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Abstract. Nonlinear multi-output regression problem is to construct a
predictive function which estimates an unknown smooth mapping from
q-dimensional inputs to m-dimensional outputs based on a training data
set consisting of given “input-output” pairs. In order to solve this prob-
lem, regression models based on stationary kernels are often used. How-
ever, such approaches are not efficient for functions with strongly varying
gradients. There exist some attempts to introduce non-stationary kernels
to account for possible non-regularities, although even the most efficient
one called Manifold Learning Regression (MLR), which estimates the
unknown function as well its Jacobian matrix, is too computationally
expensive. The main problem is that the MLR is based on a computa-
tionally intensive manifold learning technique. In this paper we propose
a modified version of the MLR with significantly less computational com-
plexity while preserving its accuracy.
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1 Introduction

1.1 Nonlinear Multi-output Regression

We formulate a nonlinear multi-output regression task [1–3]: let f be an unknown
smooth mapping from an input space X ⊂ R

q to m-dimensional output space
R

m. Given a training data set

Z(n) = {Zi = (xi,yi = f(xi)) , i = 1, 2, . . . , n} , (1)
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consisting of input-output pairs, the task is to construct the function y∗ =
f∗(x) = f∗(x|Z(n)) to predict the true output y = f(x) for an arbitrary Out-of-
Sample (OoS) input x ∈ X with small predictive error |y∗ − y|. In engineering
applications f∗(x) is usually used as a surrogate of some target function [4].
Most of optimization algorithms use gradient of the optimized function; in this
case, the regression method also should allow estimating m × q Jacobian matrix
Jf (x) = ∇xf(x) of the mapping f(x) at an arbitrary input point x ∈ X.

There exist various regression methods such as least squares (LS) techniques
(linear and nonlinear), artificial neural networks, kernel nonparametric regres-
sion, Gaussian process regression, kriging regression, etc. [1–3,5–16]. A classical
approach is based on Kernel Nonparametric Regression (KNR) [7]: we select the
kernel function K(x,x′) (see [17]) and construct the KNR-estimator

fKNR(x) =
1

K(x)

n∑

j=1

K(x,xj) · yj , K(x) =
n∑

j=1

K(x,xj), (2)

which minimizes (over ŷ) the residual
∑n

j=1 K(x,xj) |ŷ − yj |2.
The symmetric non-negative definite function K(x,x′) can be interpreted as

a covariance function of some random field y(x); thus, the unknown function
f(x) can be interpreted as a realization of the random field y(x) and K(x,x′) =
cov(f(x), f(x′)). If we consider only the first and second moments of this random
field, then without loss of generality we can assume that this field is Gaussian
and as a result obtain so-called Gaussian Process Regression [5,6,18,19].

One of the most popular kernel estimators is kriging, first developed by Krige
[20] and popularized by Sacks [21]. Kriging provides both global predictions and
their uncertainty. Kriging-based surrogate models are widely used in engineering
modeling and optimization [4,22–24].

Kriging regression combines both linear LS and KNR approaches: the devi-
ation of the unknown function f(x) from its LS estimator, constructed on basis
of some functional dictionary, is modeled by a zero mean Gaussian random field
with the covariance function K(x,x′). Thus we can estimate the deviation at
the point x using some filtration procedure and known deviations at the sam-
ple points {xi}. Usually stationary covariance functions K(x,x′) are used that
depend on their arguments x and x′ only through the difference (x − x′).

1.2 Learning with Non-stationary Kernels

Many methods use kernels that are stationary. However, as indicated e.g. in
[2,3,5,6], such methods have serious drawbacks in case of functions with strongly
varying gradients. Traditional kriging “is stationary in nature” and has low accu-
racy in case of functions with “non-stationary responses” (significant changes in
“smoothness”) [25,26]. Figure 1 illustrates this phenomenon by the Xiong func-
tion f(x) = sin(30(x − 0.9)4) · cos(2(x − 0.9)) + (x − 0.9)/2, x ∈ [0, 1], and its
kriging estimator with a stationary kernel [25]. Therefore, non-stationary kernels
with adaptive kernel width are used to estimate non-regular functions. There are
strategies for constructing the non-stationary kernels [26].
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Fig. 1. Example of Kriging prediction with a stationary covariance [25].

