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Abstract. Multi-instance multi-label learning (MIML) is a framework
in machine learning in which each object is represented by multiple
instances and associated with multiple labels. This relatively new app-
roach has achieved success in various applications, particularly those
involving learning from complex objects. Because of the complexity of
MIML, the cost of data labeling increases drastically along with the
improvement of the model performance. In this paper, we introduce a
MIML active learning approach to reduce the labeling costs of MIML
data without compromising the model performance. Based on a query
strategy, we select and request from the Oracle the label set of the
most informative object. Our approach is formulated in a pool-based sce-
nario and uses Miml-knn as the base classifier. This classifier for MIML
is based on the k-Nearest Neighbor algorithm and has achieved supe-
rior performance in different data domains. We proposed novel query
strategies and also implemented previously used query strategies for
MIML learning. Finally, we conducted an experimental evaluation on
various benchmark datasets. We demonstrate that these approaches can
achieve significantly improved results than without active selection for
all datasets on various evaluation criteria.
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1 Introduction

In standard supervised learning, an object consists of a single instance, rep-
resented by a feature vector, and is associated with a single class label. This
framework is known as single-instance single-label (SISL) learning. The goal of
SISL learning is to train a classifier model which learns from training instances
how to assign a class label to any feature vector. However, in many real appli-
cations, such a learning framework is less convenient to model complex objects,
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which intrinsic representation is a collection of instances. Likewise, these com-
plex objects may also be associated simultaneously with multiple class labels.
For example, a scene image may comprise images of mountains, lakes, and trees,
and we may associate it with the labels Landscape and Summer at the same
time. If we extract a single instance to represent it, some useful information may
get lost. In another approach, we can segment the image into multiple regions
and extract one instance from each region of interest. Another example could
be in text categorization tasks where a document may be annotated with mul-
tiple labels. To fully exploit the content with multiple topics, it would be more
advantageous if we represent each paragraph with one instance. Zhou and Zhang
[22] introduced multi-instance multi-label (MIML) learning, where each object
is represented by a bag of multiple instances (feature vectors with fixed-length),
and each object is associated with a set of class labels. Several algorithms for
MIML have been proposed and achieved better performance in image and text
classification, in comparison to conventional methods adapted for MIML classifi-
cation. Other successful applications include genome protein function prediction
[18], gene expression patterns annotation [20], relationship extraction [15], video
understanding [19], classification of bird species [1,2], and predicting tags for
web pages [14].

In most cases of supervised learning, it is necessary to use large amounts of
training examples to obtain accurate models. Nevertheless, it is a typical situ-
ation that the costs of manually labeled data are expensive or time-consuming.
Active learning is an approach of a partially-supervised learning algorithm
[3,4,10] that reduces the required amount of training data without compro-
mising the model performance. This goal is accomplished by selecting the most
informative examples from the unlabeled examples and query their label from
an oracle (expert). Pool-based sampling is the most common scenario in active
learning in which queries are drawn from a static or closed pool of unlabeled
examples. Many active learning strategies have been proposed to estimate the
informativeness of unlabeled samples [13,17]. These query strategies are based
on different measures, e.g., uncertainty, expected error reduction and informa-
tion density. A comprehensive literature survey on query strategies is provided
by Settles [12].

For MIML datasets, the cost of labeled data depends on the maximum
amount of possible labels for a bag of instances. In some applications, MIML
provides a major advantage because it is easier or less costly to obtain labels at
the bag-level than at instance-level. Nevertheless, because of their multiplicity
in the input and output spaces, the required amount of training data to improve
the accuracy model increases dramatically. For this reason, it is of great interest
to implement active learning algorithms in a MIML framework. Currently, few
studies have proposed active learning methods for MIML. Retz and Schwenker
[9] use MimlSvm [23] as the base classifier in which the MIML data is reduced to
a bag-level output vector. This representation is later used to formulate an active
learning strategy. Another proposed method uses MimlFast as base classifiers



MIML-kNN Active Learning 141

and the approach actively queries the most valuable information by exploiting
diversity and uncertainty in both the input and output spaces [5].

