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Università degli Studi di Siena, Siena, Italy

trentin@dii.unisi.it

Abstract. Unsupervised estimation of probability density functions by
means of parametric mixture densities (e.g., Gaussian mixture models)
may improve significantly over plain, single-density estimators in terms
of modeling capabilities. Moreover, mixture densities (and even mixtures
of mixture densities) may be exploited for the statistical description of
phenomena whose data distributions implicitly depend on the distinct
outcomes of a number of non-observable, latent states of nature. In spite
of some recent advances in density estimation via neural networks, no
proper mixtures of neural component densities have been investigated so
far. The paper proposes a first algorithm for estimating Neural Mixture
Densities based on the usual maximum-likelihood criterion, satisfying
numerically a combination of hard and soft constraints aimed at ensur-
ing a proper probabilistic interpretation of the resulting model. Prelim-
inary results are presented and their statistical significance is assessed,
corroborating the soundness of the approach with respect to established
statistical techniques.

Keywords: Density estimation · Mixture density
Unsupervised learning · Constrained learning · Mixture of experts

1 Introduction

Density estimation is fundamental to a number of (apparently unrelated) tasks.
Firs and foremost, it is at the core of the search for a statistical description of
populations represented in terms of a sample of data distributed according to an
unknown probability density function (pdf) [10]. Then, it is involved (possibly
only implicitly) in the estimation of the probabilistic quantities that are neces-
sary in order to apply Bayes decision rule for pattern classification, in particular
the class-conditional probabilities [10]. Other tasks include data compression
and model selection [11], coding [3], etc. Even the estimation of regression mod-
els may rely implicitly on density estimation, since it can be described as the
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estimation of a model p(y|x) that captures the statistical relationship between
an independent random vector x and the corresponding output vector y [4]. As
pointed out by Vapnik [28], density estimation is an intrinsically difficult prob-
lem, and it is still open nowadays. This latter fact is mostly due to the shortcom-
ings of established statistical approaches, either parametric or non-parametric
(the reader is referred to [25] for a list of the major drawbacks of the statistical
techniques), and by the technical difficulties that arise from attempting to use
artificial neural networks (ANNs) or machine learning for pdf estimation. Such
difficulties stem from: (1) the unsupervised nature of the learning task, (2) the
numerical instability problems entailed by pdfs, whose codomains may span the
interval [0,+∞) in the general case, and (3) the requirement of mathematical
plausibility of the estimated model, i.e. the respect of the axioms of probability.
Furthermore, the use of maximum-likelihood (ML) training in ANNs tends to
result in the so-called “divergence problem”, observed first in the realm of hybrid
ANN/hidden Markov models [20]. It consists in the progressive divergence of the
value of the ANN connection weights as ML training proceeds, resulting in an
unbounded growth of the integral of the pseudo-pdf computed by the ANN. The
problem does not affect radial basis functions (RBF) networks whose hidden-
to-output weights were constrained to be positive and to sum to one, as in the
RBF/echo state machine for sequences proposed in [26], or in the RBF/graph
neural network presented in [6] for the estimation of generalized random graphs.
Unfortunately, the use of RBFs in the latter contexts is justified by its allow-
ing for a proper algorithmic hybridization with models devised specifically for
sequence/structure processing, but using RBFs as a stand-alone paradigm for
density estimation is of neglectable practical interest, since they end up realizing
plain Gaussian mixture models (GMM) estimated via ML.

In spite of these difficulties, several approaches to pdf estimation via ANNs
are found in the literature [23]. First of all, a ML technique is presented in
[13] where the “integral equals 1” requirement is satisfied numerically divid-
ing the output of a multilayer Perceptron (MLP) by the numerical integral of
the function the MLP computes. No algorithms for computing the numerical
integral over high-dimensional spaces are handed out in [13]. Nonetheless, this
approach is related to the technique presented in this paper, insofar that ML will
be exploited herein. Differently from [13], a multi-dimensional ad-hoc numeric
integration method will be used in the following, jointly with hard constraints,
over a mixture of ANNs. Other approaches found in the literature translated the
estimation of univariate pdfs to the (theoretically equivalent) estimation of the
corresponding cumulative distribution functions (cdf) [12,27]. Regular backprop-
agation (BP) is applied, relying on the empirical cdf of the data for generating
synthetic target outputs. After training the MLP model φ(·) of the cdf, the pdf
can be recovered by applying differentiation to φ(·). The idea is sound, since the
requirements that φ(·) has to satisfy to be interpretable as a proper cdf (namely,
that it ranges between 0 and 1, and that it is monotonically non-decreasing)
appear to be more easily met than the corresponding constraints on pdf models
(that is, the unit integral). Unfortunately, there are drawbacks to the cdf-based
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approaches (see [25]). In particular, a good approximation of the cdf does not
necessarily translate into a similarly good estimate of its derivative. In fact, a
small squared error between φ(·) and the target cdf does not mean that φ(·) is free
from steep fluctuations that imply huge, rapidly changing values of its deriva-
tive. Negative values of ∂φ(x)