The interpretable nonlinear map approach from [27] uses the one-to-one
reparameterization function u = ϕ(x) with the inverse x = ψ(u) to map the
Input space X to U = ϕ(X), such that the covariance function k(u,u′) =
K(ψ(u), ψ(u′)) = cov(f(ψ(u)), f(ψ(u′))) becomes approximately stationary.
This approach was studied for years in geostatistics in case of relatively low
dimensions (q = 2, 3), and the general case has been considered in [25] with

the reparameterization function ϕ(x) = x0 +
∫ x(1)

x
(1)
0

∫ x(2)

x
(2)
0

· · · ∫ x(q)

x
(q)
0

s(x)dx, where

x = (x(1), x(2), . . . , x(q)) and s(x) is a density function, modelled by a linear
combination of some “dictionary” functions with optimized coefficients. A sim-
ple one-dimensional illustration of such map is provided in Fig. 2.

Fig. 2. A conceptual illustration of the nonlinear reparameterization function [25].

After such reparameterization, KNR-estimator (2) gKNR(u) for the func-
tion g(u) = f(ψ(u)) with the stationary kernel k(u,u′) is constructed, and the
function f∗(x) = gKNR(ϕ(x)) is used as an estimator for f(x).

1.3 Manifold Learning Regression

A fundamentally different geometrical approach to KNR called Manifold Learn-
ing Regression (MLR) was proposed in [10,11]; MLR also constructs the repa-
rameterization function u = ϕ(x) and estimates the Jacobian matrix Jf (x).
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MLR compares favourably with many conventional regression methods. In
Fig. 3 (see [10]) we depict the KNR-estimator fKNR (2) with a stationary kernel
and the MLR-estimator fMLR for the Xiong function f(x). The input values in
the set Z(n), n = 100 were uniformly randomly distributed on the interval [0, 1].

We see that the MLR method provides the essentially smoother estimate. The
mean squared errors MSEKNR = 0.0024 and MSEMLR = 0.0014 were calculated
using the test sample with n = 1001 uniform grid points in the interval [0, 1].

Fig. 3. Reconstruction of the Xiong function (a) by KNR with stationary kernel (b)
and MLR (c).

MLR is based on a Manifold Learning approach. Let us represent in the
input-output space R

p, p = q + m, the graph of the function f by the smooth
q-dimensional manifold (Regression Manifold, RM)

M(f) = {Z = F(x) ∈ R
p : x ∈ X ⊂ R

q} ⊂ R
p, (3)

embedded in the ambient space R
p and parameterized by the single chart

F : x ∈ X ⊂ R
q → Z = F(x) = (x, f(x)) ∈ R

p. (4)

Arbitrary function f∗ : X → R
m also determines the manifold M(f∗) (substitute

f∗(x) and F∗(x) instead of f(x) and F(x) in (3) and (4)).
In order to apply MLR, we estimate RM M(f) using the training data Z(n) (1)

by the Grassmann & Stiefel Eigenmaps (GSE) algorithm [28]. The constructed
estimator MGSE = MGSE(Z(n)), being also a q-dimensional manifold embedded
in R

p, provides small Hausdorff distance dH(MGSE ,M(f)) between these man-
ifolds. In addition, the tangent spaces L(Z) to RM M(f) at the manifold points
Z ∈ M(f) are estimated by the linear spaces LGSE(Z) with “aligned” bases
smoothly depending on Z. GSE also constructs the low-dimensional parameter-
ization h(Z) of the manifold points Z and the recovery mapping g(h), which
accurately reconstructs Z from h(Z).

