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Abstract. As machine learning continues to gain momentum in the
neuroscience community, we witness the emergence of novel applica-
tions such as diagnostics, characterization, and treatment outcome pre-
diction for psychiatric and neurological disorders, for instance, epilepsy
and depression. Systematic research into these mental disorders increas-
ingly involves drawing clinical conclusions on the basis of data-driven
approaches; to this end, structural and functional neuroimaging serve as
key source modalities. Identification of informative neuroimaging mark-
ers requires establishing a comprehensive preparation pipeline for data
which may be severely corrupted by artifactual signal fluctuations. We
propose a new unified data analysis pipeline for neuroimaging-based diag-
nostic classification problems using various different feature extraction
techniques, Machine Learning algorithms and processing toolboxes for
brain imaging. We illustrate the approach by discovering potential can-
didates for new biomarkers for diagnostics of epilepsy and depression
presence in simple and complex cases based on clinical and MRI data for
patients and healthy volunteers. We also demonstrate that the proposed
pipeline in many classification tasks provides better performance than
conventional ones.
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1 Introduction

Nowadays, Pattern Recognition (PR), Machine Learning (ML), and Intelligent
data analysis techniques are used in medical research for diagnostic biomarkers
discovery and treatment outcomes prediction with the use of neuroimaging data
collected for the targeted groups of patients or healthy volunteers. To unify these
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processes, we offer a common data preprocessing and analysis pipeline for struc-
tural and functional magnetic resonance imaging (MRI) data which dramatically
reduces research time and allows a researcher to try many preprocessing/data
cleaning/feature extraction/classification options and compare results. In future,
it is planned to add a visualization step (of informative features) together with
classification results, which is highly desirable by medical community.

One challenge for the successful applications of automated diagnostics based
on pattern recognition approaches in clinical settings is to ensure the highest
possible quality of source signal employed for decision making. Cleaning the
artifactual (irrelevant to the process in question) noise incidental to scanning
deems necessary, as such fluctuations drastically hurt recognition performance,
blocking the way to the identification of neuroimaging markers for mental dis-
orders [4]. To this end, denoising schemes must be proposed, which involve the
extensive examination of spatiotemporal constituents of the source signal and
identification of the relevant components against the artifactual noise [3,28]. In
the present work, we investigate a pattern classification pipeline for mental dis-
orders featuring a denoising step, and observe consistent performance improve-
ments w.r.t. the baseline approach.

A different but important challenge is to design highly sensitive and robust
predictive models. Research indicates that the pattern of brain activity changes
associated with disorders such as depression might have limited discriminative
power, leading to performance drops for common machine learning algorithms.
Current accuracy of around 75%, thus, does not allow direct clinical application
of these models [18].

Data used in the pilot study consists of structural and functional MR-images
from 100 subjects: 25 healthy volunteers (H), 25 patients with major depressive
disorder in an acute depressive episode (D), as well as 25 epilepsy patients (E)
and 25 epilepsy patients with major depressive disorder (ED).

In summary, our contributions in this work are the following:

– We provide a short review of current fMRI applications and data cleaning
methods prior to feature extraction;

– We propose a principled noise-aware pattern recognition pipeline for neu-
roimaging tailored to pattern classification;

– Using a real MRI/fMRI dataset, we demonstrate the effectiveness of our
methodology, searching for epilepsy-specific patterns. We aim to discrimi-
nate between healthy controls, patients with epilepsy, and patients with both
epilepsy and depression.

The potential importance of the work arises from the fact that the majority
of commercial and clinical scanners are 1.5T compared to high quality 3T and 7T
research scanners. Here we prove that both structural and (low quality and short
duration) resting-state data could be enough for epilepsy/depression diagnostics.
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2 MR Data Properties, Preprocessing and Feature
Extraction

Magnetic resonance imaging (MR imaging, MRI) and its part — functional mag-
netic resonance imaging (fMRI) — use strong magnetic fields to create images
of biological tissues and physiological changes in them.

Upon acquisition, MRI data should be cleaned to eliminate the noise associ-
ated with the scanning procedure (low-level hardware artefacts such as magnetic
field inhomogeneity, radiofrequency noise, surface coil artefacts and others) and
signal processing (chemical shift, partial volume, etc.); besides there are arte-
facts associated with the scanned patient (physiological noise such as blood flow,
movements, etc.). The artefacts should be considered in accordance with the
noise origin and filtered out [9].