∂x may occasionally occur, since a linear combination
of logistics is not necessarily monotonically increasing. Besides, cdf-based algo-
rithms naturally apply to univariate cases, whilst extension to multivariate pdfs
is far less realistic. The idea of generating empirical target outputs was applied
to non-parametric ANN-based pdf estimation in [22,24]. The former resorts to
the kn-Nearest Neighbor (kn-NN) technique [10] for generating unbiased pdf
estimates that are used to label the training set for a MLP. Like in the kn-NN,
the resulting model is not a proper pdf (the axioms of probability are not sat-
isfied in the general case). On the other way around, the algorithm presented
in [22] uses a modified criterion function to be minimized via gradient descent
for pdf estimation via MLP. The criterion involves two terms: a loss between
the MLP output and a synthetically-generated non-parametric estimate of the
corresponding input pattern, and a loss between the integral of the function
computed by the MLP and its target (i.e., unity) value. Numerical integration
methods are used to compute the integral at hand and its derivatives w.r.t. the
MLP parameters within the gradient-descent via backpropagation. The ideas
behind such integration methods are exploited in this paper, as well.

A generalization of plain pdf estimation models stems from the adoption
of mixture densities, where the unknown pdf is rather modeled in terms of a
combination of any number of component densities [10]. GMMs are the most
popular instance of mixture densities [5]. Traditionally, mixture densities were
intended mostly as real-life extensions of the single-pdf parametric model, e.g.
along the following line: one Gaussian may not be capable to explain the whole
data distribution but K Gaussian pdfs might as well be, as long as K is large
enough. Nevertheless, there is much more than this to the very notion of mixture
density. In fact, different components are specialized to explain distinct latent
phenomena (e.g., stochastic processes) that underlie the overall data generation
process, each such phenomenon having different likelihood of occurrence w.r.t.
others at diverse regions of the feature space. This suites particularly those sit-
uations where the statistical population under analysis is composed of several
sub-populations, each having different distribution. Examples of practical rel-
evance include (among many others) the statistical study of heterogeneity in
meta-analysis [7], where samples drawn from disjoint populations (e.g., adults
and children, male and female subjects, etc.) are collectively collected and have to
be analyzed as a whole; the modeling of unsupervised or partially-supervised [17]
data samples in statistical pattern recognition [10], where each sub-population
corresponds to a class or category; the distribution of financial returns on the
stock market depending on latent phenomena such as a political crisis or a war
[8]; the assessment of projectile accuracy in the military science of ballistics
when shots at the same target come from multiple locations and/or from dif-
ferent munition types [18], etc. In general, the sub-populations in a mixture are
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unlikely to be individually distributed according to simple (e.g., Gaussian) pdfs,
therefore parametric models (e.g., GMMs) are seldom a good fit to these sce-
narios. In fact, let ξ1, . . . , ξK be K disjoint states of nature (the outcomes of
a discrete, latent random variable Ξ, each outcome corresponding to a specific
sub-population), and let p(x|ξi) be the pdf that explains the distribution of the
random observations x given the i-th state of the latent variable, for i = 1, . . . ,K.
At the whole population level the data will the distributed according to the mix-
ture p(x) =

∑K
i=1 P (ξi)p(x|ξi). Attempts to apply a GMM to model p(x) will not

necessarily result in a one-to-one relationship between the Gaussian components
in the GMM and the state-specific generative models p(x|ξi). In general, at the
very least, more than one Gaussian component will be needed to model p(x|ξi).
Although mixtures of mixture models offer increased modeling capabilities over
plain mixture models to this end, they turned out to be unpopular due to the
difficulties of estimation of their parameters [2].