To get the estimator fMLR(x) of the unknown function f , we solve the
equation M(fMLR) = MGSE . Using the estimator LGSE(F(x)), we also con-
struct m × q matrix GMLR(x), which estimates the m × q Jacobian matrix
Jf (x) = ∇xf(x) of f(x) at the arbitrary point x ∈ X. Here as the reparam-
eterization function u = ϕ(x) we use approximation of the unknown function
h(F(x)) (it depends on f(x), which is unknown at the OoS points x ∈ X).
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1.4 Paper Contribution

The GSE algorithm contains several very computationally expensive steps such
as construction of the aligned bases in the estimated tangent spaces, the embed-
ding mapping and the recovery mappings, the reparameterization mapping, etc.
Although the incremental version of the GSE algorithm [29] reduces its com-
plexity, still it remains computationally expensive.

The paper proposes a new modified version of the MLR algorithm (mMLR)
with significantly less computational complexity. We developed a simplified ver-
sion of the MLR algorithm, which does not require computationally expensive
steps, listed above, so that we can construct the estimators (fMLR(x),GMLR(x))
while preserving the same accuracy. Then instead of using the KNR procedure
with a stationary kernel we developed its version with a non-stationary kernel,
which is defined on basis of the constructed MLR estimators.

Note that in this paper we consider the case when the input domain X ⊂ R
q

is a “full-dimensional” subset of Rq (i.e., the intrinsic dimension of X is equal
to q) in contrast to [6,16], where X is a low-dimensional manifold in R

q. In [30]
they reviewed approaches to the regression with manifold valued inputs.

The paper is organized as follows. Section 2 describes some details of the
GSE/MLR algorithms; the proposed mMLR algorithm is described in Sect. 3.

2 Manifold Learning Regression

2.1 Tangent Bundle Manifold Estimation Problem

The MLR algorithm is based on the solution of the Tangent bundle manifold
estimation problem [31,32]: estimate RM M(f) (3) from the dataset Z(n) (1),
sampled from M(f). The manifold estimation problem is to construct:

– the embedding mapping h from RM M(f) to the q-dimensional Feature Space
(FS) Th = h(M(f)), which provides low-dimensional parameterization (coor-
dinates) h(Z) of the manifold points Z ∈ M(f),

– the recovery mapping g(t) from FS Th to R
p, which recovers the manifold

points Z = g(t) from their low-dimensional coordinates t = h(Z),

such that the recovered value rh,g(Z) = g(h(Z)) is close to the initial vector Z:

g(h(Z)) ≈ Z, (5)

i.e. the recovery error δh,g(Z) = |rh,g(Z)−Z| is small. These mappings determine
the q-dimensional Recovered Regression manifold (RRM)

Mh,g = rh,g(M(f)) = {rh,g(Z) ∈ R
p : Z ∈ M(f)}

= {Z = g(t) ∈ R
p : t ∈ Th = h(M(f)) ⊂ R

q}, (6)

which is embedded in the ambient space R
p, covered by the single chart g,

and consists of all recovered values rh,g(Z) of the manifold points Z. Thanks
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to (5) we get proximity of the manifolds Mh,g ≈ M(f), i.e. the Hausdorff dis-
tance dH(Mh,g,M(f)) between RM M(f) and RRM Mh,g (6) is small due the
inequality dH(Mh,g,M(f)) ≤ supZ∈M(f) δh,g(Z).

The manifold proximity (5) at the OoS point Z ∈ M(f) \ Z(n) characterizes
the generalization ability of the solution (h,g) at the specific point Z. Good
generalization ability requires [32] that the pair (h,g) should provide the tangent
proximities Lh,g(Z) ≈ L(Z) between the tangent spaces L(Z) to RM M(f) at
points Z ∈ M(f) and the tangent spaces Lh,g(Z) = Span(Jg(h(Z))) (spanned by
columns of the Jacobian matrix Jg(t) of the mapping g at the point t = h(Z))
to RRM Mh,g at the recovered points rh,g(Z) ∈ Mh,g. Note that the tangent
proximity is defined in terms of a chosen distance between these tangent spaces
considered as elements of the Grassmann manifold Grass(p, q), consisting of all
q-dimensional linear subspaces in R

p.
The set of manifold points equipped with the tangent spaces at these points

is called the Tangent bundle of the manifold [33], and therefore we refer to
the manifold estimation problem with the tangent proximity requirement as
the Tangent bundle manifold learning problem [31]. The GSE algorithm, briefly
described in the next section, provides the solution to this problem.

