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Abstract. Sign language is a main communication channel among a
hearing disability community. Automatic sign language transcription
could facilitate better communication and understanding between a hear-
ing disability community and a hearing majority.

As a recent work in automatic sign language transcription has dis-
cussed, effectively handling or identifying a non-sign posture is one of
the key issues. A non-sign posture is a posture unintended for sign read-
ing and does not belong to any valid sign. A non-sign posture may arise
during a sign transition or simply from an unaware posture. Confidence
ratio (CR) has been proposed to mitigate the issue. CR is simple to
compute and readily available without extra training. However, CR is
reported to only partially address the problem. In addition, CR formu-
lation is susceptible to computational instability.

This article proposes alternative formulations to CR, investigates an
issue of non-sign identification for Thai Finger Spelling recognition,
explores potential solutions and has found a promising direction. Not
only does this finding address the issue of non-sign identification, it also
provide an insight behind a well-learned inference machine, revealing hid-
den meaning and new interpretation of the underlying mechanism. Our
proposed methods are evaluated and shown to be effective for non-sign
detection.

Keywords: Hand sign recognition · Thai Finger Spelling
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1 Introduction

Sign language is a main face-to-face communication channel in a hearing dis-
ability community. Like spoken languages, there are many sign languages, e.g.,
American Sign Language (ASL), British Sign Language (BSL), French Sign Lan-
guage (LSF), Spanish Sign Language (LSE), Italian Sign Language (LIS), Chi-
nese Sign Language (CSL), Indo-Pakistani Sign Language (IPSL), Thai Sign
Language (TSL), etc. A sign language usually has two schemes: a semantic sign
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scheme and a finger spelling scheme. A semantic sign scheme uses hand gestures,
facial expressions, body parts, and actions to communicate meaning, tone, and
sentiment. A finger spelling scheme uses hand postures to represent alphabets in
its corresponding language. Automatic sign language transcription would allow
better communication between a deaf community and hearing majority. Sign lan-
guage recognition has been subjects of various studies [2,7,11]. A recent study
[7], investigating hand sign recognition for Thai Finger Spelling (TFS), has dis-
cussed issues and challenges in automatic transcription of TFS. Although the
discussion is based on TFS, some issues are general across languages or even
general across domains beyond sign language recognition. One of the key issues
discussed in the study [7] is an issue of a non-sign or an invalid TFS sign, which
may appear unintentionally during a sign transition or from unaware hand pos-
tures.

The appearance of non-signs may undermine the overall transcription per-
formance. Nakjai and Katanyukul [7] proposed a light-weight computation app-
roach to address the issue. Sign recognition is generally based on multi-class
classification, whose output is represented in softmax coding. That is, a soft-
max output capable of predicting one of K classes is noted y = [y1y2 . . . yK ]T ,
whose coding bit yi ∈ [0, 1], i = 1, . . . , K and

∑K
i=1 yi = 1. A softmax output y

represents predicted class k when yk is the largest component: k = arg maxi yi.
Their approach is based on the assumption that the ratio between the largest
value of the coding bit and the rest shows the confidence of the model in its class
prediction. Softmax coding values have been normalized so that it can be asso-
ciated to both probability interpretation and cross-entropy calculation. Despite
the benefits of normalization, they use the penultimate values instead of the
softmax values for rationale that some information might have been lost dur-
ing the softmax activation. Penultimate values are inference values before going
through softmax activation (i.e., ak in Eq. 1). Specifically, to indicate a non-sign
posture, they proposed a confidence ratio (CR), cr = a

b , where a and b are the
largest and second largest penultimate values, respectively: a = am and b = an

where m = arg maxi ai and n = arg maxi�=m ai. Their CR has been reported
to be effective in identifying a posture that is likely to get a wrong prediction.
However, on their evaluating environment, they reported that CR could hardly
distinguish the cause of the wrong prediction whether it was a misclassified valid
sign or it was a forced prediction on an invalid sign. In addition, generally each
penultimate output is a real number, ai ∈ R. This nature poses a risk on CR
formulation for when there is zero or a negative number, CR can be misleading
or its computation can even collapse (when the denominator is zero).

