pro-
pose a deep architecture that develops two latent representations of each word,
associated to the just mentioned views. A predictor of entity types is attached
to the former representation, whereas a relation type prediction operates on
the latter. Our architecture is an instance of the generic framework of Learning
from Constraints [5], where the unifying notion of “constraint” is used to inject
knowledge coming from supervised and unsupervised data as well. In particular,
an entropy-based index (that resembles the mutual information from the input
views to the predictors) is maximized over all the data that is read by the system
(labeled or not), while First-Order Logic (FOL) formulas are used to bridge pre-
dictions of entity and relation types. Formulas are converted into constraints by
means of T-Norms. Linking the predictions on the two views allows the system
to mutually improve their quality, differently from those models that treat them
independently. When tested on a collection of sentences about factual knowl-
edge, our model achieves good performances without requiring a large number
of supervisions. This becomes more evident when logic constraints are intro-
duced between the two views. We notice that this approach allows us to build
neural models that provide an interpretable description of the unstructured raw
text, by means of the FOL formalism. This interpretability, that is usually miss-
ing in neural architectures, offers a suitable basis to easily introduce additional
information provided by an external supervisor. As a matter of fact, having a
human-in-the-loop is known to be a crucial element in those models that learn
and expand their internal knowledge bases in a life-long-learning setting [14].

This paper is organized as follows. Section 2 describes the proposed architec-
ture and the logic constraints. Section 3 reports our experimental results, while
Sect. 4 concludes the paper.

2 Model

We are given a data collection D composed of b utterances. Every utterance
u ∈ D consists of |u| words indicated with wj , ∀j = 1, . . . , |u|. We are also given
an ontology O, composed of kn entity types and kb relation types. Relations
involve pairs of entities of pre-defined types, as sketched in Fig. 1. For each word
wi, the goal of our model is to learn to predict what is the entity type associated
to word wi, and what is the relation type to which wi participates. For example,
in the sentence Paris is the capital of France, the system should predict that
Paris is an entity of type “city”, that France is an entity of type “country”,
and that each word of the sentence is associated to the relation type “capitalof”,
where all the mentioned types belong to the given ontology.
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Fig. 1. Ontology. Nodes are entity types, while edges are relation types.

We follow the idea of developing two latent representations of wi, that we refer
to as “narrow” and “broad” views, respectively. We indicate such representations
as x

(n)
i ∈ X (n) and x

(b)
i ∈ X (b), where X (n),X (b) are the generic spaces to which

they belong, and n, b stand for “narrow” and “broad”. Determining the entity
type of wi can be usually done by considering a local view around it, and that
is what x

(n)
i encodes. Finding the relation type of wi usually requires to have a

wider view around wi, since mentions to relations involve larger spans of text,
that is the rationale behind representation x

(b)
i .

We consider a fixed-size vocabulary of words V, so that each wj is a 1-hot
representation of size |V|, and those wj that are not covered by V are marked
with a generic symbol unk. Computing each x

(·)
i (being it narrow or broad) is the

outcome of two main computational stages. The first stage consists in projecting
the target symbol wi into a latent (distributed) representation ei ∈ R

d, where d
is the dimensionality of the embedding space. The embeddings of our vocabulary
{ei, i = 1, . . . , |V|}, are stored (column-wise) into W ⊂ R

|V|×d, so that

ei = Wwi . (1)

The second stage consists in fusing the distributed representations of the target
word itself and of the other words around it, thus generating x

(·)
i by means of

a Bidirectional Recurrent Neural Network (Bi-RNN). In detail, the Bi-RNN is
composed by two RNNs that process two sequences of word embeddings,

S→ = e1, e2, . . . , ei

S← = e|u|, e|u|−1, . . . , ei .

Both sequences terminate in the position of the target word, but S→ starts from
the beginning of the sentence, while S← starts from the end. Hidden states of
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the RNNs at the end of the sequences are concatenated, generating x
(·)
i . We use

Long Short Term Memories (LSTMs) to implement each RNN,

x
(n)
i =

[
LSTM (n→)(S→), LSTM (n←)(S←)

]

x
(b)
i =

[
LSTM (b→)(S→), LSTM (b←)(S←)

]
.

The global architecture is depicted in Fig. 2. While the embeddings {ei}, are
shared by the “narrow” and “broad” paths, the Bidirectional RNNs are inde-
pendently developed in the two views. We implement the broad path of Fig. 2
(right side) by stacking multiple layers of Bidirectional RNNs. The last layer will
embrace a larger context (due to the compositional effects of the stacking pro-
cess), and it will model a higher-level/coarser representation of the input word.
We notice that, in general, the broad representation could embrace multiple
sentences, or even paragraphs.