In addition to MRI data cleaning problem, there is another common challenge
of the brain imaging analysis related to the large dimensionality of the measured
data, which mostly depends on resolution parameters of the scanner inductive
detection coil. For instance, standard voxel sizes are within 0.5–2 mm3 in case of
structural imaging (resulting in 107 voxels for the whole brain volume). Thus, an
MRI image, composed of huge number of small sized voxels, has higher spatial
resolution and, hence, high dimensionality. To avoid the curse of the dimensional-
ity phenomenon, ML methods are usually applied to lower dimensional features
extracted from original scans by feature selection procedures. These procedures
are also included into the preprocessing stage.

2.1 Structural MRI Preprocessing and Feature Extraction

Preprocessing stage has two main goals: MRI data cleaning and avoiding the
curse of the dimensionality phenomenon caused by high dimensionality of initial
MRI data. The latter goal can be achieved by constructing lower dimensional
and biomedically interpretable brain characteristics from the initial data.

The goal of this sub-stage is to extract informative features (biomedically sig-
nificant brain characteristics, clinically meaningful features) with lower dimen-
sionality. The approach is typically realized in several steps:

– selection of an appropriate brain atlas [17] which splits the brain into the
anatomical areas (e.g. Hippocampi, cortical areas and etc.),

– 3D MRI images segmentation into disjoint sets (sub-images), consisting of
voxels, corresponding to different brain regions (Regions of Interest, ROIs),

– various characteristics calculation for each ROI.

The examples of such characteristics could be structural morphometric
parameters (volumes, thicknesses, curvatures) of the selected anatomical areas
from the MRI-image, which together form a volumetric vector. For example,
MRI processing toolbox [12] parcels MRI images into regions corresponding
to the chosen Desikan-Killiany atlas; calculates 7 volumetric characteristics
for each cortical region (NVoxels, Volume mm3, normMean, normStdDev, nor-
mMin, normMax, normRange) and 9 geometric characteristics of subcortical
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regions (NumVert, SurfArea, GrayVol, ThickAvg, ThickStd, MeanCurv, Gaus-
Curv, FoldInd, CurvInd).

For constructed objects different characteristics reflecting meaningful prop-
erties of these objects, can be computed for further use in Machine learning
studies like segments of MRI-image consisting of 3D MRI-voxels from chosen
brain areas (to be used as inputs for deep learning procedures [23]). Most often
domain-specific lower dimensional features (morphometric or functional connec-
tivity features) could be extracted from original data in specialized MRI pro-
cessing toolboxes [2].

2.2 Functional MRI Preprocessing and Feature Extraction

fMRI-Related Noise. Not depending on equipment, fMRI signal is very noisy.
As T2*-weighted image (BOLD-contrast) is a mixture of signals from many
sources, the desired signal from the neuronal activity only represents a relatively
small percentage of the variance of the signal [3]. Non-neuronal contributions
to the BOLD fMRI time series include receiver coil thermal noise, instrumental
drifts, spike-like artifactual signals induced by the hardware instabilities, rapid
and high-amplitude spikes due to the head motion. The physiological noise of
non-neuronal origin (which is essentially BOLD-signal, but of no interest) com-
prises of cardiac and respiratory noise, changes in arterial carbon dioxide con-
centration associated with varying respiration rate, vasomotor effects, changes
in blood pressure and cerebral autoregulation mechanisms [20].

Noise Identification and Suppression. Three significantly different gen-
eral approaches for noise identification and removal in fMRI data can be high-
lighted [5,28]: the first is based on using additional sensors measuring physio-
logical activities exploitation (model-based approach, [14]), the second is noise
elimination specific for each type of noise (e.g. motion correction or thermal
noise cleaning), finally the third one is data-driven using only fMRI data itself
and prior information about fMRI signal and noise. The first approach is limited
as it covers only physiological nature of the noise and can’t handle e.g. scanner
artifacts. Moreover, large amounts of data have already been collected (and are
being collected) without additional “noise” information, so the aforementioned
method cannot be useful here. Data collection with additional equipment intro-
duces additional challenges from increased experimental time to equipment cost,
MR-compatibility, and instability.

