
A Refinement Algorithm for Deep
Learning via Error-Driven Propagation

of Target Outputs

Vincenzo Laveglia1,2 and Edmondo Trentin2(B)

1 DINFO, Università di Firenze, Via di S. Marta, 3, 50139 Florence, Italy
vincenzo.laveglia@unifi.it

2 DIISM, Università di Siena, Via Roma, 56, 53100 Siena, Italy
trentin@dii.unisi.it

Abstract. Target propagation in deep neural networks aims at improv-
ing the learning process by determining target outputs for the hidden
layers of the network. To date, this has been accomplished via gradient-
descent or relying on autoassociative networks applied top-to-bottom in
order to synthesize targets at any given layer from the targets available
at the adjacent upper layer. This paper proposes a different, error-driven
approach, where a regular feed-forward neural net is trained to estimate
the relation between the targets at layer � and those at layer �− 1 given
the error observed at layer �. The resulting algorithm is then combined
with a pre-training phase based on backpropagation, realizing a proficu-
ous “refinement” strategy. Results on the MNIST database validate the
feasibility of the approach.

Keywords: Target propagation · Deep learning
Deep neural network · Refinement learning

1 Introduction

The impressive results attained nowadays in a number of AI applications of neu-
ral networks stem mostly from using deep architectures with proper deep learning
techniques [10]. Looking under the hood, deep learning still heavily relies (explic-
itly or implicitly) on the traditional backpropagation (BP) algorithm [18]. While
BP works outstandingly on networks having a limited number of hidden layers,
several weaknesses of the algorithm emerge when dealing with significantly deep
architectures. In particular, due to the non-linearity of the activation functions
associated to the units in the hidden layers, the backpropagated gradients tend
to vanish in the lower layers of the network, hence hindering the corresponding
learning process [8]. Besides its numerical problems, BP is also known to lack
any plausible biological interpretation [16].

To overcome these difficulties, researchers proposed improved learning strate-
gies, such as pre-training of the lower layers via auto-encoders [1], the use of rec-
tifier activation functions [9], and the dropout technique [21] to avoid neurons
c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 78–89, 2018.
https://doi.org/10.1007/978-3-319-99978-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99978-4_6&domain=pdf

Error-Driven Propagation of Target Outputs 79

co-adaptation. Amongst these and other potential solutions to the aforemen-
tioned difficulties, target propagation has been arousing interest in the last few
years [2,5,16], albeit it still remains an under-investigated research area. Orig-
inally proposed in [3,4] within the broader framework of learning the form of
the activation functions, the idea underlying target propagation goes as follows.
While in BP the delta values δi to be backpropagated are related to the partial
derivatives of the global loss function w.r.t. the layer-specific parameters of the
network, in target propagation the real target outputs (naturally defined at the
output layer in regular supervised learning) are propagated downward through
the network, from the topmost to the bottommost layers. In so doing, each layer
gets explicit target output vectors that, in turn, define layer-specific loss func-
tions that can be minimized locally (on a layer by layer basis) without any need
to involve explicitly the partial derivatives of the overall loss function defined at
the whole network level. Therefore, the learning process gets rid altogether of
the troublesome numerical problems determined by repeatedly backpropagating
partial derivatives from top to bottom.

To this end, [16] proposed an approach called difference target propagation
(DTP) that relies on autoencoders. DTP is aimed at realizing a straight map-
ping ŷ�−1 = φ(ŷ�) from the targets ŷ� at layer � to the expected1 targets ŷ�−1

at layer � − 1. As shown by [16], the technique is effective (it improves over
regular gradient-descent in the experiments carried out on the MNIST dataset),
although the accuracy yielded by DTP does not compare favorably with the
state-of-the-art methods (mostly based on convolutional networks). Moreover,
DTP offers the advantages of being readily applied to stochastic and discrete
neural nets. The approach is loosely related to the algorithm proposed by [12],
where a layer-specific neural network is used to estimate the gradients of the
global loss function w.r.t. the weights of the corresponding layer (instead of the
target outputs).