Fig. 2. Architecture of the proposed model. The utterance u is converted in a sequence
of embeddings e1 . . . , e|u|, feeding two bidirectional LSTMs, that compute two repre-

sentations (x
(n)
i , x

(b)
i ) of each word wi, also referred to as “narrow” and “broad” views

(left and right paths, respectively, where the right path usually includes multiple layers
of LSTMs). The predictor (MLP) on the “narrow” view outputs the entity type to
which wi belong, while the MLP on the “broad” view is about the relation type of wi.

For each word wi, we make predictions on the entity/relation types of the
ontology O that are more compatible with wi. In particular, we introduce two
set of functions that model the classifiers of each entity/relation type of O,

f (n) = [f (n)
1 , . . . , f

(n)
kn

] : Xn → [0, 1]kn (2)

f (b) = [f (b)
1 , . . . , f

(b)
kb

] : X b → [0, 1]kb (3)
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where f (n) are about entities and f (b) are about relations, and every component
of vectors f (n) and f (b) is in the range [0, 1]. Both f (n) and f (b) are multilayer
perceptrons having kn and kb output units with sigmoidal activations, as can be
observed in the upper portions of the architecture in Fig. 2.

2.1 Semantic Features

Since predictors in (2) and (3) are associated to interpretable entity/relation
types of the ontology O, we will also refer to them as “semantic features”.

We expect semantic features to be learned from data by enforcing a com-
bination of several constraints (they are enforced in a soft manner, so they are
implemented as penalty functions to be minimized - we keep using the generic
term “constraint” when referring to them). Each constraint guides the learning
process accordingly to a specific principle that we describe in what follows. The
objective function of our problem is Z, and we seek for those f (n), f (b) for which
Z is minimal,

min
f(n),f(b)

Z
(
f (n), f (b)

)
= min

f(n),f(b)

∑

f∈{f(n),f(b)}
[R(f) + C(f,L) + U(f)] + Φ

(
f (n), f (b)

)
.(4)

where R(f) is a regularization term (implemented with the classical weight decay
approach). The term C(f,L) is the traditional cross-entropy loss, commonly used
in supervised learning, that enforces a supervision constraint on those words that
have been supervised by an expert, collected (together with the supervision) in L.
Not all the words are supervised, and in the experiments we will also evaluate the
case in which no-supervisions are provided at all. The term U(f), is a constraint
inspired by the idea of maximizing the mutual information from the space of
word representations to the space of semantic features [11],

U(f) =
b∑

s=1

⎡
⎣

|us|∑
i=1

P (f(xsi), θv) + P (max
p

f(xsi), θh)

⎤
⎦ + λg · G(f). (5)

where s is the index of a sentence in D, while i is the word index. In detail, U(f) is
a sum of two contributions: the one in square brackets enforces the development
of only a small number of features on each word/sentence, while G(f) ensures
an unbiased development of the features over all the dataset D. The sets θv, θh
collect some customizable positive scalars (U(f) in Eq. (4) is applied to narrow
and broad features independently, so we have two independent pairs of θv, θh),
while λg is a tuneable weight > 0. In detail, if H(v) = −∑|v|

k=1 vk log vk is the
Shannon entropy, we have

G(f) = −H

⎛
⎝1

b

b∑
s=1

1
|us|

|us|∑
i=1

f(xsi)

⎞
⎠ (6)

P (v, θ = {λ1, λ2, γ}) = λ1 · H(v) + λ2

⎛
⎝

|v|∑
k=1

vk − γ

⎞
⎠

2

. (7)
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The term G(f) is minimized when all the semantic features are activated uni-
formly over all D, on average. The loss P is minimized when the activations
provided as its first argument are “close” to 1-hot vectors, that means that we
want a few-strongly-activated elements. Notice that the term P is used twice
in (5). Its first instance applies to the activations of semantic features on each
“word”. The second instance is about the activations of semantic features on
each “sentence” (pooled with the max operator). As a matter of fact, P con-
straints our model to develop a few, well activated features on each word, and
a few well activated features on each sentence. Both the terms G and P involve
the entropy function H, that is meaningful when its input is a probability distri-
bution. For this reason, the squared term in P introduces a competition among
the provided activations, that are enforced to sum to γ. If γ = 1 we have a
probability distribution, while if γ > 1 (but still small) we have a sort of relaxed
implementation of the probabilistic relationships. This makes the system more
tolerant to multiple activations on the same input, that, from the practical point
of view, turns out to be desirable. The last term of (4), Φ(f (n), f (b)), is a con-
straint coming from First-Order Logic (FOL), that introduces a link between
the two views on the data, with the goal of improving the quality of both the
categories of semantic features.