2.2 Grassmann and Stiefel Eigenmaps Algorithm

The GSE algorithm consists of the three successively performed steps: tangent
manifold learning, manifold embedding, and manifold recovery.

Tangent Manifold Learning. We construct the sample-based p × q matrices
H(Z) with columns {H(k)(Z) ∈ R

p, 1 ≤ k ≤ q}, smoothly depending on Z, to
meet the relations Span(H(Z)) ≈ L(Z) and ∇H(i)(Z)H(j)(Z) = ∇H(j)(Z)H(i)(Z)
(covariant differentiation is used here), 1 ≤ i < j ≤ q, for all points Z ∈ M(f).

The latter condition provides that these columns are coordinate tangent fields
on RM M(f) and, thus, H(Z) is the Jacobian matrix of some mapping [33]. Thus
the mappings h and g are constructed in such a way that

Jg(h(Z)) = H(Z). (7)

Using Principal Component Analysis (PCA), we estimate the tangent space L(Z)
at the sample point Z ∈ Z(n) [34] by the q-dimensional linear space LPCA(Z),
spanned by the eigenvectors of the local sample covariance matrix

Σ(Z|Kp) =
1

Kp(Z)

n∑

j=1

Kp(Z,Zj) · [(Zj − Z) · (Zj − Z)T], (8)

corresponding to the q largest eigenvalues; here Kp(Z) =
∑n

j=1 Kp(Z,Zj) and
Kp(Z,Z′) is a stationary kernel in R

p (e.g., the indicator kernel I{|Z − Z′| < ε}
or the heat kernel [35] Kp,ε,ρ(Z,Z′) = I{|Z−Z′| ≤ ε} · exp{−ρ · |Z−Z′|2} with
the parameters ε and ρ).

We construct the matrices H(Z) to meet the relations

Span(H(Z)) = LPCA(Z), (9)
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therefore, the required proximity Span(H(Z)) ≈ L(Z) follows automatically from
the approximate equalities LPCA(Z) ≈ L(Z), which are satisfied when RM M(f)
is “well sampled” and the parameter ε is small enough [36].

The principal components form the orthogonal basis in the linear space
LPCA(Z). Let us denote the p × q matrix with the principal components as
columns by QPCA(Z). However, for different Z these bases are not agreed with
each other and can be very different even in neighboring points. While preserving
the requirements (9), the GSE algorithm constructs other bases in these linear
spaces, determined by the p × q matrices

HGSE(Z) = QPCA(Z) · v(Z). (10)

Here q×q nonsingular matrices v(Z) should provide smooth dependency of H(Z)
on Z and coordinateness of the tangent fields {H(k)(Z) ∈ R

p, 1 ≤ k ≤ q}.
At the sample points the matrices Hi = HGSE(Zi) (10) are constructed to

minimize the quadratic form
∑n

i,j=1 Kp(Zi,Zj) · ‖Hi − Hj‖2F under the coor-
dinateness constraint and certain normalizing condition, required to avoid a
degenerate solution; here ‖ · ‖F is the Frobenius matrix norm. The exact solu-
tion of this problem is obtained in the explicit form; at the OoS points Z, the
matrices HGSE(Z) are constructed using certain interpolation procedure.

Manifold Embedding. After we construct the matrices HGSE(Z) and assum-
ing that the conditions (5) and (9) are satisfied, we use the Taylor series expan-
sion of the mapping g(t), t = h(Z) to get the relation Z′ − Z ≈ HGSE(Z) ·
(h(Z′) − h(Z)) for the neighboring points Z,Z′ ∈ M(f). These relations, consid-
ered further as regression equations, allow constructing the embedding mapping
hGSE(Z) and FS Th = h(M(f)).

Manifold Recovery. After we construct the matrices HGSE(Z) and the map-
ping hGSE , using known values {g(ti) ≈ Zi} (5) and {Jg(ti) = Hi} (9),
ti = hGSE(Zi), we construct the mapping gGSE(t) and the estimator GGSE(t)
for its covariance matrix Jg(t).