Differently from DTP, the core of the present approach is that the backward
mapping from layer � to � − 1 shall be learnt by a regular feed-forward neural
network as an explicit function ϕ(.) of the actual error e� observed at layer �
(namely, the signed difference between the target and actual outputs at �), that
is ŷ�−1 = ϕ(ŷ�, e�). In so doing, after training has been completed, the image of
ϕ(ŷ�,0) is an estimated “optimal” value of ŷ�−1 that is expected to result in a
null error e� = 0 when propagated forward (i.e., from � − 1 to �) through the
original network. It is seen that learning ϕ(.) requires that at least a significant
fraction of the training samples result in small errors (such that e� � 0). This is
the reason why the proposed technique can hardly be expected to be a suitable
replacement for the established learning algorithms altogether, but it rather
results in an effective refinement method for improving significantly the models
realized by pre-trained deep neural networks. The proposed approach is different

1 The term “expected” is herein used according to its statistical notion, since such
a φ(.) is not strictly a function, but it may be reduced to a proper function if we
interpret the images in the codomain of φ(.) as the expected values of ŷ�−1 given ŷ�.

80 V. Laveglia and E. Trentin

from that introduced in [3,4], as well, since the latter relies on gradient-descent
(or, the pseudo-inverse method) and, above all, it does not involve e�.

The error-driven target propagation algorithm is introduced formally in
Sect. 2. Section 2.1 presents the details for realizing target propagation via an
inversion network used to learn ϕ(.). Section 2.2 hands out the formal pro-
cedure for refining pre-trained deep networks relying on the proposed target
propagation scheme. Experimental results obtained on the MNIST dataset are
presented in Sect. 3, showing that the refinement strategy allows for accuracies
that are at least in line with the established results yielded by regular (i.e.,
non-convolutional) deep networks, relying on much less complex models (i.e.,
using much fewer free parameters). Finally, preliminary conclusions are drawn
in Sect. 4.

2 Error-Driven Target Propagation: Formalization of the
Algorithms

Let us consider a deep neural network dnet having l layers. When dnet is fed with
an input vector x, the i-th layer of dnet (for i = 1, . . . , l, while i = 0 represents the
input layer which is not counted) is characterized by a state hi ∈ R

di , where di is
the number of units in layer i, hi = σ(Wihi−1 + bi), and h0 = x as usual. The
quantity Wi represents the weights matrix associated to layer i, Wi ∈ R

di×di−1 ,
bi ∈ R

di denotes the corresponding bias vector, and σ(.) represents the vector of
the element-wise outcomes of the neuron-specific activation functions. The usual
logistic sigmoid activation function is used in the present research. Consider a
supervised training dataset D = {(xj , ŷj)|j = 1, . . . , k}. Given a generic input
pattern xj ∈ R

n and the corresponding target output ŷj ∈ R
m drawn from D,

the state h0 ∈ R
n of the input layer of dnet is then defined as h0 = xj , while the

target state ĥl ∈ R
m of the output layer is ĥl = ŷj . Relying on this notation, it

is seen that the function fi(.) realized by the generic i-th layer in dnet can be
written as

fi(hi−1) = σ(Wihi−1 + bi)

Therefore, the mapping Fi : R
n → R

di realized by the i bottommost layers of
dnet over current input xj can be expressed as the composition of i layer-specific
functions as follows:

Fi(xj) = fi(fi−1...(f1(xj)))

Eventually, the function realized by dnet (that is an l-layer network) is Fl(xj).
Bearing in mind the definition of D, the goal of training dnet is having Fl(xj) �
ŷj for j = 1, . . . , k. This is achieved by minimizing a point-wise loss function
measured at the output layer. In this paper such a loss is the usual squared error
L(xj ; θ) = (Fl(xj) − ŷj)2 where θ represents the overall set of the parameters
of dnet. In the traditional supervised learning framework the targets are defined
only at the output layer. Nevertheless, while no explicit “loss” functions are
associated to the hidden layers, the backpropagation (BP) algorithm allows the
update of the hidden layers weights by back-propagating the gradients of the

Error-Driven Propagation of Target Outputs 81

top-level loss L(.). To the contrary, target propagation consists in propagating
the topmost layer targets ŷj to lower layers, in order to obtain explicit target
states for the hidden units of the network, as well. Eventually, standard gradient-
descent with no BP is applied in order to learn the layer-specific parameters as a
function of the corresponding targets. In this research, at the core of the target
propagation algorithm there is another, subsidiary network called the inversion
net. Its nature and its application to target propagation are handed out in the
following section.