The efficiency of an active learning algorithm relies not only on the query
strategy design but also on the selection of the base classifier. Two of the most
commonly used classifiers are MimlBoost and MimlSvm [22,23]. Nevertheless,
MimlBoost can handle only small datasets and does not yield good perfor-
mance in general [6]. MimlSvm reaches a satisfying classification accuracy for
text and image, but usually not for other types of data sets [1,6]. A better alter-
native is Miml-knn[21] (Multi-Instance Multi-Label k-Nearest Neighbor) which
combines the well-known k-Nearest Neighbor technique with MIML. Given a
test example, Miml-knn not only considers its κ neighbors but also considers
its κ′ citers, i.e., examples that consider the test example within their κ′ near-
est neighbors. The identification of neighbors and citers relies on the Hausdorff
distance which is an estimation of the distances between bags. One advantage of
using Miml-knn with pool-based sampling is that the distance between all bags
(i.e., labeled and unlabeled bags) can be precomputed and stored for later use in
any model learning or prediction. Beside this, Miml-knn classifiers have achieve
a superior performance than the MimlSvm and MimlBoost for different types
of data such as text [11,21], image [21,22], and bio-acoustic data [1].

In this paper, we introduce an active multi-instance multi-label learning app-
roach within a pool-based scenario and use Miml-knn as the base classifier. This
method aims to reduce the amount of training MIML data needed to achieve
the highest possible classification performance. This paper presents two major
contributions to active learning and MIML learning. First, we motivate and
introduce several new query strategies within the MIML framework. Later we
conduct an empirical study of our proposed active learning methods on a variety
of benchmark MIML data.

The remainder of this paper is organized as follows. Section 2 describes in
detail the proposed approach. Section 3 describes the experiments and presents
their results, followed by conclusions in Sect. 4.

2 Method

2.1 MIML Framework

In a MIML framework, an example X consists of a bag of instances X = {xj}m
j=1

where m is the number of instances and each instance xj = [x1, . . . , xD] is a D-
dimensional feature vector. The number of instances m can variate among bags.
In this framework, each bag X can be associated to one or more labels and
they are represented by a label set Y = {yk} where k ∈ {1, . . . ,K}. For our
purposes, Y is represented by a label indicator vector I = [I1, . . . , IK ] where the
entry Ik = 1 if yk ∈ Y and Ik = 0 otherwise. Given a fully labeled training
set L = {(Xl, Yl)}L

l=1, the learning task in a MIML framework is to train a
classification model which is a function h : 2X → 2Y that maps a set of instances
X ∈ X to a set of labels Y ∈ Y.
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MIML algorithms such as MimlSvm, MimlRbf and Miml-knn reduce the
MIML problem to a single-instance multi-label problem by associating each bag
X with a bag-level feature vector z (X) ∈ R

K which combines information from
the instances in the bag. Each algorithm uses different approaches to compute
a bag-level feature vector. Nevertheless all these methods heavily depend on the
use of some form of bag-level distance measure. The most common choice is
the Hausdorff distance DH (X,X ′). Retz and Schwenker [9] examined several
variations of this distance. For this paper we consider the maximum Dmax

H ,
median Dmed

H and average Davg
H Hausdorff distances defined as:

Dmax
H (X,X ′) = max

{
max
x∈X

min
x′∈X′

d (x,x′), max
x′∈X′

min
x∈X

d (x,x′)
}

(1a)

Dmed
H (X,X ′) =

1
2

(
median

x∈X
min
x′∈X′

d (x,x′),median
x′∈X′

min
x∈X

d (x,x′)
)

(1b)

Davg
H (X,X ′) =

1

|X|+|X′|

(∑
x∈X

min
x′∈X′

d (x,x′) +
∑

x′∈X′
min
x∈X

d (x,x′)

)
(1c)

where d (x,x′) = ‖x − x′‖ is the Euclidean distance between instances.

2.2 MIML-kNN

In the following we describe Miml-knn algorithm [21]. Given an example bag
X and a training set L = {(Xl, Yl)}, first we identify in the training bags
XL = {Xl}, the κ nearest neighbors, and the κ′ citers of X by employing the
Hausdorff metric DH (X,X ′). This means that we have to identify the neighbors
set Nκ (X) and the citers set Cκ′ (X). These sets are defined as follows

Nκ (X) = {A|A is one of X’s κ nearest neighbors in XL} (2a)
Cκ′ (X) = {B|X is one of B’ sκ′ nearest neighbors in XL ∪ {X}} (2b)

The citers bags are the bags that consider X to be one of their κ′ nearest neigh-
bors. After the computation of Nκ (X) and Cκ′ (X), we defined a labeling counter
vector z (X) = [z1 (X) , . . . , zK (X)] where the entry zk (X) is the number of bags
in Z (X) = Nκ (X) ∪ Cκ′ (X) that include label yk in their label set. Using the
binary label vector I (X), z (X) is defined as

z (X) =
∑

X′∈Z(X)

I (X ′) (3)

Later, the information contained in z (X) is used to obtain the predicted
label set Ŷ associated to X by employing a prediction function f (X) =
[f1 (X) , . . . , fK (X)] such that

fk (X) = w�
k · z (X) (4)

where w�
k is the kth transposed column of the weight matrix W = [w1, . . . ,wK ].