2.3 Manifold Learning Regression Algorithm

We split the p-dimensional vector Z =
(

Zin

Zout

)
, p = q+m, into the q-dimensional

vector Zin and the m-dimensional vector Zout and obtain the corresponding
partitions

HGSE(Z) =
(

HGSE,in(Z)
HGSE,out(Z)

)
, QPCA(Z) =

(
QPCA,in(Z)
QPCA,out(Z)

)
,

gGSE(t) =
(

gGSE,in(t)
gGSE,out(t)

)
, GGSE(t) =

(
GGSE,in(t)
GGSE,out(t)

)
(11)

of the p×q matrices HGSE(Z) and QPCA(Z), the p-dimensional vector gGSE(t),
and the p × q matrix GGSE(t); note that the q × q matrix GGSE,in(t) and the
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m× q matrix GGSE,out(t) are the Jacobian matrices of the mappings gGSE,in(t)
and gGSE,out(t), respectively.

It follows from the proximities (5), (9) and the partition (11) with Z = F(x)
(4) that

gGSE,in(hGSE(F(x))) ≈ x, gGSE,out(hGSE(F(x))) ≈ f(x), (12)

but the left part of the latter equation cannot be used for estimating the unknown
function f(x) since it depends on the function hGSE(F(x)), which in its turn
depends on the function f(x).

According to the MLR approach we construct the estimator ϕ(x) for the
function hGSE(F(x)) as follows. We have two parameterizations of the manifold
points Z = F(x) ∈ M(f): the “natural” parameterization by the input x ∈ X and
the GSE-parameterization t = hGSE(Z), which are linked by the unknown one-
to-one mapping t = ϕ(x), whose values {ϕ(xi) = ti = hGSE(Zi)} are known at
the sample inputs {xi}. The relations (5) and (12) imply that gGSE,in(ϕ(x)) ≈ x
and GGSE,in(ϕ(x)) ·Jϕ(x) ≈ Iq. Thus we get that Jϕ(x) ≈ G−1

GSE,in(ϕ(x)); here
Jϕ(x) is the Jacobian matrix of the mapping ϕ(x). Therefore, the known matri-
ces {G−1

GSE,in(ϕ(xi)) = G−1
GSE,in(ti)} estimate the Jacobian matrices {Jϕ(xi)}

at the sample inputs {xi}.
Based on the known values {(ϕ(xi),Jϕ(xi))}, ϕ(x) is estimated at the arbi-

trary point x by ϕMLR(x) = 1
Kq(x)

∑n
j=1 Kq(x,xj) · {tj + G−1

GSE,in · (x − xj)};
here Kq(x,x′) is a stationary kernel in R

q (like Kp,ε,ρ, but defined in R
q).

The relations (12) imply that GGSE,out(ϕ(x)) · Jϕ(x) ≈ Jf (x) and we get

fMLR(x) = gGSE,out(ϕMLR(x)), (13)

GMLR(x) = GGSE,out(ϕMLR(x)) · G−1
GSE,in(ϕMLR(x)) (14)

as the estimators for the unknown function f(x) and its Jacobian matrix Jf (x).
Note that the estimators (13), (14) require constructing the aligned bases

(matrices HGSE(Z)), the embedding mapping hGSE(Z), the recovery mapping
gGSE(t) and the estimator GGSE(t) for its Jacobian matrix, and the reparame-
terization mapping ϕMLR(x). These GSE steps are computationally expensive,
even if the incremental version of GSE is used [29].

3 Modified Manifold Learning Regression

The proposed modified version of the MLR method consists of the following
parts: constructing both the PCA-approximations for the tangent spaces at the
sample points (as in case of the GSE algorithm) and the preliminary estimation of
f(x) for arbitrary inputs (Sect. 3.1), constructing both the PCA-approximations
LPCA(Z) at the OoS points Z = F(x) and the estimators GMLR(x) of the
Jacobian matrix Jf (x) for arbitrary inputs (Sect. 3.2), constructing the non-
stationary kernels based on the preliminary MLR estimators and their usage
for construction of both the new adaptive PCA-approximations and the final
estimators (fmMLR(x),GmMLR(x)).
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3.1 Preliminary Estimation of Unknown Functions

We start from the standard PCA-approximations for the tangent spaces L(Z) at
the sample points.