2.2 Logic Constraints

Narrow and broad semantic features are related to each other due to their link
in the ontology O. Consider, for example, an ontology composed of entity types
“city”, “country”, and of the relation type “capitalof ”. In the following sentence,
Paris is the capital of France, we can associate the entity type “city” to Paris,
the type “country” to France and the relation type “capitalof ” to each word of
the sentence (since they all contribute to such relation). Our system is expected
to give strong activation to the features indicate below (for the purpose of this
description, we make explicit the entity/relation type to which each feature is
associated),

f
(b)
capitalof︷ ︸︸ ︷

Paris︸ ︷︷ ︸
f
(n)
city

is the capital of France︸ ︷︷ ︸
f
(n)
country

.

We can clearly grasp that whenever the narrow features f
(n)
city and f

(n)
country

are active together in a sentence, it is very likely that the sentence involves the
relation “being a capital of ”, i.e., that f

(b)
capitalof should be active too, and vicev-

ersa1. Since the functions f model the activation of predicates of the ontology
O, we can implement this relationship by means of FOL formulas, such as
1 In general, this could be ambiguous, since multiple relations could be associated to

a city and a country. We solve this problem by introducing a special narrow feature
for each broad function (to simplify the presentation, we avoid going into further
details).
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f
(n)
city ∧ f

(n)
country ⇔ f

(b)
capitalof .1 (8)

We repeat this process for each relation in O, getting multiple formulas,
that are then translated into real-valued constraints φr(f (n), f (b)) by means of
T-Norms, as studied in [5]. For each T-Norm, there exists a unique function
⇒ called residuum, satisfying certain properties which is the natural transla-
tion of the logic implication. In this work, we considered the residuum of the
�Lukasiewicz T-Norm. �Lukasiewicz logic presents good properties such as the
involutive negation. However, translating a large chain of ∧ operations with such
T-Norm requires a strong activation of all the involved components because the
sum of n features should be greater than n−1. This could be sometimes a strong
requirement to satisfy. Hence, we converted the ∧ operator using the Gödel T-
Norm, which instead defines such operator as the minimum among the whole
predicates,

f1 ∧ f2 ∧ . . . ∧ fn = min(f1, f2, . . . , fn) . (9)

Departing from the provided example, in the ontology O we have a large
number of relations and, for each of them, we can build a FOL formula as (8),
and translate it into a real-valued penalty function. Summing up all the penalties,
we get

Φ(f (n), f (b)) = λl ·
kb∑
r=1

φr(f (n), f (b)), (10)

where λl > 0 is a customizable scalar. We remark that whenever the activations
of the premises and of the conclusions of (8) are both small (i.e., false), the
corresponding constraints are automatically satisfied. The actual contribution of
each φr(f (n), f (b)) becomes significant whenever there is disagreement between
the semantic features computed on the broad and narrow sides.

2.3 Segmentation

In Eq. (8) we did not make explicit the arguments on which semantic features
operate. While semantic features are designed to make predictions on single
words, the FOL constraints can involve longer portions of text, uniformly referred
to as “segments” (the previous example involved two single-word segments for
narrow features - Paris; France - but, in general, we can have longer segments).
In order to evaluate the FOL constraints we need to segment the input sentence
and compute segment-level activations of the semantic features.

Segmentation is performed as follows: for each word, we mark as “active”
only the narrow features whose activation score is beyond a decision threshold
(assumed to be 0.5). If multiple nearby words share the same active feature, we
collapse them into a single segment. This procedure generates multiple segmen-
tation hypotheses for each narrow feature. We prune the hypotheses by keeping
only the segment with the strongest activation (we kept also a second hypoth-
esis for those narrow features involved twice in the same relation). In the case
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of broad features, for simplicity, we assume that there is only a single segment
that cover the whole sentence. Finally, segment-level activations are computed
by averaging the word-level scores. An example of segment activation/selection
procedure is illustrated in Table 1 (the first entity is badly segmented).

Table 1. Segment generation/selection. Shaded elements are above the activation
threshold (0.5), whereas bordered rectangles indicates the segments we select.

3 Experiments

We manually created (and made public) a dataset2 D with sentences that are
word-by-word linked to a given ontology. The dataset is a collection of 1000
sentences, where 700 are used to train our model and 300 are used as test set.
Each sentence is constituted by a triple structured as entity1 -relation-entity2.
Our ontology is composed of 11 entity types, and 23 relation types, whose orga-
nization is exactly the one that we have already shown in Fig. 1, where nodes are
entity types and links are relation types. We kept data simple; sentences have
no co-references, quite explicit relation expressions, and the vocabulary V cov-
ers almost all the words. We intentionally introduced some noise in the labeling
process, to make the task more challenging.