Our study investigates development of an automatic hand sign recognition
for Thai Finger Spelling (TFS), alternative formulations to CR, a non-sign issue
and potential mitigations for a non-sign issue. TFS has 25 hand postures to
represent 42 Thai alphabets using single-posture and multi-posture schemas [7].
Single-posture schema directly associates a hand posture to a corresponding
alphabet. Multi-posture schema associates a series of 2 to 3 hand postures to
a corresponding alphabet. Based on probability interpretation of an inference
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output, Bayes theorem, and examining an internal structure of a commonly
adopted inference model, various formulations alternative to CR are investigated
(Sect. 3). Sections 2, 4, and 5 provide related background, methodologies and
experimental results, and discussion and conclusions, respectively.

2 Background

TFS Hand Sign Recognition. A recent visual-based state-of-the-art in TFS sign
recognition A-TFS [7] frames hand sign recognition as a pipeline of hand local-
ization and sign classification problem. A-TFS is an approach based on a color
scheme and a contour area using Green’s theorem for hand localization. Then,
an image region dominated by a hand is scaled to a pre-defined size (i.e., 64×64)
and passed through a classifier, implemented with a convolution neural network.
The classifier predicts the most likely class out of the 25 pre-defined classes, each
corresponding to a valid TFS sign.

Most visual-based TFS sign recognition studies [7,11] focus on static images.
However, a practical system should anticipate video and streaming data, where
unintended postures may be passed through the pipeline and cause confusion to
the final transcription result. Unintended postures can accidentally match valid
signs. This challenging case is worth a dedicated study and could be addressed
through a language model. However, even when the unintended postures do
not match any of the valid signs, a classifier is forced to predict one out of its
pre-defined classes. No matter which class it predicts, the prediction is wrong.
This could cause immediate confusion on its recognition result or undermine
performance of its subsequence process when using this recognition as a part of
a larger system. Confidence ratio (CR) [7] was proposed to address the issue,
but reported to be marginally effective.

Novelty Detection. A conventional classifier specifies a fixed number of classes
that it can predict and is forced to predict. This constraint allows it to be
efficiently optimized to its classification task, but it has a drawback, which is
more apparent when the assumption of all-inclusive classes is strongly violated.
The concept of flagging out an instance belonging to a class that an inference
machine has not seen at all in the training phase is a common issue and a
general concern beyond sign language recognition. The issue has been extensively
studied under various terms1, e.g., novelty detection, anomaly detection, outlier
detection, zero-shot learning, and open-set recognition.

Pimentel et al. [9] summarize a general direction in novelty detection. That
is, a detection method usually builds a model using training data containing no
examples or very few examples of the novel classes. Then, somehow depending
on approaches, a novelty score s is assigned to a sample under question x and the

1 Definition of novelty, anomaly, outlier, and zero-shot may be slightly different.
Approaches may be various [9,13], but they are generally addressing a similar con-
cern.
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final novelty judgement is decided by thresholding, i.e., the sample x is judged a
novelty (belonging to a new class) when s(x ) > τ for τ is a pre-defined threshold.