Independent Component Analysis (ICA) based technique could be viewed
as a second step as it might be applied to components extracted by PCA [26].
The resulting independent components are assumed to be either noise-related or
signal-related, each representing one of the sources in a source separation task
solved by ICA. ICA transforms source fMRI signal into a set of components with
distinct spatial and temporal structures, which further could be classified as noise
or signal. Three possible approaches to this classification can be highlighted.
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The first one is an expert-based technique: an individual with expertise in
fMRI processing must examine every component (time courses, spatial distri-
bution, and spectrum) and manually label it as either signal or noise [15,19].
[15] present a detailed guideline for evaluating and categorizing independent
components and provide examples of each component class. Expert-based cate-
gorization may be tedious and error-prone for data with low SNR ratios, e.g. for
ubiquitous medical 1.5T scanners.

Another option is to utilize a pre-trained classifier such as the one provided
by the FIX package of FSL that achieves 99% classification accuracy based on
the annotation created by human experts [28]. In this work, ICA components are
used to extract features for the machine learning methods (supervised learning
classifiers) that aim to classify noise components from signal automatically based
on labeled training data. 46 temporal and 131 spatial features are extracted and
a feature selection procedure is performed during classifier training.

Finally, the third approach is to combine the first two approaches, i.e. to
calibrate the existing model pre-trained on vast amounts of data with different
characteristics (such as the one provided by the FIX package) for the particular
problem. This requires creating a new task-oriented labeled dataset using the
expert knowledge and using transfer learning techniques known from machine
learning to ’fine-tune’ the classification model on the newly labeled data. This
approach seems to be the most promising when data quality is low and number
of patients is relatively high.

Described approaches to signal-noise separation for fMRI data might prove
useful for classification tasks in the medical domains described above, specifi-
cally epilepsy, schizophrenia, and depression diagnostics. The crucial point here
is that physiological noise having no direct relation to the neuronal activity (i.e.
signal), might still carry valuable discriminating information for the classifica-
tion task. For instance, cerebral blood flow fluctuations might reveal unobserv-
able brain states, which correlate with the target variable (disease/no disease).
Broadly speaking, two ways to approaching the classification problem exist. The
first assumes building classifier based on the hand-crafted features extracted
from the independent components (such as, for instance, described in [28]), that
could prove effective for discriminating between patients vs. healthy controls. An
alternative approach may be based on the reconstruction of the 4D fMRI signal
itself after noise elimination and its utilization as a source data for training (i.e.
data might be denoised, or its signal and noise parts investigated separately).

3 The Proposed Pipeline

The literature review has allowed us to identify established and prospective
building blocks and organize them into a unified and highly automated fMRI
processing pipeline, see [13] for detailed discussion. Our pipeline accepts raw
functional and structural scans of a subject and outputs the predicted task-
specific scores, whose meaning vary according to the application. For instance,
for a depression vs. healthy control classification task, our pipeline should score
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the patient according to a probability of depression diagnosis for him. The entire
chain of steps can be implemented in a modular way via existing or prospective
software by respecting interfaces between the modules. We note that as some
of the modules may carry computationally intensive processing, the runtime of
the pipeline may vary from minutes to several hours. We briefly describe our
proposed pipeline below.

The input to our pipeline comprises of functional and structural MRI scans.
The raw scans are passed through a standard preprocessing step, an established
low-level MRI handling stage (involving slice-time correction, motion correction,
filtering in space and time, anatomical alignment across individuals) [7], yielding
preprocessed data on the same scale and format. A second stage accepts pre-
processed scans and runs a manual denoising procedure analogous to the one
discussed in [15], producing a scan with irrelevant components excluded and an
increased SNR. The third stage of our pipeline performs correlation-based and
graph-based feature extraction for fMRI and structural morphometric parame-
ters (volumes, thicknesses, curvatures) extraction for structural MRI data, which
together form a volumetric vector. Lastly, our pipeline performs pattern recogni-
tion by making use of available implementations of conventional machine learning
approaches such as SVMs [29], neural networks [25], and decision trees combined
with imbalanced classification approaches [24], to name a few. Additionally, for
each selected combination of analysis steps it is possible to select and visual-
ize most informative structural/functional features (i.e., potentical candidates
for biomarkers) and evaluate True Positive Rate (TPR) with any fixed False
Positive Rate (FPR), which is extremely useful in medical practice.

