
Deep Learning in the Wild

Thilo Stadelmann1(B), Mohammadreza Amirian1,2, Ismail Arabaci3,
Marek Arnold1,3, Gilbert François Duivesteijn4, Ismail Elezi1,5,
Melanie Geiger1,6, Stefan Lörwald7, Benjamin Bruno Meier3,

Katharina Rombach1, and Lukas Tuggener1,8

1 ZHAW Datalab & School of Engineering, Winterthur, Switzerland
stdm@zhaw.ch

2 Institute of Neural Information Processing, Ulm University, Ulm, Germany
3 ARGUS DATA INSIGHTS Schweiz AG, Zürich, Switzerland

4 Deep Impact AG, Winterthur, Switzerland
5 DAIS, Ca’ Foscari University of Venice, Venezia Mestre, Italy

6 Institut d’Informatique, Université de Neuchâtel, Neuchâtel, Switzerland
7 PricewaterhouseCoopers AG, Zürich, Switzerland

8 IDSIA Dalle Molle Institute for Artificial Intelligence, Manno, Switzerland

Abstract. Deep learning with neural networks is applied by an increas-
ing number of people outside of classic research environments, due to
the vast success of the methodology on a wide range of machine per-
ception tasks. While this interest is fueled by beautiful success stories,
practical work in deep learning on novel tasks without existing baselines
remains challenging. This paper explores the specific challenges arising
in the realm of real world tasks, based on case studies from research &
development in conjunction with industry, and extracts lessons learned
from them. It thus fills a gap between the publication of latest algorith-
mic and methodical developments, and the usually omitted nitty-gritty
of how to make them work. Specifically, we give insight into deep learn-
ing projects on face matching, print media monitoring, industrial quality
control, music scanning, strategy game playing, and automated machine
learning, thereby providing best practices for deep learning in practice.

Keywords: Data availability · Deployment
Loss & reward shaping · Real world tasks

1 Introduction

Measured for example by the interest and participation of industry at the annual
NIPS conference1, it is save to say that deep learning [49] has successfully tran-
sitioned from pure research to application [32]. Major research challenges still
exist, e.g. in the areas of model interpretability [39] and robustness [1], or gen-
eral understanding [53] and stability [25,67] of the learning process, to name

1 See https://medium.com/syncedreview/a-statistical-tour-of-nips-2017-438201fb6c8a.

c© Springer Nature Switzerland AG 2018
L. Pancioni et al. (Eds.): ANNPR 2018, LNAI 11081, pp. 17–38, 2018.
https://doi.org/10.1007/978-3-319-99978-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99978-4_2&domain=pdf
https://medium.com/syncedreview/a-statistical-tour-of-nips-2017-438201fb6c8a


18 T. Stadelmann et al.

a few. Yet, and in addition, another challenge is quickly becoming relevant: in
the light of more than 180 deep learning publications per day in the last year2,
the growing number of deep learning engineers as well as prospective researchers
in the field need to get educated on best practices and what works and what
doesn’t “in the wild”. This information is usually underrepresented in publica-
tions of a field that is very competitive and thus striving above all for novelty
and benchmark-beating results [38]. Adding to this fact, with a notable exception
[20], the field lacks authoritative and detailed textbooks by leading representa-
tives. Learners are thus left with preprints [37,57], cookbooks [44], code3 and
older gems [28,29,58] to find much needed practical advice.

In this paper, we contribute to closing this gap between cutting edge research
and application in the wild by presenting case-based best practices. Based on a
number of successful industry-academic research & development collaborations,
we report what specifically enabled success in each case alongside open chal-
lenges. The presented findings (a) come from real-world and business case-backed
use cases beyond purely academic competitions; (b) go deliberately beyond what
is usually reported in our research papers in terms of tips & tricks, thus com-
plementing them by the stories behind the scenes; (c) include also what didn’t
work despite contrary intuition; and (d) have been selected to be transferable as
lessons learned to other use cases and application domains. The intended effect
is twofold: more successful applications, and increased applied research in the
areas of the remaining challenges.

We organize the main part of this paper by case studies to tell the story
behind each undertaking. Per case, we briefly introduce the application as well
as the specific (research) challenge behind it; sketch the solution (referring details
to elsewhere, as the final model architecture etc. is not the focus of this work);
highlight what measures beyond textbook knowledge and published results where
necessary to arrive at the solution; and show, wherever possible, examples of
the arising difficulties to exemplify the challenges. Section 2 introduces a face
matching application and the amount of surrounding models needed to make
it practically applicable. Likewise, Sect. 3 describes the additional amount of
work to deploy a state-of-the-art machine learning system into the wider IT
system landscape of an automated print media monitoring application. Section 4
discusses interpretability and class imbalance issues when applying deep learning
for images-based industrial quality control. In Sect. 5, measures to cope with the
instability of the training process of a complex model architecture for large-scale
optical music recognition are presented, and the class imbalance problem has a
second appearance. Section 6 reports on practical ways for deep reinforcement
learning in complex strategy game play with huge action and state spaces in
non-stationary environments. Finally, Sect. 7 presents first results on comparing
practical automated machine learning systems with the scientific state of the
art, hinting at the use of simple baseline experiments. Section 8 summarizes the
lessons learned and gives an outlook on future work on deep learning in practice.

2 Google scholar counts > 68, 000 articles for the year 2017 as of June 11, 2018.
3 See e.g. https://modelzoo.co/.

https://modelzoo.co/


Deep Learning in the Wild 19

2 Face Matching

Designing, training and testing deep learning models for application in face recog-
nition comes with all the well known challenges like choosing the architecture,
setting hyperparameters, creating a representative training/dev/test dataset,
preventing bias or overfitting of the trained model, and more. Anyway, very good
results have been reported in the literature [9,42,50]. Although the challenges in
lab conditions are not to be taken lightly, a new set of difficulties emerges when
deploying these models in a real product. Specifically, during development, it is
known what to expect as input in the controlled environment. When the models
are integrated in a product that is used “in the wild”, however, all kinds of input
can reach the system, making it hard to maintain a consistent and reliable pre-
diction. In this section, we report on approaches to deal with related challenges
in developing an actual face-ID verification product.