To obtain the novelty score, various approaches have been examined.
Pimentel et al. [9] categorize novelty detection into 5 approaches: probabilistic,
distance-based, reconstruction-based, domain-based, and information-theoretic
based techniques. A probabilistic approach relies on estimating a probability den-
sity function (pdf) of the data. A sample x is tested by thresholding the value
of its pdf: pdf(x ) < τ indicates x being novel. Training data is used to estimate
the pdf. Although this approach has a strong theoretical support, estimating
a pdf in practice requires a powerful generative model along with an efficient
mechanism to train it. A generative model at its fullest potential could provide
greater inference capabilities on data, such as expressive representation, recon-
struction, speculation, generation, and structured prediction. Its applicability is
much beyond novelty detection. However, high-dimension structured data, e.g.,
images, render this requirement very challenging. A computationally traceable
generative model is a subject of highly active research. Another related issue is
to determine a sensible value for τ , in which many studies [1,3] have resorted
to extreme value theory (EVT) [8]. A distance-based approach is presumably
[9] based on an assumption that data seen in a training process is tightly clus-
tered and data of new types locate far from their nearest neighbors in the data
space. Either a concept of nearest neighbors [14] or of clustering [6] is used.
Roughly speaking, a novelty score is defined by a distance either between a sam-
ple x and its nearest neighbors or between x and its closest cluster centroids.
The distance is often measured with Euclidean or Mahalanobis distance. The
approach relies on a mechanism to identify the nearest neighbors or the near-
est clusters. This usually is computationally intensive and becomes a key factor
attributed to its scalability issue in terms of data size and data dimensions. A
reconstruction-based approach involves building a re-constructive model, often
called “auto-encoder,” which learns to find a compact representation of input
and reproduce it as an output. Then, to test a sample, the sample is put through
a reconstruction process and a degree of dissimilarity between the sample and
its reconstructed counterpart is used as a novelty score. Hawkins et al. [4] used a
3-hidden-layer artificial neural network (ANN) learned to reproduce its input. As
an auto-encoder, a number of input nodes is equal to a number of output nodes
and a number of nodes in at least one hidden layer is smaller than a number of
input nodes in order to force ANN to learn a compressed representation of the
data. Any sample that cannot be reconstructed well is taken for novelty, as this
infers that its internal characteristics do not align with the compressed struc-
ture fine tuned to the training data. This approach may also resort to distance
measurement for a degree of dissimilarity, but it does not require to search for
the nearest neighbors. Therefore, once an auto-encoder is tuned, it is easier to
scale up than a distance-based approach. A domain-based approach associates
building a boundary of the data domain in a feature space. Any sample x is
considered novelty if its location on the feature space lies outside the bound-
ary. Schölkopf et al. [10] proposed one-class support vector machine (SVM) for
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novelty detection. SVM learns to build a boundary in a feature space to ade-
quately cover most training examples, while having a user-defined parameter
to control a degree to allow some training samples to be outside the boundary.
This compromising mechanism is a countermeasure to outliers in the training
data. The last approach—information-theoretic—involves measurement of infor-
mation content in the data. It assumes that samples of novelty increase infor-
mation content in the dataset significantly. As their task was to remove outliers
from data, He et al. [5] used a decrease in entropy of a dataset after removal of
the samples to indicate a degree of the samples being outliers. The samples were
heuristically searched. Pimentel et al. [9] note that this approach often requires
an information measure that is sensitive enough to pick up the effect of novelty
samples, especially when a number of these samples is small. Noted that most
approaches do not scale well to high-dimension structured data, like images.
Novelty detection in high-dimension structured data is still in an early stage.

Based on this categorization [9], a probabilistic approach is closest to the
direction we are taking. However, unlike many early works, firstly, rather than
requiring a dedicated model, our proposed method builds upon a well-adopted
classifier. It can be used with an already-trained model without requirement
for re-training. Secondly, most works including a notable work of OpenMax
[1]—whose performance achieves F-measure2 of 0.595—determine a degree of
novelty by how unlikely the sample belongs to any seen class. Another word, most
previous works have to examine every probability of sample x being seen class
i, Pr[class = i|x ], for i = 1, . . . , K, when K is a number of all seen classes. Our
work follows our interpretation of a softmax output, i.e., yi ≡ Pr[class = i|s,x ],
where s represents a state of being a seen class (not novelty). How likely sample
x is novel then can be directly deduced.