Step 1. Given the training dataset Z(n) (1), p × q matrices QPCA(Zi) and
linear spaces LPCA(Zi) = Span(QPCA(Zi)), i = 1, 2, . . . , n, are constructed as
in Sect. 2.2.

Let {HGSE(Zi) = QPCA(Zi) · v(Zi)} (10) be the GSE-matrices, computed
after the estimation of the aligning matrices {v(Zi)}. It follows from (7) and
(9)–(11) that

GGSE,in(hGSE(Z)) = HGSE,in(Z) = QPCA,in(Z) · v(Z),
GGSE,out(hGSE(Z)) = HGSE,out(Z) = QPCA,out(Z) · v(Z).

Thus the estimator GMLR(x) (14) at the sample inputs {xi} is equal to

GMLR(xi) = HGSE,out(Zi) · H−1
GSE,in(Zi)

= QPCA,out(Zi)v(Zi)v−1(Zi)QPCA,in(Zi) = QPCA,out(Zi)Q−1
PCA,in(Zi) (15)

and depends only on the PCA-matrices {QPCA(Zi)}, not on the matrices v(Zi).

Step 2. Compute the estimators {GMLR(xi)} (15) for i = 1, 2, . . . , n.
After the Step 2 we obtain values GMLR(xi) of the Jacobian matrix of f(x)

at the sample inputs. Using the Taylor series expansion we get that f(x) ≈
f(x′)+Jf (x′) · (x−x′) for the neighboring input points x,x′ ∈ X. We construct
the estimator f∗(x) for f(x) at the arbitrary point x as a solution to the regression
problem with known Jacobian values at sample points [30] by minimizing the
residual

∑n
j=1 Kq(x,xj) · |y − yj − GMLR(xj) · (x − xj)|2 over y.

Step 3. Compute the estimator f∗(x) at the arbitrary input x ∈ X

f∗(x) =
1

Kq(x)

n∑

j=1

Kq(x,xj) · {yj + GMLR(xj) · (x − xj)}

= fsKNR(x) +
1

Kq(x)

n∑

j=1

Kq(x,xj) · GMLR(xj) · (x − xj). (16)

Here fsKNR(x) = 1
Kq(x)

∑n
j=1 Kq(x,xj) · yj is the KNR-estimator (2) with a

stationary kernel.
Note that the estimators f∗(x) (16) and {GMLR(xi)} (15) coincide with the

MLR-estimators (13) and (14) but they have significantly lower computational
complexity.

3.2 Estimation of Jacobian Matrix at Arbitrary Point

The p × q matrix QPCA(Z) and the tangent space LPCA(Z) at the OoS point
Z = F(x) are computed using the estimator f∗(x) (16). Thus we can define
FMLR(x) = (x, f∗(x)) (4).



Manifold Learning Regression with Non-stationary Kernels 161

Step 4. Compute the p×q matrix QPCA(Z∗) at the point Z∗ = FMLR(x), such
that its columns are the eigenvectors of the matrix Σ(Z∗|Kp) (8) corresponding
to the q largest eigenvalues.

The matrix QPCA(FMLR(x)) estimates the matrix QPCA(F(x)) at the arbi-
trary input x ∈ X. Thus, the relation (14) results in the next step.

Step 5. Compute the preliminary estimator GMLR(x) for Jf (x) at the arbitrary
input x ∈ X

GMLR(x) = QPCA,out(FMLR(x)) · Q−1
PCA,in(FMLR(x)). (17)

Then based on (17) we compute the preliminary estimators

fMLR(x) =
1

Kq(x)

n∑

j=1

Kq(x,xj) · {yj + GMLR(x) · (x − xj)}

= fsKNR(x) + GMLR(x) · (x − xsKNR) (18)

for f(x) at the arbitrary input x ∈ X; here xsKNR = 1
Kq(x)

∑n
j=1 Kq(x,xj) · xj .