Given the aforementioned relevance and difficulties of estimating pdfs in gen-
eral and mixture models in particular, and in the light of the above-named short-
comings of the established approaches, the paper contributes (for the first time)
a plausible solution in the form of a mixture model built on ANNs. The model,
presented in Sect. 2 and called neural mixture model (NMM), is a convex com-
bination of component densities estimated by component-specific MLPs. The
NMM is intrinsically non-parametric, since no prior assumptions on the form of
the underlying component densities is made [10]. In fact, due to the “universal-
ity” of MLPs [9], the model may approximate any (bounded and continuous)
multimodal multivariate pdf to any degree of precision1. Besides, due to the
learning and generalization capabilities of ANNs, the NMM can actually learn
a smooth and general form for the mixture at hand, overcoming the drawbacks
of the traditional non-parametric techniques, as well. A ML training algorithm
is devised, satisfying (at least numerically) a combination of hard and soft con-
straints required in order to guarantee a proper probabilistic interpretation of
the estimated model. The resulting machine can also be seen as a novel, special
case of mixture of experts [29] having a specific task, a ML-based unsupervised
training algorithm, and a particular probabilistic strategy for assigning credit
to its individual experts. A preliminary experimental evaluation is reported in
Sect. 3, while Sect. 4 draws some pro tempore conclusions.

2 Model and Estimation Algorithm

Let us consider an unlabeled training set T = {x1, . . . ,xn} of n independent
random vectors (i.e., patterns) in a d-dimensional feature space, say R

d. The
patterns are assumed to be identically distributed according to an unknown pdf
p(x). In order to estimate p(x) from T we introduce a neural mixture model
p̃(x|W ) defined as

1 According to the meaning of “approximation” and under the conditions required in
order for (e.g.) Cybenko’s theorem to hold true [9].
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p̃(x|W ) =
K∑

i=1

cip̃i(x|Wi) (1)

where W denotes the overall set of parameters in the NMM (that is
c1, . . . , cK ,W1, . . . ,Wk). The mixing coefficients ci are such that ci ∈ [0, 1] for
i = 1, . . . , K and

∑K
i=1 ci = 1, and the generic i-th component density p̃i(x|Wi)

is defined, in turn, as

p̃i(x|Wi) =
ϕi(x,Wi)∫
ϕi(x,Wi)dx

(2)

where ϕi(x,Wi) represents the function computed by a component-specific MLP
having adaptive parameters Wi. We say that this MLP realizes the i-th neural
component of the NMM. A constraint on

∫
ϕi(x,Wi)dx will be imposed shortly

to enure satisfaction of the axioms of probability. Clearly, each MLP in the NMM
has d input units and a single output unit, and it is expected to have one or
more hidden layers. Without loss of generality for all the present intents and
purposes, we assume that the patterns of interest are confined within a compact
S ⊂ R

d (in practice, any data normalization technique may be applied in order
to guarantee that this assumption holds true) such that, in turn, S can be seen
as the definition domain of ϕi(x,Wi) for all i = 1, . . . , K. As a consequence,
numerical integration techniques can be used to compute

∫
ϕi(x,Wi)dx and

the other integrals required shortly. In so doing, Eq. (2) reduces to p̃i(x|Wi) =
ϕi(x,Wi)∫

S
ϕi(x,Wi)dx

.
Some precautions are to be taken in regard to the nature of the activation

function fi(.) used in the output layer of the i-th MLP. In fact, fi(.) shall be
capable of spanning a codomain that fits the general definition of pdf, that is (in
principle) any range in [0,+∞). Although this may be granted in several differ-
ent ways, herein we opt for a logistic sigmoid with component-specific adaptive
amplitude λi ∈ R

+, namely fi(ai) = λi/(1 + exp(−ai)) as described in [19],
where ai represents the current activation value for the output unit of the i-th
neural component. Consequently, each MLP in the NMM can stretch its output
over any required component-specific interval [0, λi), which is not bounded a
priori but is rather learned (along with the other parameters in Wi) so as to fit
the nature of the specific component density at hand. Other general advantages
entailed by the use of adaptive amplitudes are pointed out in [19].