3 Prediction Confidence and Non-sign Identification

Confidence Score (cs). To quantify confidence in classification output, our study
investigates various candidates (shown in Table 1) based on that yk associates
to a probability of being class k and yk is generally obtained through a softmax
mechanism (Eq. 1). Formulation cs1 is straightforward. Formulation cs2 asso-
ciates to a logarithm of probability. Formulation cs3 is similar to confidence
ratio [7] (CR), but with an attempt to link an empirical utility to a theoretical
rationale. In addition, formulation cs3 is preferable in terms of computational
cost and stability. Formulation cs4—a logit function—has a more direct inter-
pretation of the starting assumption that the confidence is high when probability
of the predicted class is much higher than the rest.

Latent Cognizance. Given the input image x , the predicted sign in softmax
coding y ∈ R

K , where K is a number of the pre-defined classes, is derived
through a softmax activation: for k = 1, . . . , K,

2 Tested on 80, 000 images (including 15, 000 unknown images).
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Table 1. Formulations under investigation for confidence score (cs). Softmax value
yl = eal

∑K
i=1 eai

, where K is a number of predefined classes; al is a penultimate value; k

and j are indices of the largest and the second largest components, respectively

Confidence score cs1 = yk cs2 = ak cs3 = log
(

yk
yj

)
= ak − aj cs4 = log

(
yk

1−yk

)

Table 2. Formulations under investigation for cognizance function (g̃). Term a repre-
sents a penultimate value

Cognizance function g̃0(a) = a g̃1(a) = ea g̃2(a) = a2 g̃3(a) = a3 g̃4(a) = |a|

yk =
eak

∑K
i=1 eai

, (1)

where ak is the kth component of penultimate output. Each yk can be interpreted
as a probability that the given image belongs to sign class k, or more precisely a
probability that the given valid input belongs to class k. That is, yk ≡ Pr[k|s,x ]
where k indicates one of the K valid classes, x is the input under question,
and s indicates that x is representing one of the valid classes (being a sign).
For conciseness, conditioning on x may be omitted, e.g., yk ≡ Pr[k|s,x ] may
be written as yk = Pr[k|s]. Noted that, this insight is distinct to a common
interpretation [1] that a softmax coding bit yk of a well-learned inference model
estimates probability of being in class k, i.e., yk = Pr[k|x ]. This common notion
does not emphasize its conditioning on an inclusiveness of all pre-defined classes.

Identifying a non-sign can be achieved through determining the probability
of a sample x not belonging to any of the sign classes: Pr[s̄|x ] = 1 − Pr[s|x ].
To deduce Pr[s|x ], or concisely Pr[s], consider Bayesian relation: Pr[k|s] =

Pr[k,s]
∑K

i=1 Pr[i,s]
where Pr[k, s] is a joint probability. Given the Bayesian relation,

the inference mechanism (Eq. 1), and our new interpretation of yk, the following
relation is found:

eak

∑K
i=1 eai

=
Pr[k, s]

∑K
i=1 Pr[i, s]

. (2)

Based on Eq. 2, it should be easier to find an appropriate mapping between
eak and Pr[k, s] for the interpretability of the equation. Here, we draw the
assumption that penultimate value ak relates to joint probability Pr[k, s]
through an unknown function u : ak(x ) �→ Pr[k, s|x ]. Theoretically, this
unknown function is difficult to exactly characterize. In practice, even without
exact characteristics of this mapping, a good approximate is enough to accom-
plish a task of identifying a non-sign. Supposed there exists an approximate
mapping g, i.e., g(ak) ≈ Pr[k, s], therefore given g(ai)’s (for i = 1, . . . , K), a
non-sign can be identified by Pr[s|x ] =

∑
i Pr[i, s|x ] ≈ ∑

i g(ai(x )). Further
refining, to lessen burden on enforcing proper probability properties on g, define
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a “cognizance” function g̃ such that g̃(ai(x )) ∝ g(ai(x )). Consequently, define
primary and secondary latent cognizance as the following relations, respectively:

g̃ (ai(x )) ∝ Pr[i, s|x ], (3)
∑

i

g̃ (ai(x )) ∝ Pr[s|x ]. (4)

Various formulations (Table 2) are investigated for an effective cognizance
function. Identity g̃0 is chosen for its simplicity. Exponential g̃1 is chosen for
its immediate reflection on Eq. 2. It should be noted that a study on a whole
family of g̃ = m ·ea, where m is a constant, is worth further investigation. Other
formulations are intuitively included on an exploratory purpose.