2.1 The Inversion Net

Let us assume that the target value ĥi is known for a certain layer i (e.g. for the
output layer, in the first place). The inversion net is then expected to estimate
the targets ĥi−1 for the preceding layer, that is layer i − 1. In this research the
inversion net is a standard feed-forward neural network having a much smaller
number of parameters than dnet has, e.g. having a single hidden layer. In prin-
ciple, as in [16], the inversion net could be trained such that it learns to realize
a function gi() : R

di → R
di−1 defined as

gi(ĥi) = ĥi−1

where ĥi−1 represents the estimated target at layer i−1. Let us assume that such
inversion nets were trained properly to realize gi(.) for i = l, . . . , 1. Then, layer-
specific targets could be defined according to the following recursive procedure.
First of all (basis of the recursion), if the layer i is the output layer, i.e. i = l,
then ĥi = ŷ and gl(ŷ) = ĥl−1. Then (recursive step) the target outputs for the
subsequent layers (l − 1, . . . , 1) are obtained by applying gi(.) to the estimated
targets available at the adjacent upper (i.e., i-th) layer.

The actual error-driven training procedure for the inversion net proposed
herein modifies this basic framework in the following manner. Given the generic
layer i for which we want to learn the inversion function gi(.), let us define
a layer-specific dataset Di = {(x′

i,j , ŷ
′
i,j)|j = 1, . . . , k} where, omitting the

pattern-specific index j for notational convenience, the generic input pattern
is x′

i = (ĥi, ei) given by the concatenation of the target value at layer i (either
known, if i = l, or pre-computed from the upper layers if i < l) and the corre-
sponding layer-specific signed error ei = hi − ĥi. Herein hi is the actual state
of layer i of dnet upon forward propagation of its input, such that x′

i ∈ R
2×di .

In turn, ŷ′
i is defined to be the state of the (i − 1)-th layer of dnet, namely

ŷ′
i = hi−1. Once the supervised dataset Di has been built this way, the inversion

net can be trained using standard BP with an early-stopping criterion. We say
that this scheme is error-driven, meaning that the inversion net learns a target-
estimation mapping which relies on the knowledge of the errors ei stemming
from the forward-propagation process in dnet.

Once training of the inversion net is completed, the proper target-propagation
step (from layer i to layer i − 1) can be accomplished as follows. The inver-
sion network is fed with the vector (ĥi, ei) where we let ei = 0 in order to

82 V. Laveglia and E. Trentin

get gi(ĥi) = ĥi−1 � f−1
i (ĥi). In so doing, the inversion net generates layer-

specific targets that, once propagated forward by dnet, are expected to result in
a null error, as sought. The resulting training procedure is formalized in Algo-
rithms 1 and 2 in the form of pseudo-code. The algorithms assume the avail-
ability of two procedures, namely: feedForward(net,x), realizing the forward
propagation of an input pattern x through a generic neural network net; and,
backpropagation(net,D) that implements the training of the network net via BP
from the generic supervised training set D.