Word embeddings W were initialized (and kept fixed) with the ones from
[3], that are vectors with 50 components. The sizes of recurrent network states
(500) and the hidden layers of multilayer perceptron blocks have been chosen by
cross-validation. In the case of broad features we have two layers of recurrence.
The narrow and broad MLP-based predictors have a single layer with 1200 and
800 hidden units, respectively. Our cost function was optimized with ADAM [7],
using mini-batches of size 32 (sentences), and we also introduced some gradient
noise and gradient clipping.

The objective function in Eq. 4 requires the tuning of several hyper-
parameters. However, the values of the parameter γ in the sets θv and θh can be
defined exploiting prior knowledge on the sentence structure (recall that we have
two independent pairs (θv, θh) for broad and narrow features). Broad features
are supposed to be 1-hot in each word, and the active broad feature should be
the same in the whole sentence. Thus, we set γ = 1 in both θv and θh. Likewise,
we expect only one narrow feature per word, which means γ = 1 in the case of
θv, but here the number of features per sentence is set to γ = 3 in the case of
θh. The remaining hyper-parameters were tuned by cross-validation.
2 http://sailab.diism.unisi.it/onto-sentences-dataset/.

http://sailab.diism.unisi.it/onto-sentences-dataset/
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Experiments are evaluated with different scores. A common metric used in
Information Extraction is the F1 score, but it can be only applied with labeled
data, so it is not possible to measure entropy-based constraints when enforced in
a completely unsupervised framework. In such situations we evaluate the mutual
information between the semantic features and the ground truth. In particular,
we adopted the Normalized Mutual Information (NMI) [9].

We consider a sparsely supervised setting and we compare our model against
two simplified instances of it: one is trained only using constraints on the super-
vised examples, i.e. without entropy-based and logic constraints, another one
exploits also entropy-based constraints but not logic formulas. We varied the
number of labeled sentences in the training set ranging from only 1 supervised
sentence per relation type, to a fully labeled case (“all”). Additionally, one of
the models is also trained without considering any supervised data at all.

Figure 3 reports our results. First, we focus on the scores obtained in the
case in which supervised constraints are not exploited. Since we are in a fully
unsupervised case, we do not introduce logic constraints, so that only one plot
is meaningful (green line, first dot of the plot). This is due to the fact that in
the unsupervised case we do not have access to the symbolic elements of the
ontology that are associated to the semantic features. The NMI scores in the
narrow and broad cases (Fig. 3 (a, c)) show that although entropy constraints
produce a significant score in the case of broad features, the result on narrow
features are not encouraging. As a matter of fact, words in the borders of two
entity types are sources of errors. In the case of broad features, since we output
a prediction on the whole sentence, this issue is not present.

When supervised examples are introduced, Fig. 3 (a) shows that even only one
supervised sentence per formula remarkably improves the NMI score of narrow
features. Interestingly, the unsupervised case, despite its low performances, is still
better than using a single supervision. Differently, broad features are less affected
by the introduction of the first supervised example (Fig. 3 (c)), since they were
already showing good performances in the fully unsupervised case. Performances
of semi-supervised models (both in the case of entropy and entropy + logic) are
significantly better than the model trained only with supervisions (NMI and F1,
Fig. 3 (a, b, c, d)). More generally, the entropy-based terms are crucial whenever
the number of supervised data is limited. Only when we go beyond 10 supervised
sentences per formula (≈ one third of the training set) the supervised case gets
closer to the semi-supervised entropy-based case, but still does not reach the case
in which logic formulas are added. Introducing logic formulas almost constantly
gives improvements over the entropy-only case, confirming that bridging the
predictions on broad and narrow views is important to allow a positive transfer
of information between the two views.
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(a) (b)

(c) (d)

Fig. 3. Comparison of the quality of semantic features on narrow (a), (b) and broad
(c), (d) views in the case of different models (test set). While (a), (c) are about the
NMI score, (b), (d) report the F1 measure. The entropy-based constraints (green curve,
NMI only, (a), (c)) are also evaluated in the unsupervised case (the yellow line repeats
this result over all the graph, as reference). (Color figure online)

4 Conclusions

We presented a deep architecture in the framework of Learning from Constraints
[5], that was designed to extract and identify mentions to entity and relation
types belonging to a given ontology. Thanks to the introduction of two latent
representations (views) of the input data, we implemented entity and relation
detectors in a uniform way, differently from several existing systems. Our results
have shown that introducing ontology-related information, represented as First-
Order Logic formulas, helps the system to improve the quality of its predictions.

Our model must be extended to larger scale data and evaluated in less con-
trolled environments. We plan to investigate more challenging settings, following
the idea of life-long learning, and departing from the usual batch-mode approach
toward a framework where there is an online interaction with humans. This is
made possible by the interpretable representations of the raw text that are gen-
erated by our model.
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