3.3 Estimation of Unknown Function at Arbitrary Point

The estimators fMLR(x) (18) and GMLR(x) (17) use the stationary kernels
Kq(x,x′) in (18) and Kp(Z,Z′) in Σ(Z∗|Kp) (7), respectively; here we introduce
their non-stationary analogues.

Let L = Span(Q) and L′ = Span(Q′) be q-dimensional linear spaces in R
p

whose orthonormal bases are the columns of the p × q orthogonal matrices Q
and Q′, respectively. Considering them as elements of the Grassmann manifold
Grass(p, q), let us denote by

dBC(L,L′) = {1 − Det2[QT · Q′]}1/2 and KBC(L,L′) = Det2[QT · Q′]

the Binet-Cauchy metric and the Binet-Cauchy kernel on the Grassmann mani-
fold, respectively [37,38]. Note that these quantities do not depend on a choice
of the orthonormal bases Q and Q′. Let us introduce another Grassmann kernel
depending on the threshold τ as

KG,τ (L,L′) = I{dBC(L,L′) ≤ τ} · KBC(L,L′).

The final mMLR estimators are constructed by modification of the Steps
1–5 above using the introduced non-stationary kernels. For Z,Z′ ∈ Z(n), we
introduce the non-stationary kernel

Kp,MLR(Z,Z′) = Kp,ε,ρ(Z,Z′) · KG,τ (LPCA(Z),LPCA(Z′)). (19)

Step 6 (modified Step 1). The columns of the orthogonal p × q matri-
ces QmPCA(Zi) at sample points consist of the eigenvectors of the matrices
Σ(Zi|Kp,MLR) (8) corresponding to its q largest eigenvalues, i = 1, 2, . . . , n.
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When calculating the covariance matrices Σ(Zi|Kp,MLR) we use the non-
stationary kernels Kp,MLR (19) at the sample points.

Step 7 (modified Step 2). Using (17) with the matrices {QPCA(Zi)} replaced
by the matrices {QmPCA(Zi)} we compute the modified m × q matrices
{GmMLR(xi)}.

Step 8 (modified Step 3). The value f∗∗(x) at the arbitrary input x ∈ X is
computed by (16) with the matrices {GMLR(xi)} replaced by the matrices
{GmMLR(xi)}.

Step 9 (modified Step 4). We compute the p × q matrix QmPCA(Z) at the
point Z = FmMLR(x) = (x, f∗∗(x)) with arbitrary input x ∈ X. Columns of this
matrix are the eigenvectors of the matrix Σ(FmMLR(x)|Kp,MLR) (8) correspond-
ing to its q largest eigenvalues with the non-stationary kernel Kp,MLR(Z,Z′)
(19), Z,Z′ ∈ Z(n).

Let us denote LmPCA(FmMLR(x)) = Span(QmPCA(FmMLR(x))). For the
arbitrary inputs x,x′ ∈ X we introduce the non-stationary kernel

Kq,MLR(x,x′) = Kq,ε,ρ(x,x′)·KG,τ (LmPCA(FmMLR(x)),LmPCA(F(x))). (20)

Step 10 (modified Step 5). We compute the final estimators GmMLR(x) for
Jf (x) at the arbitrary input x ∈ X by the formula (17), where QPCA(FMLR(x))
is replaced by QmPCA(FmMLR(x)).

After that, we compute the final estimators fmMLR(x) for f(x) at the arbi-
trary input x ∈ X by the formula (18) in which GMLR(x) is replaced by
GmMLR(x), the KNR-estimators fsKNR(x) and xsKNR with the stationary ker-
nel Kq are replaced by the KNR-estimators fnsKNR(x) and xnsKNR with the
non-stationary kernel Kq,MLR (20), respectively.

4 Conclusion

The initially proposed Manifold Learning Regression (MLR) method was based
on the GSE-solution to the Tangent Bundle Manifold Learning problem, which
is very computationally expensive. The paper proposes a modified version of the
MLR method, which does not require to use the most of GSE/MLR steps (such
as constructing the aligned bases at the estimated tangent spaces, the embedding
and the recovery mappings, the reparameterization mapping, etc.). As a result
the modified estimator has significantly smaller computational complexity while
preserving its accuracy.
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