In practice, in order to reduce the bias intrinsic to the training algorithm,
target propagation is accomplished relying on a modified strategy, as in the
difference target propagation scheme [16], accounting for the bias that the layer-
specific inversion nets gi(.) are likely to introduce in estimating the corresponding
target outputs ĥi−1. To this end we let

ĥi−1 = hi−1 + gi(ĥi,0) − gi(hi,0) (1)

The rationale behind this equation is the following. First of all, gi(.) can be
applied to invert the actual state hi of dnet instead of the target state ĥi.
Ideally, if the mapping realized by the inversion net were perfect, we would have
gi(hi,0) = hi−1. To the contrary, since gi(.) is the noisy outcome of an empirical
learning procedure, in practice gi(hi,0) �= hi−1 holds, i.e. an offset is observed
whose magnitude is given by |gi(hi,0) − hi−1|. Equation (1) exploits this offset
as a bias corrector when applying gi(.) to the computation of ĥi−1, as well.
Note that whenever gi(hi,0) = hi−1 (unbiased inversion net) then the equation
reduces to ĥi−1 = gi(ĥi,0), as before. The details of the present bias-correction
strategy are handed out in [16].

Algorithm 1. Training of the inversion net
Procedure train inv net(invNeti, dnet,D, i, ĥi)
Input: initialized inversion net invNeti with 2 × di input units and di−1 output units, deep
network dnet, training set D = {(xj , ŷj)|j = 1, . . . , k}, layer i, targets ĥi at layer i

Output: The trained inversion net invNeti for layer i, capable of computing ĥi−1 from ĥi

1: Di = ∅

2: for j = 1 to k do

3: feedForward(dnet,xj)

4: ei,j ← ĥi,j − hi,j

5: x′
i,j ← (ĥi,j , ei,j)

6: y′
i,j ← hi−1,j

7: Di = Di ∪ {(x′
i,j ,y

′
i,j)}

8: end for

9: invNeti = backpropagation(invNeti, Di)

Error-Driven Propagation of Target Outputs 83

Algorithm 2. Target propagation
Procedure tgt prop(invNeti, i, k, ĥi,1, . . . , ĥi,k)
Input: The inversion net invNeti, layer i, number of patterns k, targets to be propa-
gated ĥi,j for j = 1. . . . , k
Output: The propagated targets ĥi−1,1, . . . , ĥi−1,k

1: for j = 1 to k do
2: ei,j = 0
3: x′

i,j = (ĥi,j , ei,j)

4: ĥi−1,j = feedForward(invNeti,x
′
i,j)

5: end for

Algorithm 3. Deep learning with refinement based on target propagation
Procedure network refinement(dnet,D)
Input: deep network dnet, supervised training set D = {(xj , ŷj)|j = 1, . . . , k}
Output: the refined network dnet

1: for j = 1 to k do
2: for i = l to 1 do
3: if i = l then
4: ĥi,j = ŷj

5: end if
6: hi,j = Fi(xj)
7: hi−1,j = Fi−1(xj)
8: end for
9: end for

10: for i = l to 2 do
11: Initialize Network(invNeti)
12: invNeti = train inv net(invNeti, dnet,D, i, ĥi)
13: {ĥi−1,1, . . . , ĥi−1,k} = tgt prop(invNeti, i, k, ĥi,1, . . . , ĥi,k)
14: end for
15: for j = 1 to k do
16: h0,j = xj

17: layer backprop(h0,j , ĥ1,j)
18: for i = 2 to l do
19: hi−1,j = Fi−1(xj)
20: layer backprop(hi−1,j , ĥi,j)
21: end for
22: end for

2.2 Refinement of Deep Learning via Target Propagation

The algorithms presented in the previous section form the basis for building a
refinement technique for pre-trained deep networks. The overall approach goes
as follows. In a first phase the deep network is trained via BP, as usual. In a
second phase, targets are propagated downward through the layers, as in Algo-
rithms 1 and 2, and the network is trained layer-wise accordingly. This phase is

84 V. Laveglia and E. Trentin

called “refinement”. Algorithm 2 provides a detailed description of this refine-
ment strategy in terms of pseudo-code. The algorithm invokes a routine Ini-
tialize Network(.) used for initializing a generic feed-forward neural net with
random parameters before the actual training takes place. Finally, the routine
layer backprop(hi−1,j , ĥi,j) realizes the adaptation of the weights between layers
i − 1 and i (for i = 1, . . . , l) via online gradient-descent. This application of
gradient-descent uses hi−1,j as its input, and ĥi,j as the corresponding target
output. It is seen that extensions of the procedure to batch gradient-descent
and/or multi-epochs training are straightforward by working out the skeleton of
pseudo-code offered by Algorithm 3.