4 Experiments

Various formulations of confidence score and choices of cognizance function are
evaluated on TFS sign recognition system. Our TFS sign recognition follows the
current state-of-the-art in visual TFS sign recognition [7] with a modification
of convolution neural network (CNN) configuration and its input resolution.
Instead of a 64 × 64 gray-scale image, our work uses a 128 × 128 color image
as an input for CNN. Our CNN configuration uses a VGG-16 [12] with the 2
fully-connected layers each having 2048 nodes, instead of 3 fully-connected layers
in the original VGG-16. Figure 1 illustrates our processing pipeline.

Fig. 1. Processing pipeline of our TFS sign recognition.

Sign Data. The main dataset contains images of 25 valid TFS sign postures.
Twelve signers3 were employed to perform TFS signs. Each signer performed all
25 valid TFS signs for 5 times. That resulted in a total number of 1500 images
(5 times ×25 postures ×12 signers), which were augmented to 15000 images.
The augmentation process generated new images from the original images using
different image processing methods, e.g., skewing, scaling, rotating, and trans-
lating. All augmented images were visually inspected for human readability and
semantic integrity. Every image is a color image with a resolution of approxi-
mately 800 × 600 pixels.
3 A signer is an individual person who performs TFS signs.
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Experimentation. The data was separated based on signers into a training set
and a test set, i.e., 11250 images from 9 signers for training set (75%) and
3750 images from the other 3 signers for test set (25%). The experiments were
conducted for 10 repetitions in a 10-fold manner. Specifically, each repetition
separated data differently, e.g., the 1st fold used data from signers 1, 2, and 3
for test and used the rest for training; the 2nd fold used test data from signers
2, 3, and 4; and so on till the last fold using test data from signers 10, 1, and 2.

The mean Average Precision (mAP), commonly used in object detection
[7], is a key performance measurement. Area under curve (AUC) and receiver
operating characteristic (ROC) are used to evaluate effectiveness of various for-
mulations for confidence score and latent cognizance. AUC is often referred to as
an estimate area under Precision-Recall curve, while ROC is usually referred to
an estimate area under Detection-Rate–False-Alarm-Rate curve. However, gen-
erally both areas are equivalent. We use them to differentiate the purpose of our
evaluation rather than taking them as different metrics. AUC is used for identi-
fication of samples not to be correctly predicted4. It is more direct to measure a
quality of a replacement for confidence ratio (CR) [7]. ROC is used for identifying
non-sign samples5. It is more direct to the very issue of non-sign postures.

Non-sign Data. In addition to the sign dataset, a non-sign dataset containing
images of various non-sign postures is used to evaluate non-sign identification
methods. All non-sign postures were carefully choreographed to be perceivably
different from any valid TFS sign and performed by a signer before augmented
to 1122 images. All augmented images had been visually inspected that they all
were readable and did not accidentally match to any of the 25 valid signs.

Results. Table 3 shows TFS recognition performance of the previous studies and
our work. The high performing mAP (97.59%) indicates that our model is well-
trained. The results were shown to be non-normal distributed, based on Lilliefors
test at 0.05 level. Wilcoxon rank-sum test was conducted on each treatment for
comparing (1) difference between correctly classified samples (CP) and misclassi-
fied samples (IP), (2) difference between CP and non-sign samples (NS), and (3)
difference between IP and NS. At 0.01 level, Wilcoxon rank-sum test confirmed all
3 differences in all treatments. Figure 2 shows boxplots of all treatments. Y-axes
show the treatment values, e.g., the top left plot has its Y-axis depicting values of
ak

aj
. The values are observed in 10 cross-validations each testing on 4872 images

(3750 sign images and 1122 non-sign images). Hence, each subplot depicts 48720

4 Positive is defined to be a sample of either a non-sign or an incorrect prediction.
5 Positive is defined to be a non-sign.
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data points6 categorized into 3 groups. Although the significance tests confirm
that the 3 groups are distinguishable using any of the treatments, the boxplots
show a wide range of degrees of difficulty to distinguish each individual sample,
e.g., cubic cognizance (