Fig. 1. Schematic representation of a face matching application with ID detection,
anti-spoofing and image quality assessment. For any pair of input images (selfie and ID
document), the output is the match probability and type of ID document, if no anomaly
or attack has been detected. Note that all boxes contain at least one or several deep
learning (DL) models with many different (convolutional) architectures.

Although the core functionality of such a product is to quantify the match
between a person’s face and the photo on the given ID, more functionality is
needed to make the system perform its task well, most of it hidden from the
user. Thus, in addition to the actual face matching module, the final system
contains at least the following machine learnable modules (see Fig. 1):

Image orientation detection When a user takes a photo of the ID on a flat
surface using a mobile phone, in many cases the image orientation is random.
A deep learning method is applied to predict the orientation angle, used to
rotate the image in the correct orientation.



20 T. Stadelmann et al.

Image quality assessment consists of an ensemble of analytical functions and
deep learning models to test if the photo quality is sufficient for a reliable
match. It also guides the user to improve the picture taking process in case
of bad quality.

User action prediction uses deep learning to predict the action performed by
the user to guide the system’s workflow, e.g. making a selfie, presenting an
ID or if the user is doing something wrong during the sequence.

Anti-Spoofing is an essential module that uses various methods to detect if
a person is showing his “real” face or tries to fool the system with a photo,
video or mask. It consists of an ensemble of deep learning models.

For a commercial face-ID product, the anti-spoofing module is both most cru-
cial for success, and technically most challenging; thus, the following discussion
will focus on anti-spoofing in practice. Face matching and recognition systems
are vulnerable to spoofing attacks made by non-real faces, because they are not
per se able to detect whether or not a face is “live” or “not-live”, given only
a single image as input in the worst case. If control over this input is out of
the system’s reach e.g. for product management reasons, it is then easy to fool
the face matching system by showing a photo of a face from screen or print on
paper, a video or even a mask. To guard against such spoofing, a secure system
needs to be able to do liveness detection. We’d like to highlight the methods we
use for this task, in order to show the additional complexity of applying face
recognition in a production environment over lab conditions.

Fig. 2. Samples from the CASIA dataset [66], where photo 1, 2, and 3 on the left hand
side show a real face, photo 4 shows a replay attack from a digital screen, and photos
5 and 6 show replay attacks from print.

One of the key features of spoofed images is that they usually can be detected
because of degraded image quality: when taking a photo of a photo, the qual-
ity deteriorates. However, with high quality cameras in modern mobile phones,
looking at image quality only is not sufficient in the real world. How then can a
spoof detector be designed that approves a real face from a low quality grainy
underexposed photo taken by an old 640 × 480 web cam, and rejects a replay
attack using a photo from a retina display in front of a 4K video camera (compare
Fig. 2)?

Most of the many spoofing detection methods proposed in the literature
use hand crafted features, followed by shallow learning techniques, e.g. SVM
[18,30,34]. These techniques mainly focus on texture differences between real
and spoofed images, differences in color space [7], Fourier spectra [30], or optical



Deep Learning in the Wild 21

flow maps [6]. In more recent work, deep learning methods have been introduced
[3,31,63,64]. Most methods have in common that they attempt to be a one-size-
fits-all solution, classifying all incoming cases with one method. This might be
facilitated by the available datasets: to develop and evaluate anti-spoofing tools,
amongst others CASIA [66], MSU-USSA [43], and the Replay Attack Database
[12] exist. Although these datasets are challenging, they turn out to be too easy
compared to the input in a production environment.

The main differences between real cases and training examples from these
benchmark databases are that the latter ones have been created with a low vari-
ety of hardware devices and only use few different locations and light conditions.
Moreover, the quality of images throughout the training sets is quite consistent,
which does not reflect real input. In contrast, the images that the system receives
“in the wild” have the most wide range of possible used hardware and environ-
mental conditions, making the anticipation of new cases difficult. Designing a
single system that can classify all such cases with high accuracy seems therefore
unrealistic.

We thus create an ensemble of experts, forming a final verdict from 3 inde-
pendent predictions: the first method consists of 2 patch-based CNNs, one for
low resolution images, the other one for high resolution images. They operate on
fixed-size tiles from the unscaled input image using a sliding window. This tech-
nique proves to be effective for low and high quality input. The second method
uses over 20 image quality measures as features combined with a classifier. This
method is still very effective when the input quality is low. The third method
uses a RNN with LSTM cells to conduct a joint prediction over multiple frames
(if available). It is effective in discriminating micro movements of a real face
against (simple) translations and rotations of a fake face, e.g. from a photo on
paper or screen. All methods return a real vs. fake probability. The outputs of
all 3 methods are fed as input features to the final decision tree classifier. This
ensemble of deep learning models is experimentally determined to be much more
accurate than using any known method individually.

Note that as attackers are inventive and come up with new ways to fool the
system quickly, it is important to update the models with new data quickly and
regularly.

3 Print Media Monitoring

Content-based print media monitoring serves the task of delivering cropped digi-
tal articles from printed newspapers to customers based on their pre-formulated
information need (e.g., articles about their own coverage in the media). For
this form of article-based information retrieval, it is necessary to segment tens
of thousands of newspaper pages into articles daily. We successfully developed
neural network-based models to learn how to segment pages into their consti-
tuting articles and described their details elsewhere [35,57] (see example results
in Fig. 3a–b). In this section, we present challenges faced and learnings gained
from integrating a respective model into a production environment with strict
performance and reliability requirements.



22 T. Stadelmann et al.

(a) (b) (c)

Fig. 3. Good (a) and bad (b) segmentations (blue lines denote crop marks) for realistic
pages, depending on the freedom in the layout. Image (c) shows a non-article page that
is excluded from automatic segmentation. (Color figure online)

Exclusion of Non-article Pages. A common problem in print segmentation
are special pages that contain content that doesn’t represent articles in the com-
mon sense, for example classified ads, reader’s letters, TV program, share prices,
or sports results (see Fig. 3c). Segmentation rules for such pages can be compli-
cated, subjective, and provide little value for general use cases. We thus utilize
a random forest-based classifier on handcrafted features to detect such content
and avoid feeding respective pages to the general segmentation system to save
compute time.