3 Experiments

Experiments were conducted on the popular MNIST dataset2 [14]. We used
all the 70,000 MNIST patterns, representing pixel-based images of handwritten
digits (10 classes overall) having a dimensionality equal to 784. A 10-fold cross-
validation strategy was applied, where for each fold as much as 80% of the data
were used for training, 10% for validation/model selection, and 10% for test. The
most significant results on MNIST published so far, obtained with a variety of
different approaches, are listed in [15]. Variants on the theme of convolutional
neural nets are known to yield the highest accuracies to date [6,23], as expected
given the visual nature of the dataset. Our aim here is to exploit MNIST as a
significant and difficult learning task suitable to assess the effectiveness of the
present approach, and to compare the proposed algorithms to established non-
convolutional feed-forward networks and target propagation methods previously
applied to MNIST [16,20].

The topology of each layer and the hyperparameters were selected via grid
search. Gradient-based training of the main network dnet (the classifier) relied
on the root mean square propagation (RMSProp) variant of BP [22], while for
the inversion net and the layer-wise refinement of dnet upon target propaga-
tion (routine layer backprop(.) in Algorithm 3) the Adam variant of stochas-
tic BP [13] turned out to be best. Besides a 784-dimensional input layer with
linear activation functions and a class-wise 10-dimensional output layer with
softmax activations, dnet had 3 hidden layers having 140, 120, and 100 neurons,
respectively. Logistic sigmoid activation functions were used in the hidden layers.
Connection weights and bias values for the sigmoids were initialized at random
from a uniform distribution over the range (−0.5, 0.5). RMSProp was applied
for a maximum of 104 steps with early stopping (based on the generalization
error not improving over the last 2000 steps), using a mini-batch size of 128
and a learning rate set to 0.01. As for the inversion nets, the dimensionality of
the input and output layers were fixed according to the topology of the specific,
adjacent layers in dnet between which the output targets had to be propagated
(the input layer of InvNet had linear activation functions, while its output layer

2 Available at http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/

Error-Driven Propagation of Target Outputs 85

used logistic sigmoids), as explained in the previous section. A single hidden
layer of 200 sigmoid units was used. The Adam optimizer was applied for a
maximum of 1000 steps with early stopping, using a mini-batch size of 128 and
a learning rate set to 0.001. Finally, the adaptation of the layer-specific weights
in dnet upon propagation of the corresponding targets via the trained InvNet
(procedure layer backprop(.) in Algorithm 3) relied on the Adam optimizer,
as well, with mini-batch size of 32 and learning rate set to 0.001.

Table 1 presents the average accuracies (± the corresponding standard devi-
ations) on the 10-fold crossvalidation for dnet trained with RMSProp, with the
bare target propagation, and with the refinement algorithm, respectively, eval-
uated on the training and the test sets. It is seen that the target propagation
scheme required a proper BP-based initialization in order to achieve significant
accuracies. in fact, In terms of learning capabilities (evaluated on the train-
ing sets), target propagation applied to the pre-trained dnet according to the
refinement strategy yielded a relative 32.75% average error rate reduction over
RMSProp, along with a much more stable behavior (the standard deviation was
reduced as much as 42%). The statistical significance of the improvement evalu-
ated via Welch’s t-test (in order to account for the different variances of the two
populations) results in a confidence level that is ≥ 99.75%. In terms of gener-
alization capabilities (evaluated on the test sets), when applying the refinement
strategy a significant relative 8.20% error rate reduction over RMSProp was
observed on average, preserving the same stability of the performance (in fact,
the difference between the standard deviations yielded by the two approaches is
neglectable, namely 0.002%). Welch’s t-test assessed a statistical significance of
the gap between the results yielded by the two algorithms which is even higher
than before (due to the much smaller variance of the RMSProp results), that is
a confidence level ≥ 99.9%.