The training algorithm is expected to revolve around a proper learning rule
for the mixture parameters W given the unlabeled sample T , such that even-
tually p̃(x|W ) results in a proper estimate of p(x). This requires pursuing two
purposes: (1) exploiting the information encapsulated in T to approximate the
unknown pdf; (2) preventing the MLPs in the NMM from developing spurious
solutions, by enforcing the constraints

∫
S

ϕi(x,Wi)dx = 1 for all i = 1, . . . ,K.
To this end, a constrained stochastic gradient-ascent algorithm is devised that
aims at the maximization of the point-wise likelihood p̃(xj |W ) of the NMM given
the current training pattern xj , to be applied iteratively for j = 1, . . . , n. This
is achieved by means of an on-line, differentiable criterion function C(.) defined
as
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C(W,xj) = p̃(xj |W ) − ρ

K∑

i=1

1
2

(

1 −
∫

S

ϕi(x,Wi)dx
)2

(3)

that has to be maximized with respect to the NMM parameters W under the
(hard) constraints that ci ∈ [0, 1] for i = 1, . . . ,K and

∑K
i=1 ci = 1. The second

term in the criterion, instead, is a “soft” constraint that enforces a unit integral
of p̃i(x,Wi) over S for all i = 1, . . . , K, as sought, resulting in

∫
S

p̃(x|W )dx � 1.
The hyper-parameter ρ ∈ R

+ controls the importance of the constraints, and it
is used in practical applications to tackle numerical issues. The gradient-ascent
learning rule Δw for a generic parameter w in the NMM is then defined as
Δw = η ∂C(.)

∂w , where η ∈ R
+ is the learning rate. Different calculations are

needed, according to the fact that w is either: (i) a mixing coefficient, say w = ck;
or (ii) a parameter (connection weight, bias, or adaptive amplitude) within any
of the neural component densities. In case (i), we first introduce K unconstrained
latent variables γ1, . . . , γK , and we let

ck =
ς(γk)

∑K
i=1 ς(γi)

(4)

for k = 1, . . . , K, where ς(x) = 1/(1 + e−x). Each γk is then treated as the
unknown parameter to be actually estimated instead of the corresponding ck.
In so doing, higher-likelihood mixing coefficients that satisfy the required con-
straints are implicitly obtained from application of the learning rule. The latter
takes the following form:

Δγk = η
∂C(.)
∂γk

(5)

= η
∂p̃(xj |W )

∂γk

= η
∂

∑K
i=1 cip̃i(xj |Wi)

∂γk

= η
K∑

i=1

p̃i(xj |Wi)
∂

∂γk

(
ς(γi)

∑K
�=1 ς(γ�)

)

= η

{

p̃k(xj |Wk)
ς ′(γk)

∑K
�=1 ς(γ�)

−
K∑

i=1

p̃i(xj |Wi)
ς(γi)ς ′(γk)
[
∑

� ς(γ�)]2

}

= η
ς ′(γk)

∑
� ς(γ�)

{p̃k(xj |Wk) − p̃(xj |W )}

Secondly, let us move to scenario (ii), that is where w is a parameter within
one of the neural components. In this case, taking the partial derivative of
C(W,xj) with respect to w requires calculating the derivatives of the first and
the second terms in the right-hand side of Eq. (3). In the following calculations
we assume that w belongs to the (generic) k-th neural component. For the first
term we have:
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∂p̃(xj|W )

∂w
=

∂

∂w

K∑

i=1

cip̃i(xj|Wi) (6)

=
∂

∂w
{ckp̃k(xj|Wk)}

= ck
∂

∂w

{
ϕk(xj , Wk)∫

S ϕk(x, Wk)dx

}

= ck

{
1∫

S ϕk(x, Wk)dx

∂ϕk(xj , Wk)

∂w
− p̃k(xj , Wk)∫

S ϕk(x, Wk)dx

∂

∂w

∫

S
ϕk(x, Wk)dx

}

=
ck∫

S ϕk(x, Wk)dx

{
∂ϕk(xj , Wk)

∂w
− ϕk(xj , Wk)∫

S ϕk(x, Wk)dx

∫

S

∂ϕk(x, Wk)