Model Management. One advantage of an existing manual segmentation
pipeline is the abundance of high quality, labeled training data being produced
daily. To utilize this constant flow of data, we have started implementing an
online learning system [52] where results of the automatic segmentation can be
corrected within the regular workflow of the segmentation process and fed back
to the system as training data.

After training, an important business decision is the final configuration of a
model, e.g. determining a good threshold for cuts to weigh between precision and
recall, or the decision on how many different models should be used for the pro-
duction system. We determined experimentally that it is more effective to train
different models for different publishers: the same publisher often uses a similar
layout even for different newspapers and magazines, while differences between
publishers are considerable. To simplify the management of these different mod-
els, they are decoupled from the code. This is helpful for rapid development and
experimentation.

Technological Integration. For smooth development and operation of the neu-
ral network application we have chosen to use a containerized microservices archi-
tecture [14] utilizing Docker [62] and RabbitMQ [26]. This decoupled architecture



Deep Learning in the Wild 23

OCR Output as XML File System MongoDB

Proxy

FCNN-based 
article 

segmentation

RabbitMQ

Lectorate 
UI

Message as JSON

HTTP Reques t/
Response

Segmentation Result 
Document

Special 
Pages 

Classifier

Newspaper Page 
as Image

Fig. 4. Architecture of the overall pipeline: the actual model is encapsulated in the
“FCNN-based article segmentation” block. Several other systems are required to war-
rant full functionality: (a) the Proxy is responsible to control data input and output
from the segmentation model; (b) RabbitMQ controls the workflow as a message bro-
ker; (c) MongoDB stores all segmentation results and metrics; (d) the Lectorate UI
visualizes results for human assessment and is used to create training data.

(see Fig. 4) brings several benefits especially for machine learning applications:
(a) a separation of concerns between research, ops and engineering tasks; (b)
decoupling of models/data from code, allowing for rapid experimentation and
high flexibility when deploying the individual components of the system. This
is further improved by a modern devops pipeline consisting of continuous inte-
gration (CI), continuous deployment (CD), and automated testing; (c) infras-
tructure flexibility, as the entire pipeline can be deployed to an on-premise data
center or in the cloud with little effort. Furthermore, the use of Nvidia-docker
[62] allows to utilize GPU-computing easily on any infrastructure; (d) precise
controlling and monitoring of every component in the system is made easy by
data streams that enable the injection and extraction of data such as streaming
event arguments, log files, and metrics at any stage of the pipeline; and (e) easy
scaling of the various components to fit different use cases (e.g. training, testing,
experimenting, production). Every scenario requires a certain configuration of
the system for optimal performance and resource utilization.

4 Visual Quality Control

Manual inspection of medical products for in-body use like balloon catheters
is time-consuming, tiring and thus error-prone. A semi-automatic solution with
high precision is thus sought. In this section, we present a case study of deep
learning for visual quality control of industrial products. While this seems to
be a standard use case for a CNN-based approach, the task differs in several
interesting respects from standard image classification settings:



24 T. Stadelmann et al.

Fig. 5. Balloon catheter images taken under different optical conditions, exposing (left
to right) high reflections, low defect visibility, strong artifacts, and a good setup.

Data collection and labeling are one the most critical issues in most practi-
cal applications. Detectable defects in our case appear as small anomalies on
the surface of transparent balloon catheters, such as scratches, inclusions or
bubbles. Recognizing such defects on a thin, transparent and reflecting plastic
surface is visually challenging even for expert operators that sometimes refer to
a microscope to manually identify the defects. Thus, approx. 50% of a 2-year
project duration was used on finding and verifying the optimal optical settings
for image acquisition. Figure 5 depicts the results of different optical configura-
tions for such photo shootings. Finally, operators have to be trained to produce
consistent labels usable for a machine learning system. In our experience, the
labeling quality rises if all involved parties have a basic understanding of the
methods. This helps considerably to avoid errors like e.g. only to label a defect
on the first image of a series of shots while rotating a balloon: while this is
perfectly reasonable from a human perspective (once spotted, the human eas-
ily tracks the defect while the balloon moves), it is a no-go for the episodic
application of a CNN.

Network and training design for practical applications experiences chal-
lenges such as class imbalance, small data regimes, and use case-specific learning
targets apart from standard classification settings, making non-standard loss
functions necessary (see also Sect. 5). For instance, in the current application,
we are looking for relatively small defects on technical images. Therefore, archi-
tectures proposed for large-scale natural image classification such as AlexNet
[27], GoogLeNet [59], ResNet [24] and modern variants are not necessarily suc-
cessful, and respective architectures have to be adapted to learn the relevant
task. Potential solutions for the class imbalance problem are for example:

– Down-sampling the majority class
– Up-sampling the minority class via image augmentation [13]
– Using pre-trained networks and applying transfer learning [41]
– Increasing the weight of the minority class in the optimization loss [8]
– Generating synthetic data for the minority class using SMOTE [11] or GANs

[21]

Selecting a suitable data augmentation approach according for the task is a
necessity for its success. For instance, in the present case, axial scratches are
more important than radial ones, as they can lead to a tearing of the balloon
and its subsequent potentially lethal remaining in a patient’s body. Thus, using



Deep Learning in the Wild 25

Image Feature response Image Feature response

Negative

Positive

Fig. 6. Visualizing VGG19 feature responses: the first row contains two negative exam-
ples (healthy patient) and the second row positives (containing anomalies). All depicted
samples are correctly classified.

90◦ rotation for data augmentation could be fatal. Information like this is only
gained in close collaboration with domain experts.