4 Illustrative Example: Pattern Recognition for Epilepsy
Detection

4.1 fMRI-based Pattern Recognition

The purpose of this example study is to demonstrate the possible advantages
of using novel sophisticated artifact removal procedures prior to feature extrac-
tion in clinical diagnostics. The data at our disposal consisted of functional MRI
scans of four groups of subjects: 25 patients with epilepsy, 25 patients with
depression, 25 patients with both epilepsy and depression, and 25 healthy con-
trols. We aimed at finding patterns connected to epilepsy, thus discriminating
patients with epilepsy against the rest of the sample: the diagnostic question is
whether a particular subject has epilepsy (otherwise he might be healthy or have
depression). Resting-state functional MRI was collected at 1.5T EXCEL ART
VantageAtlas-X Toshiba scanner at Z.P.Solovyev Research and Clinical Center
for Neuropsychiatry1.

Raw data were preprocessed according to two different protocols:

1 Skoltech biomedical partner. Website (in Russian): http://npcpn.ru/.

http://npcpn.ru/
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1. Spectrum: standard preprocessing pipeline implemented in SPM12 includ-
ing slice-timing correction, bad-slices interpolation, motion-correction (bad
volumes interpolation), coregistration with T1 images and spatial normaliza-
tion.

2. Manual: a combination of standard pipeline with manual ICA classification
into signal and noise components by fMRI experts.

For the parcellation of the brain, we used an Automatic Anatomic Labeling
(AAL) atlas consisting of 117 regions. For each region corresponding time series
were assigned, and then a correlation matrix was computed from them. Signifi-
cant correlation values (p = 0.05, Bonferroni corrected) were set to ones, all other
values were set to zeros, yielding a binary adjacency matrix of dimensionality
117 × 117. An example of raw and binarized matrix is in Fig. 1.

Fig. 1. Visualization of fMRI patterns used for the classification task. A depicts the cor-
relation matrix, from left to right: raw, binarized (threshold = 0.15), binarized (thresh-
old = 0.4). B depicts the functionally connected brain areas according to the elements
of the correlation matrix in A.

The python library NetworkX was used to calculate features corresponding to
each region of interest, explaining the level of functional activity of the region in
terms of graph nodes.We calculated 5 metrics corresponding to each region of the
brain: clustering coefficient, degree centrality, closeness centrality, betweenness
centrality, average neighbor degree, and 2 metrics describing the graph in general:
local efficiency and global efficiency [22]. Then the standard machine learning
classifiers were applied: Support Vector Machine (SVM), Random Forests (RF),
and Logistic Regression (LR).

Each model was validated using leave-one-out approach. Four comparisons
were performed:
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Table 1. EvsH. Results on 25 epilepsy
only patients vs. 25 healthy controls
classification task.

FPR Spectrum TPR Manual TPR

10% 8% 36%

15% 8% 44%

20% 24% 68%

30% 32% 68%

Table 2. EDvsE. Results on 25 epilepsy
only patients vs. 25 epilepsy + depression
patients classification task.

FPR Spectrum TPR Manual TPR

10% 20% 16%

15% 20% 20%

20% 40% 38%

30% 44% 48%

Table 3. EvsNE. Results on 50 sub-
jects with epilepsy vs. 50 subjects with-
out epilepsy classification task.

FPR Spectrum TPR Manual TPR

10% 10% 36%

15% 22% 52%

20% 32% 60%

30% 36% 66%

Table 4. EDvsD. Results on 25 depression
only patients vs. 25 epilepsy + depression
patients classification task.

FPR Spectrum TPR Manual TPR

10% 16% 20%

15% 24% 32%

20% 28% 60%

30% 40% 60%

– EvsH. 25 epilepsy only patients vs. 25 healthy controls,
– EDvsE. 25 epilepsy only patients vs. 25 epilepsy + depression patients,
– EvsNE. 50 subjects with epilepsy vs. 50 subjects without epilepsy (including

healthy controls and subjects with depression).
– EDvsD. 25 depression only patients vs. 25 epilepsy + depression patients.

The results for each classification task are in Tables 1, 2, 3 and 4. Summary
of classification results in terms of prediction accuracy for the two competing
preprocessing pipelines is provided in Table 5.