∂w
dx

}

where Leibniz rule was exploited in the last step of the calculations. Note that
Eq. (6) is a mathematical statement of the rationale behind the different impact
that current training pattern xj has on the learning process in distinct neural
components of the NMM. First, the amount of parameter change Δw is propor-
tional to the probabilistic “credit” ck of the component at hand. Second (and
foremost), the quantities within brackets in Eq. (6) depend on the value of the
k-th MLP output over xj , and on its derivative. If, at any time during the train-
ing, ϕk(.) does not change significantly in a neighborhood of xj (e.g. if xj lies in
a high-likelihood plateau or, vice versa, in a close-to-zero plateau of ϕk(.)) then
the contribution of the first quantity within brackets is neglectable. Moreover,
if ϕk(xj) � 0 then the second term within brackets turns out to be neglectable,
as well. To the contrary, the contribution of xj to the parameter adaptation of
k-th component network will be paramount if ϕk(.) returns high likelihood over
xj and significant variations in its surroundings.

At this point Leibniz rule is used again in the calculation of the derivative of
the second term in the right-hand side of Eq. (3), which can be written as

∂

∂w

{

ρ
K∑

i=1

1
2

(

1 −
∫

S

ϕi(x,Wi)dx
)2

}

(7)

=
∂

∂w

{
ρ

2

(

1 −
∫

S

ϕk(x,Wk)dx
)2

}

= −ρ

(

1 −
∫

S

ϕk(x,Wk)dx
)

∂

∂w

∫

S

ϕk(x,Wk)dx

= −ρ

(

1 −
∫

S

ϕk(x,Wk)dx
)∫

S

∂ϕk(x,Wk)
∂w

dx.

Algorithms for the computation of ∂ϕk(xj ,Wk)
∂w ,

∫
S

ϕk(x,Wk)dx, and
∫

S
∂

∂wϕk

(x,Wk)dx are needed in order to compute the right-hand side of Eqs. (6) and
(7). The quantity ∂ϕk(xj ,Wk)

∂w is the usual partial derivative of the output of a
MLP with respect to one of its parameters, and it is computed via plain BP (or,
as in [19] if w = λk). As for the integrals, deterministic numerical quadrature
integration techniques (e.g., Simpson’s method, trapezoidal rule, etc.) are viable
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only for d = 1, since they do not scale up computationally to higher dimensions
(d ≥ 2) of the feature space. This is all the more critical if we bear in mind
that

∫
S

∂
∂wϕk(x,Wk)dx has to be computed iteratively and individually for each

parameter of each neural component in the NMM. Besides, deterministic integra-
tion methods do not exploit the very nature of the function to be integrated. In
fact, in the present context the integrand is expected to be closely related to the
pdf (say, pk(x)) that explains the distribution of the specific sub-sample of data
drawn from the k-th component of the mixture. In fact, accounting for the pdf of
the data should drive the integration algorithm towards integration points that
cover “interesting” (i.e., having high component-specific likelihood) regions of the
domain of the integrand. For these reasons, we use a component-oriented variant
of the approach we proposed in [21], that can be seen as an instance of Markov
chain Monte Carlo [1]. It is a non-deterministic, multi-dimensional integration
technique which actually accounts for the component-specific probability distri-
bution of the data. Let φk(x) denote the integrand of interest (either ϕk(x,Wk)
or ∂ϕk(x,Wk)

∂w ). An approximation of the integral of φk(x) over S is obtained via
Monte Carlo with importance sampling [16] as

∫
S

φk(x)dx � V (S)
m

∑m
�=1 φk(ẋ�)

where m properly sampled integration points ẋ1, . . . , ẋm are used. Sampling of
the -th integration point ẋ� (for  = 1, . . . , m) is attained by drawing it at
random from the mixture density p

(k)
u (x) defined as

p(k)u (x) = α(t)u(x) + (1 − α(t))p̃k(x|Wk) (8)

where u(x) is the uniform distribution over S, and α : N → (0, 1) is a decaying
function of the number t of the NMM training epochs (a training epoch is a com-
pleted re-iteration of Eqs. (6) and (7) for all the parameters of the NMM over
all the observations in T ) for t = 1, . . . , T , such that α(1) � 1.0 and α(T ) � 0.0.
As in [21] we let α(t) = 1/(1+ e