Interpretability of models received considerable attention recently, spurring
hopes both of users for transparent decisions, and of experts for “debugging”
the learning process. The latter might lead for instance to improved learning
from few labeled examples through semantic understanding of the middle layers
and intermediate representations in a network. Figure 6 illustrates some human-
interpretable representations of the inner workings of a CNN on the recently
published MUsculoskeletal RAdiographs (MURA) dataset [45] that we use here
as a proxy for the balloon dataset. We used guided-backpropagation [56] and
a standard VGG19 network [55] to visualize the feature responses, i.e. the part
of the X-ray image on which the network focuses for its decision on “defect”
(e.g., broken bone, foreign object) or “ok” (natural and healthy body part).
It can be seen that the network mostly decides based on joints and detected
defects, strengthening trust in its usefulness. We described elsewhere [2] that
this visualization can be extended to an automatic defense against adversarial
attacks [21] on deployed neural networks by thresholding the local spatial entropy
[10] of the feature response. As Fig. 7 depicts, the focus of a model under attack
widens considerably, suggesting that it “doesn’t know where to look” anymore.

5 Music Scanning

Optical music recognition (OMR) [46] is the process of translating an image of a
page of sheet music into a machine-readable structured format like MusicXML.
Existing products exhibit a symbol recognition error rate that is an order of
magnitude too high for automatic transcription under professional standards,
but don’t leverage deep learning computer vision capabilities yet. In this section,
we therefore report on the implementation of a deep learning approach to detect



26 T. Stadelmann et al.

Original Adversarial Original Adversarial

Image

Feature response

Local spatial entropy

Predicted class Positive Negative Positive Negative

Fig. 7. Input, feature response and local spatial entropy for clean and adversarial
images, respectively. We used VGG19 to estimate predictions and the fast gradient
sign attack (FGSM) method [21] to compute the adversarial perturbation.

and classify all musical symbols on a full page of written music in one go, and
integrate our model into the open source system Audiveris4 for the semantic
reconstruction of the music. This enables products like digital music stands based
on active sheets, as most of todays music is stored in image-based PDF files or
on paper.

We highlight four typical issues when applying deep learning techniques to
practical OMR: (a) the absence of a comprehensive dataset; (b) the extreme class
imbalance present in written music with respect to symbols; (c) the issues of
state-of-the-art object detectors with music notation (many tiny and compound
symbols on large images); and (d) the transfer from synthetic data to real world
examples.

Synthesizing Training Data. The notorious data hunger of deep learning has
lead to a strong dependence of results on large, well annotated datasets, such
as ImageNet [48] or PASCAL VOC [16]. For music object recognition, no such
dataset has been readily available. Since labeling data by hand is no feasible
option, we put a one-year effort in synthesizing realistic (i.e., semantically and
syntactically correct music notation) data and the corresponding labeling from
renderings of publicly available MusicXML files and recently open sourced the
resulting DeepScores dataset [60].

Dealing with Imbalanced Data. While typical academic training datasets
are nicely balanced [16,48], this is rarely the case in datasets sourced from real
4 See http://audiveris.org.

http://audiveris.org


Deep Learning in the Wild 27

Fig. 8. Symbol classes in DeepScores with their relative frequencies (red) in the dataset.
(Color figure online)

world tasks. Music notation (and therefore DeepScores) shows an extreme class
imbalance (see Fig. 8). For example, the most common class (note head black)
contains more than 55% of the symbols in the entire dataset, and the top 10
classes contain more than 85% of the symbols. At the other extreme, there is a
class which is present only once in the entire dataset, making its detection by
pattern recognition methods nearly impossible (a “black swan” is no pattern).
However, symbols that are rare are often of high importance in the specific pieces
of music where they appear, so simply ignoring the rare symbols in the training
data is not an option. A common way to address such imbalance is the use of a
weighted loss function, as described in Sect. 4.

This is not enough in our case: first, the imbalance is so extreme that naively
reweighing loss components leads to numerical instability; second, the signal of
these rare symbols is so sparse that it will get lost in the noise of the stochastic
gradient descent method [61], as many symbols will only be present in a tiny
fraction of the mini batches. Our current answer to this problem is data syn-
thesis [37], using a three-fold approach to synthesize image patches with rare
symbols (cp. Fig. 8): (a) we locate rare symbols which are present at least 300
times in the dataset, and crop the parts containing those symbols including their
local context (other symbols, staff lines etc.); (b) for rarer symbols, we locate
a semantically similar but more common symbol in the dataset (based on some



28 T. Stadelmann et al.

Fig. 9. Schematic of the Deep Watershed Detector model with three distinct output
heads. N and M are the height and width of the input image, #classes denotes the
number of symbols and #energy levels is a hyperparameter of the system.

expert-devised notion of symbol similarity), replace this common symbol with
the rare symbol and add the resulting page to the dataset. This way, synthesized
sheets still have semantic sense, and the network can learn from syntactically
correct context symbols. We then crop patches around the rare symbols similar
to the previous approach; (c) for rare symbols without similar common symbols,
we automatically “compose” music containing those symbols.

Then, during training, we augment each input page in a mini batch with 12
randomly selected synthesized crops of rare symbols (of size 130× 80 pixels) by
putting them in the margins at the top of the page. This way, that the neural
network (on expectation) does not need to wait for more than 10 iterations to
see every class which is present in the dataset. Preliminary results show improve-
ment, though more investigation is needed: overfitting on extreme rare symbols
is still likely, and questions remain regarding how to integrate the concept of
patches (in the margins) with the idea of a full page classifier that considers all
context.

Enabling and Stabilizing Training. We initially used state-of-the-art object
detection models like Faster R-CNN [47] to attempt detection and classification
of musical symbols on DeepScores. These algorithms are designed to work well on
the prevalent datasets that are characterized by containing low-resolution images
with a few big objects. In contrast, DeepScores consists of high resolution musical
sheets containing hundreds of very small objects, amounting to a very different
problem [60]. This disconnect lead to very poor out-of-the-box performance of
said systems.