∑
i a

3
i ) seems to be easier than others on thresholding the

3 cases. To measure a degree of effectiveness, Tables 4 and 5 provide AUC and
ROC. Noted that, since treatment g̃0 gives results in a different manner than
others: a higher value associates to a non-sign (c.f. a lower value in others), the
evaluation logic is adjusted accordingly.

On finding an alternative to CR [7], maximal penultimate output ak appears
promising with the largest AUC (0.934) and it is simple to obtain (no extra com-
putation, thus no risk of computational instability). On addressing a non-sign
issue, cubic cognizance a3 gives the best ROC (0.929). Its smoothed estimate
densities7 of non-sign samples (NS) and sign samples (combining CP and IP) are
shown on Fig. 3a. Plots of detection rate versus false alarm rate of the 4 strongest
candidates and CR are shown in Fig. 3b. Table 6 shows non-sign detection per-
formance of the 4 strongest cognizance functions compared to a baseline, CR.
Non-sign detection performance is measured with accuracy—a ratio of correctly
classified sign/non-sign samples to all test samples—and F-measure—a common
performance index for novelty detection [1]—at thresholds selected so that every
treatment has its False Alarm Rate closest to 0.1.

Table 3. Performance of visual-based TFS sign recognition.

Method TFS coverage Data size
(# images)

Key factors Performance

Chansri and
Srinonchat [2]

16 signs 320 Kinect 3D camera,
HOG and ANN

83.33%

Silanon [11] 21 signs 2100 HOG and ANN 78.00%

A-TFS [7] 25 signs 1500 Hand Extraction
and CNN

91.26%

Our work
(V-TFS)

25 signs 15000 Hand Extraction
and VGG-16

97.59%

Table 4. Evaluation of confidence score formulations.

cr = ak
aj

cs1 = yk cs2 = ak cs3 = ak − aj cs4 = log
(

yk
1−yk

)

AUC 0.814 0.919 0.934 0.900 0.919

ROC 0.740 0.879 0.921 0.847 0.879

6 Extreme values—under 0.25 quantile and over 0.75 quantile—were removed.
7 A normalized Gaussian-smoothing version of histogram produced through smoothed

density estimates of ggplot2 (http://ggplot2.tidyverse.org) with default parameters.

http://ggplot2.tidyverse.org
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Table 5. Evaluation of various g̃ formulations on
∑

i g̃(ai) ∝ Pr[s].

Identity
g̃0(a) = a

Exponential
g̃1(a) = ea

Quadratic
g̃2(a) = a2

Cubic
g̃3(a) = a3

Absolute
g̃4(a) = |a|

AUC 0.437 0.930 0.855 0.934 0.737

ROC 0.419 0.920 0.845 0.929 0.726

Table 6. Non-sign detection performance of the cognizance functions c.f. CR. Thresh-
olds were selected so that every treatment has its False Alarm Rate closest to 0.1.

Treatment Threshold Accuracy F-measure

CR [7] 1.02 0.769 0.029

ea 100000.00 0.919 0.807

a2 26.70 0.866 0.627

a3 1700.63 0.926 0.831

|a| 50.88 0.825 0.425

Fig. 2. Upper row: boxplots of confidence ratio and candidates for confidence score.
A Y-axis shows values of confidence score in linear scale. The confidence score formu-
lations are indicated in the subplot titles. Lower row: boxplots of 5 candidates for a
cognizance function. A Y-axis shows

∑
i g̃(ai) values (

∑
i ai and

∑
i |ai| in linear scale;

the rest in log scale). The confidence score or cognizance values are shown in 3 groups:
CP for correctly classified samples; IP for misclassified samples; NS for non-sign samples.
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Fig. 3. (a) Left: illustration of smoothed estimated densities of sign (denoted SS) and
non-sign (denoted NS) data over

∑
i a

3
i . (b) Right: detection rate versus false alarm

rate curves of the 4 strongest candidates and the confidence ratio (CR).