Table 1. Accuracies on the MNIST 10-class classification task (avg. ± std. dev. on a
10-fold crossvalidation).

Algorithm Training Test

RMSProp 99.48 ± 0.13 98.12 ± 0.05

Target propagation 87.30 ± 0.29 86.64 ± 0.27

Refinement 99.65 ± 0.08 98.27 ± 0.06

Table 2 offers a comparison among MNIST classifiers based on non-
convolutional feed-forward deep neural networks using no augmentation of the
training set (see [7,17] for established results obtained using augmentation).
The comparison involves the error rate as observed on the test set (average ±
standard deviation on the 10-fold crossvalidation, whenever available) and the
number of free (i.e., adaptive) parameters in the model, that is an index of the
model complexity. The proposed technique (target propagation with refinement)
is compared with the approach by [20], that is a 2-hidden layer network with

86 V. Laveglia and E. Trentin

Table 2. Comparison between the proposed algorithm and the established approaches,
in terms of error rate and number of adaptive parameters.

Algorithm Test error #Parameters

Refinement 1.73 ± 0.06 3.04 × 105

[16] 1,94 5.36 × 105

[20] 1,6 1.28 × 106

Fig. 1. Learning and generalization curves for dnet.

800 units per layer (resulting in a very complex machine), and by [16], that is
a 7 hidden layer network having 240 neurons per layer. It is seen that the error
rate achieved by the proposed refinement algorithm is in the middle between its
competitors, but the complexity of the machine is dramatically smaller. A rela-
tive 11.02% error rate reduction is yielded by the present refinement approach
over the difference target propagation algorithm, while a relative 7.25% reduc-
tion is still offered by [20] (credited by [11] of being the best performance yielded
by a “regular” feed-forward net) over the present refinement procedure, at the
expense of the number of adaptive parameters, which is one order of magnitude
higher. Figure 1 presents the learning and generalization curves (mean squared
error on training and validation sets, respectively) obtained running regular BP
learning of dnet in one of the 10-folds of the present experiment. For graphical
convenience, the plot is limited to the first 5000 steps (no evident changes in
behavior were observed during the following steps). Note that the loss used to
plot the learning curve was evaluated, from step to step, on the corresponding
training mini-batch only, while the generalization curve was always evaluated
on the whole validation set. This is the reason why the learning curve fluctu-
ates locally, while the generalization curve is much smoother. The curves are
compared with those corresponding to the refinement via target propagation,

Error-Driven Propagation of Target Outputs 87

Fig. 2. Learning and generalization curves of the procedure layer backprop(.) applied
to the three hidden layers of dnet.

Fig. 3. Learning and generalization curves of the procedure layer backprop(.) applied
to the output layer of dnet.

namely Figs. 2 and 3. The former plots the learning and generalization curves
of the layer-specific gradient-descent adaptation of the weights in the 1st, 2nd,
and 3rd hidden layers of dnet, respectively, by means of the application of the
procedure layer backprop(.) to the target propagated via the inversion net.
Similarly, Fig. 3 shows the curves for layer backprop(.) applied to the weights
in the topmost layer of dnet. Although eventually one is interested in solving

88 V. Laveglia and E. Trentin

the original learning problem, it is seen that the layer-specific sub-problems are
actually difficult high-dimensional learning problems, which may just not admit
any sound single-layered solution. This explains the observed difficulties met by
gradient-descent in minimizing the corresponding layer-specific loss functions.

4 Conclusions

Target propagation emerges as a viable approach to learning and refinement
of deep neural networks, tackling the vanishing-gradient issues stemming from
application of plain BP to deep architectures. Albeit preliminary, the empiri-
cal evidence stresses that the proposed refinement strategy yields classification
accuracies that are in line with the state-of-the-art algorithms for training feed-
forward networks. The error rate reduction observed over the bare BP-based deep
learning was shown to be statistically significant according to Welch’s t-tests.
The experiments presented in the paper revolved around a 5-layer architecture,
yet our efforts are currently focusing on deeper networks. Consequently, also
the application of inversion nets featuring more than one hidden layers is under
investigation. The training set for the inversion net can be enriched, as well, by
synthetically generating layer-specific input-output pairs obtained from the orig-
inal ones with the addition of random noise, resulting in different examples of the
signed errors ei used to drive the learning of the target-propagation relationship.