Region proposal-based systems scale badly with the number of objects
present on a given image, by design. Hence, we designed the Deep Watershed
Detector as an entirely new object detection system based on the deep water-



Deep Learning in the Wild 29

Fig. 10. Top: part of a synthesized image from DeepScores; middle: the same part,
printed on old paper and photographed using a cell phone; bottom: the same image,
automatically retrofitted (based on the dark green lines) to the original image coordi-
nates for ground truth matching (ground truth overlayed in neon green boxes). (Color
figure online)

shed transform [4] and described it in detail elsewhere [61]. It detects raw musical
symbols (e.g., not a compound note, but note head, stem and flag individually)
in their context with a full sheet music page as input. As depicted in Fig. 9,
the underlying neural network architecture has three output heads on the last
layer, each pertaining to a separate (pixel wise) task: (a) predicting the under-
lying symbol’s class; (b) predicting the energy level (i.e., the degree of belonging
of a given pixel location to an object center, also called “objectness”); and (c)
predicting the bounding box of the object.

Initially, the training was unstable, and we observed that the network did not
learn well if it was directly trained on the combined weighted loss. Therefore,
we now train the network on each of the three tasks separately. We further
observed that while the network gets trained on the bounding box prediction and
classification, the energy level predictions get worse. To avoid this, the network
is fine-tuned only for the energy level loss after being trained on all three tasks.
Finally, the network is retrained on the combined task (the sum of all three losses,
normalized by their respective running means) for a few thousand iterations,
giving excellent results on common symbols.

Generalizing to Real-World Data. The basic assumption in machine learn-
ing for training and test data to stem from the same distribution is often violated
in field applications. In the present case, domain adaptation is crucial: our train-
ing set consists of synthetic sheets created by LilyPond scripts [60], while the
final product will work on scans or photographs of printed sheet music. These
test pictures can have a wide variety of impairments, such as bad printer quality,



30 T. Stadelmann et al.

torn or stained paper etc. While some work has been published on the topic of
domain transfer [19], the results are non-satisfactory. The core idea to address
this problem here is transfer learning [65]: the neural network shall learn the
core task of the full complexity of music notation from the synthetic dataset
(symbols in context due to full page input), and use a much smaller dataset to
adapt to the real world distributions of lighting, printing and defect.

We construct this post-training dataset by carefully choosing several hundred
representative musical sheets, printing them with different types of printers on
different types of paper, and finally scanning or photographing them. We then
use the BFMatcher function from OpenCV to align these images with the original
musical sheets to use all the ground truth annotation of the original musical sheet
for the real-world images (see Fig. 10). This way, we get annotated real-looking
images “for free” that have much closer statistics to real-world images than
images from DeepScores. With careful tuning of the hyperparameters (especially
the regularization coefficient), we get promising - but not perfect - results during
the inference stage.

6 Game Playing

In this case study, deep reinforcement learning (DRL) is applied to an agent
in a multi-player business simulation video game with steadily increasing com-
plexity, comparable to StarCraft or SimCity. The agent is expected to compete
with human players in this environment, i.e. to continuously adapt its strategy
to challenge evolving opponents. Thus, the agent is required to mimic somewhat
general intelligent behavior by transferring knowledge to an increasingly com-
plex environment and adapting its behavior and strategies in a non-stationary,
multi-agent environment with large action and state spaces. DRL is a general
paradigm, theoretically able to learn any complex task in (almost) any environ-
ment. In this section, we share our experiences with applying DRL to the above
described competitive environment. Specifically, the performance of a value-
based algorithm using Deep Q-Networks (DQN) [36] is compared to a policy
gradient method called PPO [51].

Dealing with Competitive Environments. In recent years, astounding
results have been achieved by applying DRL in gaming environments. Examples
are Atari games [36] and AlphaGo [54], where agents learn human or superhuman
performance purely from scratch. In both examples, the environments are either
stationary or, if an evolving opponent is present, it did not act simultaneously in
the environment; instead, actions were taken in turns. In our environment, multi-
ple evolving players act simultaneously, making changes to the environment that
can not be explained solely based on changes in the agent’s own policy. Thus, the
environment is perceived as non-stationary from the agent’s perspective, result-
ing in stability issues in RL [33]. Another source of complexity in our setting
is a huge action and state space (see below). In our experiments, we observed
that DQN got problems learning successful control policies as soon as the envi-
ronment became more complex in this respect, even without non-stationarity



Deep Learning in the Wild 31

Fig. 11. Heuristic encoding of actions to prevent combinatorial explosion.

induced by opponents. On the other hand, PPO’s performance is generally less
sensitive to increasing state and action spaces. The impact of non-stationarity
to these algorithms is subject of ongoing work.

Reward Shaping. An obvious rewarding choice is the current score of the game
(or its gain). Yet, in the given environment, scoring and thus any reward based
on it is sparse, since it is dependent on a long sequence of correct actions on
the operational, tactical and strategic level. As any rollout of the agent without
scoring is not contributing to any gain in knowledge, the learning curve is flat
initially. To avoid this initial phase of no information gain, intermediate rewards
are given to individual actions, leading to faster learning progress in both DQN
and PPO.

Additionally, it is not sufficient for the agent to find a control policy eventu-
ally, but it is crucial to find a good policy quickly, as training times are anyhow
very long. Usually, comparable agents for learning complex behaviors in com-
petitive environments are trained using self-play [5], i.e., the agents are always
trained with “equally good” competitors to be able to succeed eventually. In our
setting, self play is not a straightforward first option, for several reasons: first, to
jump-start learning, it is easier in our setting to play without an opponent first
and only learn the art of competition later when a stable ability to act is reached;
second, different from other settings, our agents should be entertaining to human
opponents, not necessarily winning. It is thus not desirable to learn completely
new strategies that are successful yet frustrating to human opponents. There-
fore, we will investigate self-play only after stable initializations from (scripted)
human opponents on different levels.

Complex State and Action Spaces. Taking the screen frame (i.e., pixels) as
input to the control policy is not applicable in our case. First, the policy’s input
needs to be independent of rendering and thus of hardware, game settings, game
version etc. Furthermore, a current frame does not satisfy the Markov property,
since attributes like “I own item x” are not necessarily visible in it. Instead,
some attributes need to be concluded from past experiences. Thus, the state



32 T. Stadelmann et al.

space needs to be encoded into sufficient features, a task we approach with
manual pre-engineering.