Firstly, it can be seen that Spectrum preprocessing does not perform well
when working on simple features (functional connectivity). Next, Manual shows
relatively high performance in terms of accuracy and true positive rate, which
means that additional sophisticated data cleaning could be beneficial prior to
feature extraction for fMRI classification tasks. In all except EvsNE the clas-
sifier performance is rather high and stable after cross-validation meaning that
epilepsy-specific fMRI pattern could be found, thus in it might be hard to dis-
tinguish between complex epilepsy + depression patients possibly due to similar
brain disruptions. An additional work is needed here to construct new features
sensitive to subtle differences between patients.
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Table 5. Summary of classification results in terms of prediction accuracy for the two
competing preprocessing pipelines.

Task Spectrum Manual

EvsH 57 ± 16% 76± 13%

EDvsE 67 ± 15% 66 ± 16%

EvsNE 54 ± 16% 73± 16%

EDvsD 58 ± 20% 66± 16%

4.2 Structural MRI-based Pattern Recognition

Structural MRI data were cleaned, preprocessing and their features were
extracted using MRI processing toolboxes [1,2] as described below (see also
Fig. 2).

Structural morphometric features were calculated from T1w images using
[12]; for more than 100 brain regions corresponding features explaining brain
structure (volumes, surface areas, thicknesses, etc.) were computed producing a
vector with 894 features for each subject.

Fig. 2. An example of brain parcellaton used for feature extraction: structural brain
MRI split into anatomical regions performed in Freesurfer 6.0 according to the Desikan-
Killiany atlas. A: coronal view, B: axial view, C: saggital view.

Next, the ML exploratory pipeline was implemented on Ipython using
scikit-learn library2 and organized as follows:

– We considered two geometrical methods for dimensionality reduction: (1)
Locally Linear Embedding, (2) Principal Component Analysis (see descrip-
tion of a weighted version in [6]).

– We considered two methods of feature selection: (1) feature selection
based on Pearson’s chi-squared test and ANOVA scoring, implemented via
SelectKBest function in scikit-learn; (2) selection of relevant features
based on a particular classification model used with Logistic Regression (LR),
K-Nearest Neighbors (KNN) and Random Forest Classifier (RFC), imple-
mented via the SelectFromModel function in scikit-learn.

2 http://scikit-learn.org/.

http://scikit-learn.org/
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Table 6. Results on EvsH task
(best model: SVM).

FPR 10% 15% 20% 30%

TPR 32% 48% 56% 68%

Table 7. Results on EDvsE task
(best model: SVM).

FPR 10% 15% 20% 30%

TPR 4% 8% 28% 32%

Table 8. Results on EvsNE task
(best model: Logistic Regression).

FPR 10% 15% 20% 30%

TPR 42% 46% 52% 66%

Table 9. Results on EDvsD task
(best model: Logistic Regression.

FPR 10% 15% 20% 30%

TPR 40% 52% 80% 80%

– We performed grid search for a number of selected features and for a number
of components in dimension reduction procedure in the sets {10, 20, 50, 100}
and {5, 10, 15, 20}, correspondingly.

Data was whitened before training. Feature reduction was performed without
double-dipping [21], therefore training and testing datasets are separated before
feature selection/dimensionality reduction. Hyper-parameters grid search was
based on cross-validation with stratification, repeated 10 times for each person
being in test.

As mentioned above, the dataset explored with the proposed pipeline con-
tains four groups of subjects. Patients from epilepsy and epilepsy with depression
groups represent cohorts with several types of epilepsy localization: temporal,
frontal, parietal, mixed and unknown cases. That allows exploration of general
patterns of epilepsy, independently to the localization, which are known to be
tacked particular subcortical regions as hippocampus. Then in other research,
the ML methods are applied to classify epilepsy with a known epilepsy local-
ization. There are two types of epilepsy being extensively explored: temporal
lobe epilepsy (TLE) or even precisely TLE with mesial temporal sclerosis (TLE-
MTS), and focal cortical dysplasia patients with TLE (TLE-FCD) [8,10,16]. In
some cases, TLE patients from these selected groups are further separated in
groups by the loci localization as right and left [11].