References

1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: Advances in Neural Information Processing Systems 19, Pro-
ceedings of the Twentieth Annual Conference on Neural Information Processing
Systems, Vancouver, BC, Canada, 4–7 December 2006, pp. 153–160 (2006)

2. Carreira-Perpiñán, M.Á., Wang, W.: Distributed optimization of deeply nested
systems. In: Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, 22–25 April 2014,
pp. 10–19 (2014)

3. Castelli, I., Trentin, E.: Semi-unsupervised weighted maximum-likelihood estima-
tion of joint densities for the co-training of adaptive activation functions. In:
Schwenker and Trentin [19], pp. 62–71

4. Castelli, I., Trentin, E.: Supervised and unsupervised co-training of adaptive acti-
vation functions in neural nets. In: Schwenker and Trentin [19], pp. 52–61

5. Castelli, I., Trentin, E.: Combination of supervised and unsupervised learning for
training the activation functions of neural networks. Pattern Recognit. Lett. 37,
178–191 (2014)

6. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: Proceedings of the 25th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2012), pp. 3642–3649. IEEE Computer
Society (2012)

7. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple
neural nets for handwritten digit recognition. Neural Comput. 22(12), 3207–3220
(2010)

Error-Driven Propagation of Target Outputs 89

8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia,
Italy, 13–15 May 2010, pp. 249–256 (2010)

9. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2011, Fort Lauderdale, USA, 11–13 April 2011, pp. 315–323
(2011)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

11. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Improving neural networks by preventing co-adaptation of feature detectors. CoRR
abs/1207.0580 (2012). http://arxiv.org/abs/1207.0580

12. Jaderberg, M., et al.: Decoupled neural interfaces using synthetic gradients. In:
Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6–11 August 2017, pp. 1627–1635 (2017)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

14. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

15. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database (2018).
http://yann.lecun.com/exdb/mnist/. Accessed 02 Feb 2018

16. Lee, D.-H., Zhang, S., Fischer, A., Bengio, Y.: Difference target propagation. In:
Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A.
(eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 498–515. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23528-8 31

17. Meier, U., Ciresan, D.C., Gambardella, L.M., Schmidhuber, J.: Better digit recog-
nition with a committee of simple neural nets. In: Proceedings of the 2011 Inter-
national Conference on Document Analysis and Recognition (ICDAR 2011), pp.
1250–1254. IEEE Computer Society, Washington, D.C. (2011)

18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. In: Rumelhart, D.E., McClelland, J.L., Group, P.R. (eds.)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

19. Schwenker, F., Trentin, E. (eds.): PSL 2011. LNCS (LNAI), vol. 7081. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28258-4

20. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural
networks applied to visual document analysis. In: 7th International Conference on
Document Analysis and Recognition (ICDAR 2003), 2-Volume Set, 3–6 August
2003, Edinburgh, Scotland, UK, pp. 958–962 (2003)

21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

22. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running
average of its recent magnitude. Technical report (2012)

23. Wan, L., Zeiler, M.D., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural
networks using DropConnect. In: Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16–21 June 2013, pp. 1058–
1066 (2013)

http://arxiv.org/abs/1207.0580
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-319-23528-8_31
https://doi.org/10.1007/978-3-642-28258-4

	A Refinement Algorithm for Deep Learning via Error-Driven Propagation of Target Outputs
	1 Introduction
	2 Error-Driven Target Propagation: Formalization of the Algorithms
	2.1 The Inversion Net
	2.2 Refinement of Deep Learning via Target Propagation

	3 Experiments
	4 Conclusions
	References