Next, a post-engineering approach helps in decreasing the learning time in
case of DQN by removing unnecessary actions from consideration as follows:
in principal, RL algorithms explore any theoretically possible state-action pair
in the environment, i.e., any mathematically possible decision in the Markov
Decision Process (MDP). In our environment, the available actions are dependent
on the currently available in-game resources of the player, i.e., on the current
state. Thus, exploring currently impossible regions in the action space is not
efficient and is thus prevented by a post-engineered decision logic built to block
these actions from being selected. This reduces the size of the action space per
time stamp considerably. These rules where crucial in producing first satisfying
learning results in our environment using DQN in a stationary setting of the
game. However, when training the agent with PPO, hand-engineered rules where
not necessary for proper learning.

The major problem however is the huge action and state space, as it leads
to ever longer training times and thus long development cycles. It results from
the fact that one single action in our environment might consist of a sequence of
sub-decisions. Think e.g. of an action called “attack” in the game of StarCraft,
answering the question of WHAT to do (see Fig. 11). It is incompletely defined
as long as it does not state WHICH opponent is to be attack using WHICH unit.
In other words, each action itself requires a number of different decisions, chosen
from different subcategories. To avoid the combinatorial explosion of all possible
completely defined actions, we perform another post-processing on the resource
management: WHICH unit to choose on WHICH type of enemy, for example, is
hard-coded into heuristic rules.

This case study is work in progress, but what becomes evident already is
that the combination of the complexity of the task (i.e., acting simultaneously
on the operational, tactical and strategic level with exponentially increasing
time horizons, as well as a huge state and action space) and the non-stationary
environment prevent successful end-to-end learning as in “Pong from pixels”5.
Rather, it takes manual pre- and post-engineering to arrive at a first agent that
learns, and it does so better with policy-based rather than DQN-based algo-
rithms. A next step will explore an explicitly hierarchical learner to cope with
the combinatorial explosion of the action space on the three time scales (opera-
tional/tactical/strategic) without using hard-coded rules, but instead factorizing
the action space into subcategories.

7 Automated Machine Learning

One of the challenging tasks in applying machine learning successfully is to select
a suitable algorithm and set of hyperparameters for a given dataset. Recent
research in automated machine learning [17,40] and respective academic chal-
lenges [22] accurately aimed at finding a solution to this problem for sets of
5 Compare http://karpathy.github.io/2016/05/31/rl/.

http://karpathy.github.io/2016/05/31/rl/


Deep Learning in the Wild 33

practically relevant use cases. The respective Combined Algorithm Selection
and Hyperparameter (CASH) optimization problem is defined as finding the
best algorithm A∗ and set of hyperparameters λ∗ with respect to an arbitrary
cross-validation loss L as follows:

A∗, λ∗ = argmin
A∈A ,λ∈ΛA

1
K

K∑

i=1

L (Aλ,D
(i)
train,D

(i)
valid)

where A is a set of algorithms, ΛA the set of hyperparameters per algorithm
A (together they form the hypothesis space), K is the number of cross valida-
tion folds and D are datasets. In this section, we compare two methods from
the scientific state-of-the-art (one uses Bayesian optimization, the other genetic
programming) with a commercial automated machine learning prototype based
on random search.

Scientific State-of-the-Art. Auto-sklearn [17] is the most successful auto-
mated machine learning framework in past competitions [23]. The algorithm
starts with extracting meta-features from the given dataset and finds models
which perform well on similar datasets (according to the meta-features) in a
fixed pool of stored successful machine learning endeavors. Auto-sklearn then
performs meta-learning by initializing a set of model candidates with the model
and hyperparameter choices of k nearest neighbors in dataset space; subse-
quently, it optimizes their hyperparameters and feature preprocessing pipeline
using Bayesian optimization. Finally, an ensemble of the optimized models is
build using a greedy search. On the other side, Tree-based Pipeline Optimiza-
tion Tool (TPOT) [40] is toolbox based on genetic programming. The algorithm
starts with random initial configurations including feature preprocessing, feature
selection and a supervised classifier. At every step, the top 20% best models are
retained and randomly modified to generate offspring. The offspring competes
with the parent, and winning models proceed to the next iteration of the algo-
rithm.

Commercial Prototype. The Data Science Machine (DSM) is currently used
inhouse for data science projects by a business partner. It uses random sam-
pling of the solution space for optimization. Machine learning algorithms in
this system are leveraged from Microsoft Azure, scikit-learn and can be user-
enhanced. DSM can be deployed in the cloud, on-premise, as well as standalone.
The pipeline of DSM includes data preparation, feature reduction, automatic
model optimization, evaluation and final ensemble creation. The question is: can
it prevail against much more sophisticated systems even at this early stage of
development?

Evaluation is performed using the protocol of the AutoML challenge [22] for
comparability, confined to a subset of ten datasets that is processable for the
current DSM prototype (i.e., non-sparse, non-big). It spans the tasks of regres-
sion, binary and multi-class classification. For applicability, we constrain the
time budget of the searches by the required time for DSM to train 100 models



34 T. Stadelmann et al.

Table 1. Comparison of different automated machine learning algorithms.