The results for each classification task are in Tables 6, 7, 8 and 9. Summary
of classification results in terms of prediction accuracy is provided in Table 10.
Thus, the obtained results on the in-homogenized cohort are the firstly reported
and we consider the results with the classification accuracy more than 0.7 sta-
tistically significant with .05 level of confidence on the explored cohort of 50
patients. We provide the results for EvsH classification task in Table 6. Note
that we obtain statistically significant results on structural MRI features. This
could be explained by the fact that epilepsy leads to significant changes in brain
structure, which can yield more accurate classification. Table 9 presents results
for EDvsE classification task. We conclude that model performance is not sta-
tistically significant, highlighting the difficulty of isolation of depression against
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the complex illness picture based on MRI data alone. The results for EvsNE are
in Table 8; here the model performance is comparable to ones from preselected
cohort of patients [8,10,11,16] as for EvsH case, cf. table, where TPR reaches
80% with FPR fixed at 30%.

Table 10. Summary of classification results in terms of prediction accuracy.

Task EvsH EDvsE EvsNE EDvsD

Accuracy 74.0 ± 18.0% 65.0 ± 15.0% 73.0 ± 18.0% 82.0 ± 11.0%

The most by score important features from models EvsH and EvsNE are:
Ventral Diencephalon Right, Hippocampus Left, Thalamus Left, Putamen Left,
Angular gyrus Right, Frontal gyrus Right (Superior), Paracentral lobule Left,
Postcentral gyrus Right, Precentral gyrus Left, Supra Marginal gyrus Left, Tem-
poral Pole Left. These findings are in line with current knowledge of epilepto-
genic zones and brain areas mostly affected from epileptic seizures [27] as well
as provide some new information on possible targets in epilepsy diagnostics and
treatment.

5 Conclusions

In the current work, we reviewed some approaches to neuroimaging data clean-
ing aimed at the elimination of artifacts harmful for further pattern recognition.
Based on well established and novel approaches, we proposed a principled noise-
aware pattern recognition pipeline for neuroimaging tailored to pattern classifi-
cation and showed the potential effectiveness of our proposed methodology in a
pilot classification study. Our general data preprocessing and analysis pipeline
for structural and functional MRI data could dramatically reduce research time,
thus allowing a researcher to investigate a larger variety of preprocessing, data
cleaning, feature extraction, and classification options as well as compare results
based on desired metrics. From top performing combinations of analysis steps
we obtained a number of stable structural and functional features (i.e., poten-
tial candidates for biomarkers), some of which are known and well established,
whereas some of which are new and could possibly provide new medical knowl-
edge on epilepsy mechanisms and its robust detection. We also evaluated True
Positive Rates (TPR) with different fixed False Positive Rates (FPR), which
is much more useful for clinicians than classification accuracy alone. According
to the proposed pipeline, we found the ICA-based cleaning step to be crucial
for further pattern recognition task: denoised data provides clearer and more
informative features for machine learning-based diagnostics, and yields signif-
icant improvements in finding epilepsy-specific pattern in a group of patients
with only epilepsy versus epilepsy + depression patients and healthy controls.
We strongly believe that application of pattern recognition in functional neu-
roimaging is promising for clinical diagnostics of psychiatric disorders such as
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depression and neurological diseases such as epilepsy, though the classification
performance achieved in our study may be not enough for immediate medical
applications. We don’t consider end-to-end (deep learning-based) pipeline, as we
believe deep learning-based approaches would face strict limitations with raw
data without any preprocessing due to (1) high dimensionality, (2) very low
SNR ratios, and (3) very small sample size in comparison to usual deep learning
problems.

The analyzed dataset has several obvious drawbacks: it is small and well
balanced, which is not the usual case in clinical practice. As the number of
public sources of epilepsy/depression clinical data is limited and the access to
these datasets is difficult to obtain, it is hard to compare our results with other
research groups, though several studies with similar objectives are discussed
above.

We nevertheless obtained statistically significant results for EvsH, EvsNE,
and EDvsD models. The epilepsy classification on mixed cohort EvsNE reached
FPR 30% (model sensitivity 70%), and TNR 80% (specificity 80%) is comparable
to the research conducted on pre-selected groups of patients [8,10,11,16], allow-
ing the exploration of generalized disease biomarkers which were not analyzed
with ML methods before.

Despite the limitations, the proposed approach is universal and has the poten-
tial to be implemented into clinical practice, as it is not based on high-quality
data and sophisticated ML algorithms, but could be useful in real applications
or serve as a starting point tutorial for building new MR processing pipelines.
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