t/T −1/2
θ ), where θ is a hyperparameter. Eq. (8) is

such that the importance sampling mechanism it implies accounts for the (esti-
mated) component density p̃k(x|Wk) of the k-th latent subsample of the data,
therefore respecting the natural distribution of such sub-population and focus-
ing integration on the relevant (i.e., having high component-specific likelihood)
integration points. On the other hand, since the estimates of this component den-
sities are not reliable during the early stage of the NMM training process, Eq. (8)
prescribes a (safer) sampling from a uniform distribution at the beginning, like
in the plain Monte Carlo algorithm. As the robustness of the NMM estimates
increases, i.e. as t increases, sampling from p̃k(x|Wk) replaces progressively the
sampling from u(x), ending up in entirely non-uniform importance sampling.
The form of α(t) is such that the algorithm basically sticks with the uniform
sampling for quite some time before beginning crediting the estimated pdfs, but
it ends up relying mostly on the neural component densities throughout the
advanced stage of training. Since ϕk(x,Wk) is non-negative by construction, for
t → T the sampling occurs substantially from |ϕk(x,Wk)| /

∫
S

|ϕk(x,Wk)| dx,
that is a sufficient condition for granting that the variance of the estimated
integral vanishes and the corresponding error goes to zero [15].
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Sampling from p
(k)
u (x) requires an effective method for sampling from the

output of the k-th MLP in the NMM. A specialization of Markov chain Monte
Carlo, namely the Metropolis–Hastings (M-H) algorithm [14], is used herein.
M-H is robust to the fact that, during training, ϕk(x,Wk) may not be prop-
erly normalized but it is proportional by construction to the corresponding pdf
estimate (which is normalized properly, instead, by definition) [14]. Due to its
efficiency and ease of sampling, a multivariate logistic pdf with radial basis,
having location x and scale σ, is used as the proposal pdf q(x′|x) required
by M-H to generate a new candidate sample x′ = (x′

1, . . . , x
′
d) from the cur-

rent sample x = (x1, . . . , xd). Formally, such a proposal pdf is defined as
q(x′|x, σ) =

∏d
i=1

1
σ e(x

′
i−xi)/σ(1 + e(x

′
i−xi)/σ)−2 which can be sampled readily

by means of the inverse transform sampling technique. Any approach to model
selection can be applied to fix empirically the values for the present hyperpa-
rameters (that is, the scale σ of the proposal pdf and the burn-in period for
M-H).

3 Preliminary Experimental Evaluation

This Section presents a preliminary evaluation of the NMM behavior on
random samples generated synthetically from a multimodal pdf p(·) hav-
ing known form. The random samples used in the experiments were
drawn from mixtures p(x) of c Fisher-Tippett pdfs, that is p(x) =
∑c

i=1
Pi

βi
exp

(
−x−μi

βi

)
exp

{
− exp

(
−x−μi

βi

)}
. The mixing parameters P1, . . . , Pc

were drawn at random (any time a new dataset had to be generated) from the
uniform distribution over [0.1] and normalized such that

∑c
i=1 Pi = 1. The com-

ponent densities of the Fisher-Tippett mixture are identified by their locations
μi and scales βi, respectively, for i = 1, . . . , c. The locations were drawn at ran-
dom from the uniform distribution over (0, 10), while the scales were randomly
and uniformly distributed over (0.01, 0.9). The estimation tasks we faced involved
1200 patterns randomly drawn from p(x), and a variable number c of component
densities, namely c = 5, 10, 15 and 20, respectively. Each c-specific dataset was
split into a training set (n = 800 patterns) and a validation set (the remaining
400 patterns). The integrated squared error (ISE) between p(x) and its estimate
p̃(x), that is

∫
(p(x) − p̃(x))2 dx, is used as the criterion of assessment of the

performance of the estimation techniques. The ISE is computed numerically via
Simpson’s method.

In the present experiments we used NMMs involving MLPs with a single
hidden layer of 9 units. Logistic sigmoid activation functions were used, having
layer-wise [19] trainable amplitudes λ. All the parameters in the NMM were
initialized at random over small intervals centered at zero, except for the ampli-
tudes λ that were initially set to 1 and the mixing coefficients that were set to
ci = 1/K for i = 1, . . . ,K. As in [22] we let θ = 0.07 in the definition of the
function α(t), and the number of integration points was set to m = 400, sampled
at the beginning of each training epoch using a scale σ = 9 for the logistic pro-
posal pdf in M-H. The burn-in period of the Markov chain in M-H was stretched
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over the first 500 states. The other hyperparameters of the NMM were fixed via
random-search based on the cross-validated likelihood criterion exploiting the
validation set. Input data were not normalized. Results are reported in Table 1.
NMMs having different values of K (that is K = 4, 8 and 12) were evaluated, and
compared with the most prominent statistical techniques, parametric and non-
parametric, namely: 8-, 16- and 32-GMM initialized via k-means and refined via
iterative maximum-likelihood re-estimation [10], kn-NN with unbiased kn = 1

√
n

[10], and Parzen Window (PW) with unbiased bandwidth hn = 1/
√

n of the
Gaussian kernels [10].