Dataset Task Metric Auto-Sklearn TPOT DSM

Validation Test Validation Test Validation Test

Cadata Regression Coefficient of

determination

0.7913 0.7801 0.8245 0.8017 0.7078 0.7119

Christine Binary

classification

Balanced accuracy

score

0.7380 0.7405 0.7435 0.7454 0.7362 0.7146

Digits Multiclass

classification

Balanced accuracy

score

0.9560 0.9556 0.9500 0.9458 0.8900 0.8751

Fabert Multiclass

classification

Accuracy score 0.7245 0.7193 0.7172 0.7006 0.7112 0.6942

Helena Multiclass

classification

Balanced accuracy

score

0.3404 0.3434 0.2654 0.2667 0.2085 0.2103

Jasmine Binary

classification

Balanced accuracy

score

0.7987 0.8348 0.8188 0.8281 0.8020 0.8371

Madeline Binary

classification

Balanced accuracy

score

0.8917 0.8769 0.8885 0.8620 0.7707 0.7686

Philippine Binary

classification

Balanced accuracy

score

0.7787 0.7486 0.7839 0.7646 0.7581 0.7406

Sylvine Binary

classification

Balanced accuracy

score

0.9414 0.9454 0.9512 0.9493 0.9414 0.9233

Volkert Multiclass

classification

Accuracy score 0.7174 0.7101 0.6429 0.6327 0.5220 0.5153

Average performance 0.7678 0.7654 0.7586 0.7497 0.7048 0.6991

using random algorithm selection. A performance comparison is given in Table 1,
suggesting that Bayesian optimization and genetic programming are superior to
random search. However, random parameter search lead to reasonably good mod-
els and useful results as well (also in commercial practice). This suggests room
for improvement in actual meta-learning.

8 Conclusions

Does deep learning work in the wild, in business and industry? In the light of the
presented case studies, a better questions is: what does it take to make it work?
Apparently, the challenges are different compared to academic competitions:
instead of a given task and known (but still arbitrarily challenging) environment,
given by data and evaluation metric, real-world applications are characterized
by (a) data quality and quantity issues; and (b) unprecedented (thus: unclear)
learning targets. This reflects the different nature of the problems: competitions
provide a controlled but unexplored environment to facilitate the discovery of
new methods; real-world tasks on the other hand build on the knowledge of a zoo
of methods (network architectures, training methods) to solve a specific, yet still
unspecified (in formal terms) task, thereby enhancing the method zoo in return
in case of success. The following lessons learned can be drawn from our six case
studies (section numbers given in parentheses refer to respective details):

Data acquisition usually needs much more time than expected Sect. 4, yet is the
basis for all subsequent success Sect. 5. Class imbalance and covariate shift
are usual Sects. 2, 4, 5.



Deep Learning in the Wild 35

Understanding of what has been learned and how decisions emerge help both
the user and the developer of neural networks to build trust and improve
quality Sects. 4, 5. Operators and business owners need a basic understanding
of used methods to produce usable ground truth and provide relevant subject
matter expertise Sect. 4.

Deployment should include online learning Sect. 3 and might involve the
buildup of up to dozens of other machine learning models Sects. 2, 3 to flank
the original core part.

Loss/reward shaping is usually necessary to enable learning of very complex
target functions in the first place Sects. 5, 6. This includes encoding expert
knowledge manually into the model architecture or training setup Sects. 4,
6, and handling special cases separately Sect. 3 using some automatic pre-
classification.

Simple baselines do a good job in determining the feasibility as well as the
potential of the task at hand when final datasets or novel methods are not
yet seen Sects. 4, 7. Increasing the complexity of methods and (toy-)tasks in
small increments helps monitoring progress, which is important to effectively
debug failure cases Sect. 6.

Specialized models for identifiable sub-problems increase the accuracy in pro-
duction systems over all-in-one solutions Sects. 2, 3, and ensembles of experts
help where no single method reaches adequate performance Sect. 2.

Best practices are straightforward to extract on the general level (“plan
enough resources for data acquisition”), yet quickly get very specific when broken
down to technicalities (“prefer policy-based RL given that . . . ”). An overarching
scheme seems to be that the challenges in real-world tasks need similar amounts
of creativity and knowledge to get solved as fundamental research tasks, suggest-
ing they need similar development methodologies on top of proper engineering
and business planning.

We identified specific areas for future applied research: (a) anti-spoofing for
face verification; (b) the class imbalance problem in OMR; and (c) the slow
learning and poor performance of RL agents in non-stationary environments
with large action and state spaces. The latter is partially addressed by new
challenges like Dota 26, Pommerman or VizDoom7, but for example doesn’t
address hierarchical actions. Generally, future work should include (d) making
deep learning more sample efficient to cope with smaller training sets (e.g. by
one-shot learning, data or label generation [15], or architecture learning); (e)
finding suitable architectures and loss designs to cope with the complexity of
real-world tasks; and (f) improving the stability of training and robustness of
predictions along with (d) the interpretability of neural nets.

Acknowledgements. We are grateful for the invitation by the ANNPR chairs and the
support of our business partners in Innosuisse grants 17719.1 “PANOPTES”, 17963.1

6 See e.g. https://blog.openai.com/dota-2/.
7 See https://www.pommerman.com/competitions and http://vizdoom.cs.put.edu.pl.

https://blog.openai.com/dota-2/
https://www.pommerman.com/competitions
http://vizdoom.cs.put.edu.pl


36 T. Stadelmann et al.

“DeepScore”, 25256.1 “Libra”, 25335.1 “FarmAI”, 25948.1 “Ada” and 26025.1 “Qual-
itAI”.

References

1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer
vision: a survey. arXiv preprint arXiv:1801.00553 (2018)

2. Amirian, M., Schwenker, F., Stadelmann, T.: Trace and detect adversarial attacks
on CNNs using feature response maps. In: ANNPR (2018)

3. Atoum, Y., Liu, Y., Jourabloo, A., Liu, X.: Face anti-spoofing using patch and
depth-based CNNs. In: IEEE International Joint Conference on Biometrics (IJCB)
(2017)

4. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In:
CVPR (2017)

5. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent complexity
via multi-agent competition. arXiv preprint arXiv:1710.03748 (2017)

6. Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition
based on optical flow field. In: International Conference on Image Analysis and
Signal Processing (2009)

7. Boulkenafet, Z., Komulainen, J., Hadid, A.: Face anti-spoofing based on color tex-
ture analysis. In: International Conference on Image Processing (ICIP) (2015)

8. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance
problem in convolutional neural networks. arXiv preprint arXiv:1710.05381 (2017)

9. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for
recognising faces across pose and age. arXiv preprint arXiv:1710.08092 (2017)

10. Chanwimaluang, T., Fan, G.: An efficient blood vessel detection algorithm for
retinal images using local entropy thresholding. In: International Symposium on
Circuits and Systems (ISCAS), vol. 5 (2003)

11. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

12. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns
in face anti-spoofing. In: BIOSIG (2012)

13. Ciresan, D.C., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: CVPR (2012)

14. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

15. Elezi, I., Torcinovich, A., Vascon, S., Pelillo, M.: Transductive label augmentation
for improved deep network learning. In: ICPR (2018)

16. Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The
PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–
338 (2010)

17. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: NIPS (2015)

18. Galbally, J., Marcel, S., Fiérrez, J.: Image quality assessment for fake biometric
detection: application to iris, fingerprint, and face recognition. IEEE Trans. Image
Process. 23(2), 710–724 (2014)

19. Gebru, T., Hoffman, J., Fei-Fei, L.: Fine-grained recognition in the wild: a multi-
task domain adaptation approach. In: ICCV (2017)

http://arxiv.org/abs/1801.00553
http://arxiv.org/abs/1710.03748
http://arxiv.org/abs/1710.05381
http://arxiv.org/abs/1710.08092
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8


Deep Learning in the Wild 37

20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

21. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

22. Guyon, I., et al.: Design of the 2015 ChaLearn AutoML challenge. In: IJCNN
(2015)

23. Guyon, I., et al.: A brief review of the ChaLearn AutoML challenge. In: AutoML
workshop@ICML (2016)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

25. Irpan, A.: Deep reinforcement learning doesn’t work yet, 14 February 2018. https://
www.alexirpan.com/2018/02/14/rl-hard.html

26. John, V., Liu, X.: A survey of distributed message broker queues. arXiv preprint
arXiv:1704.00411 (2017)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS (2012)

28. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for
training deep neural networks. JMLR 10(1), 1–40 (2009)

29. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Orr, G.B.,
Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp.
9–50. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8 2

30. Li, J., Wang, Y., Tan, T., Jain, A.K.: Live face detection based on the analysis of
Fourier spectra. In: Biometric Technology for Human Identification (2004)

31. Li, L., Feng, X., Boulkenafet, Z., Xia, Z., Li, M., Hadid, A.: An original face anti-
spoofing approach using partial convolutional neural network. In: International
Conference on Image Processing Theory, Tools and Applications (IPTA) (2016)

32. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep
neural network architectures and their applications. Neurocomputing 234, 11–26
(2017)

33. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: NIPS (2017)

34. Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images
using micro-texture analysis. In: International Joint Conference on Biometrics
(IJCB) (2011)

35. Meier, B., Stadelmann, T., Stampfli, J., Arnold, M., Cieliebak, M.: Fully convolu-
tional neural networks for newspaper article segmentation. In: ICDAR (2017)

36. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

37. Ng, A.: Machine learning yearning - technical strategy for AI engineers in the era
of deep learning (2018, to appear)

38. Olah, C., Carter, S.: Research debt. Distill (2017)
39. Olah, C., et al.: The building blocks of interpretability. Distill (2018)
40. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore,

J.H.: Automating biomedical data science through tree-based pipeline optimiza-
tion. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp.
123–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0 9

41. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

42. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC (2015)
43. Patel, K., Han, H., Jain, A.K.: Secure face unlock: spoof detection on smartphones.

IEEE Trans. Inf. Forensics Secur. 11(10), 2268–2283 (2016)

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
http://arxiv.org/abs/1704.00411
https://doi.org/10.1007/3-540-49430-8_2
http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/978-3-319-31204-0_9


38 T. Stadelmann et al.

44. Perez, C.E.: The deep learning AI playbook - strategy for disruptive artificial
intelligence (2017)

45. Rajpurkar, P., et al.: MURA dataset: towards radiologist-level abnormality detec-
tion in musculoskeletal radiographs. arXiv preprint arXiv:1712.06957 (2017)

46. Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marçal, A.R.S., Guedes, C., Cardoso,
J.S.: Optical music recognition: state-of-the-art and open issues. Int. J. Multimed.
Inf. Retr. 1(3), 173–190 (2012)

47. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS (2015)

48. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

49. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

50. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: CVPR (2015)

51. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

52. Shalev-Shwartz, S.: Online learning and online convex optimization. Found. Trends
Mach. Learn. 4(2), 107–194 (2012)

53. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via
information. arXiv preprint arXiv:1703.00810 (2017)

54. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

55. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

56. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

57. Stadelmann, T., Tolkachev, V., Sick, B., Stampfli, J., Dürr, O.: Beyond ImageNet -
deep learning in industrial practice. In: Braschler, M., Stadelmann, T., Stockinger,
K. (eds.) Applied Data Science - Lessons Learned for the Data-Driven Business.
Springer (2018, to appear)

58. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: ICML (2013)

59. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
60. Tuggener, L., Elezi, I., Schmidhuber, J., Pelillo, M., Stadelmann, T.: DeepScores -

a dataset for segmentation, detection and classification of tiny objects. In: ICPR
(2018)

61. Tuggener, L., Elezi, I., Schmidhuber, J., Stadelmann, T.: Deep watershed detector
for music object recognition. In: ISMIR (2018)

62. Xu, P., Shi, S., Chu, X.: Performance evaluation of deep learning tools in Docker
containers. arXiv preprint arXiv:1711.03386 (2017)

63. Xu, Z., Li, S., Deng, W.: Learning temporal features using LSTM-CNN architecture
for face anti-spoofing. In: ACPR (2015)

64. Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing.
arXiv preprint arXiv:1408.5601 (2014)

65. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: NIPS (2014)

66. Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database
with diverse attacks. In: International Conference on Biometrics (ICB) (2012)

67. Zheng, S., Song, Y., Leung, T., Goodfellow, I.: Improving the robustness of deep
neural networks via stability training. In: CVPR (2016)

http://arxiv.org/abs/1712.06957
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1711.03386
http://arxiv.org/abs/1408.5601

	Deep Learning in the Wild
	1 Introduction
	2 Face Matching
	3 Print Media Monitoring
	4 Visual Quality Control
	5 Music Scanning
	6 Game Playing
	7 Automated Machine Learning
	8 Conclusions
	References