5 Discussion and Conclusions

The cubic function has shown to be the best cognizance function among other
candidates, including the exponential function. In addition, the cubic cognizance
has ROC par to the max-penultimate confidence score. On the other hand, the
max-penultimate confidence score also provide a competitive ROC and could be
used to identify non-sign samples as well. Noted that OpenMax [1]—a state-of-
the-art in open-set recognition—uses penultimate output as one of its crucial
parts. Our finding could contribute to the development of OpenMax. A study of
using cubic cognizance in OpenMax system seems promising, since it is shown
to be more effective than a penultimate output. Another point worth noting is
that the previous work [7] evaluated confidence score on identifying non-signs
and could not confirm its effectiveness with the significance tests. Their results
agree with our early experiments when using a lower resolution image, a smaller
CNN structure, and training and testing on smaller datasets. In our early experi-
ment, only a few of the treatments could be confirmed for non-sign identification.
Those that were confirmed are consistent with ROC presented here. This obser-
vation implies a strong relation between state of the inference model and non-
sign-identification effectiveness. This relation deserves a dedicated systematic
study. Regarding applications of the techniques, thresholding can be used and a
proper value for the threshold has to be determined. This can be simply achieved
through tracing Fig. 3b with the corresponding threshold values. Alternatively,
the proper threshold can be determined based on Extreme Value Theory, like
many previous studies [1,3]. Another interesting research direction is to find a
similar solution for other inference families. Our techniques target a softmax-
based classifier, which is well-adopted especially in artificial neural network.
However, Support Vector Machine (SVM), another well-adopted classifier, is
built on a different paradigm. Application of latent cognizance to SVM might not
work or might be totally irrelevant. Investigation into the issue on other inference



266 P. Nakjai and T. Katanyukul

paradigms could provide a unified insight of the underlying inference mechanism
and benefits beyond addressing the novelty issue. Regarding starting assump-
tions, high ROC values of exponential and cubic cognizances support our new
interpretation and its following assumptions. However, the penultimate output,
according to our new interpretation, has relation ak(x ) = log(Pr[k|s,x ]) + C,
where C = − log

∑
i ai(x ). This relation only partially agrees with our results.

High value of AUC agrees with log(Pr[k|s,x ]) that a class is confidently clas-
sified, but Pr[k|s,x ] alone is not enough to determine a non-sign, which needs
Pr[s̄|x ]. This implies that our research is on a right direction, but it still needs
more studies to complete the picture.

In brief, our study investigates (1) alternatives to confidence ratio (CR) [7]
and (2) methods to identify a non-sign. The max-penultimate output is shown to
be a good replacement for CR in terms of detection performance and simplicity.
Its large value associates to a sample likely to be correctly classified and vice
versa. The cognizance

∑
i a

3
i is shown to be a good indicator for a non-sign

such that
∑

i a
3
i (x ) ∝ Pr[s|x ], i.e., a low value of

∑
i a

3
i (x ) associates to a

non-sign sample. To wrap up, our findings give an insight into a softmax-based
inference machine and provide a tool to measure a degree of confidence in the
prediction result as well as a tool to identify a non-sign. The implications may
go beyond our current scope of TFS hand-sign recognition and contribute to
open-set recognition or other similar concepts. Latent cognizance is viable for its
simplicity and effectiveness in identifying non-signs. These would help improve
an overall quality of the translation, which in turn hopefully leads to a better
understandingc among people of different physical backgrounds.
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