Table 1. Estimation of the Fisher-Tippett mixture p(x) (with n = 800) in terms of
integrated squared error as a function of the number c of Fisher-Tippett component
densities. Best results are shown in boldface. (Legend: k-GMM and k-NMM denote the
GMM and the NMM with k components, respectively).

c 5 10 15 20 Avg.± std. dev.

8-GMM 9.60× 10−3 1.12× 10−2 4.57× 10−2 7.99× 10−2 (3.66± 2.89)× 10−2

16-GMM 6.33× 10−3 9.29× 10−3 3.78× 10−2 4.24× 10−2 (2.40± 1.63)× 10−2

32-GMM 7.15× 10−3 9.82× 10−3 2.41× 10−2 3.03× 10−2 (1.78± 0.97)× 10−2

kn-NN 6.54× 10−3 8.70× 10−3 2.03× 10−2 2.36× 10−2 (1.48± 0.73)× 10−2

PW 6.02× 10−3 8.94× 10−3 2.14× 10−2 1.98× 10−2 (1.40± 0.67)× 10−2

4-NMM 6.41× 10−3 7.06× 10−3 1.09× 10−2 1.40× 10−2 (9.59± 3.07)× 10−3

8-NMM 5.89× 10−3 6.02× 10−3 8.11× 10−3 1.01× 10−2 (7.53± 1.73)× 10−3

12-NMM 6.38× 10−3 6.27× 10−3 8.05× 10−3 9.64× 10−3 (7.59± 1.38)× 10−3

It is seen that all the models yield values of the resulting ISE that tend to
increase as a function of c. Nevertheless, the NMM improves systematically and
significantly over all the statistical approaches regardless of c. On average, both
the 8-NMM and the 16-NMM offer a 46% relative ISE reduction over the PW
(the PW turns out to be the closest competitor to NMM in the present setup).
Welch’s t-test returns a level of confidence >90% on the statistical significance
of the gap between the results yielded by the 8-NMM (or, by the 12-NMM) and
by the PW, respectively. Moreover, the NMM results in the stablest estimators
overall, as shown by the values of the standard deviations (last column of the
table). This is evidence of the fact that the degree of fitness of the NMMs to
the true pdf is less sensitive to the complexity of the underlying Fisher-Tippett
mixture (that is, to c) than that yielded by the traditional statistical models.
As expected, ISE differences are observed among the k-NMMs depending on the
different values of k. In the present setup, differences between the 8-NMM and
the 12-NMM turn out to be mild (especially if compared to the overall gaps
between NMMs and the established statistical techniques), and they depend on
the complexity of the underlying pdf to be estimated, at least to some extent,
as expected.
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4 Pro Tempore Conclusions and On-Going Research

Density estimation remains an open, non-trivial task: in fact, significant improve-
ment over established approaches may still be expected of novel techniques,
capable of increased robustness of the resulting pdf estimates. In spite of the
relative simplicity of the data used in the previous Section, the empirical evi-
dence reported therein confirms that the traditional statistical techniques may
yield inaccurate estimates, whereas the NMM may result in a model of the data
that is closer to the true pdf underlying the unlabeled samples at hand. For the
time being, we are in the early stages of investigating the behavior of the tech-
nique over multivariate random vectors. Model selection (in particular, selection
of proper ANN architectures) is under further investigation, as well, by exploit-
ing the implicit availability of a mathematically grounded assessment criterion,
namely the likelihood of the model (e.g., of its architecture) given a validation
set. Finally, another facet of the NMM that is currently under development lies
in the initialization procedure: non-uniform initialization of the mixing coeffi-
cients may turn out to be helpful in breaking potential ties, and initializing the
individual neural components via BP learning of a subset of the components of a
pre-estimated reference mixture model (i.e., a GMM) may also fruitfully replace
the bare random initialization of the MLPs parameters.
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