The classification rule is that the label ŷk belongs to the predicted label set
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Ŷ (X) = {ŷk} only if fk (X) > 0. Hence, for the predicted indicator vector
Î (X) =

[
Î1, . . . , ÎK

]
the entry Îk = 1 if fk (X) > 0 and Îk = 0 otherwise. The

values of W are computed using a linear classification approach by minimizing
the following sum-of-squares error function

E =
1
2

L∑
l=1

K∑
k=1

(
w�

K · z (Xl) − yk (Xl)
)2

(5)

This error minimization implies to solve the weight matrix W as in a least sum-
of-squares problem of the form

(
Z�Z

)
W = Z�Y. In this case, the matrix W

is computed using a linear matrix inversion technique of singular value decom-
position.

2.3 Active Learning

In this part, we present the strategies of active learning for a multi-instance
multi-label data set using Miml-knn as the base classifier. Initially we have a
set of labeled data L = {(Xl, Yl)} with L labeled bags and a set of unlabeled
data U = {Xu} with U unlabeled bags. In an active learning scenario, usually
the amount of unlabeled data is much larger than the amount of labeled data,
i.e. U � L. The main task of an active learning algorithm is to select the most
informative bag X∗ according to some query strategy φ (X), which is a function
evaluated on each example X from the pool U . In this work, the selection of the
bag X∗ is done according to

X∗ = argmax
X∈U

φ (X) (6)

Algorithm 1 describes the pool-based active learning algorithm for training a
Miml-knn model. One advantage of using Miml-knn with pool-based sam-
pling, is that, the distance between all bags (i.e. labeled and unlabeled bags)
can be precomputed and stored for later use in any model learning or prediction
task. As in Algorithm 1, first we calculated the bag distance matrix D such that
dij = DH (Xi,Xj) for all bags Xi,Xj . Then from this matrix we can extract
the distance submatrix DL of the labeled bags and use it in the training of a
Miml-knn model (see Eq. 5). For classification of the bag X, we have to feed
the trained Miml-knn model with the subtracted matrix DL∪{X} (see Eq. 2).
In the following, we describe in detail the query strategies we proposed which
will be later compared in an empirical study.

Uncertainty Sampling (Unc). This approach is one of the most common
in SISL framework. Here a learner queries the instance that is most uncertain
how to label. For a muti-label problem we define the uncertainty as φ (X) =
1 − P (Ŷ |X) where P (Ŷ |X) is the bag posterior probability for the predicted
label set Ŷ given the bag X. We calculate P (Ŷ |X) as the probability given the
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Algorithm 1. Active kMIML
input:

L: Labeled data set {(Xl, Yl)}
U : Unlabeled data set {Xu}
κ : Neighbors parameter
κ′: Citers parameter

output:

h : Miml-knn model

1 begin
2 Calculate the distance matrix D using DH (Xi, Xj) for all bags

Xi, Xj ∈ {Xu, Xl}
3 Train a Miml-knn model h on L using κ, κ′ and DL

4 repeat
5 Classify each bag X ∈ U with trained Miml-knn model h using

κ, κ′,DL∪{X}
6 Calculate φ (X) for all X
7 Select the most informative bag X∗ with arg max φ (X)
8 Request the label set Y ∗ for X∗

9 Remove X∗ from U
10 Add (X∗, Y ∗) to L
11 Train a Miml-knn model on L using κ, κ′ and DL
12 until stop criterion reached

combination of labels ŷk founded in Ŷ (X). For this we use a single-label posterior
probability P (ŷk|X) to estimate the uncertainty φ (X) as

φ (X) = 1 −
∏

ŷk∈Ŷ

P (ŷk|X) (7)

The Miml-knn classifier output for the kth label is a prediction function fk (X).
This function outputs higher positive or lower negative values for very certain
positive or negative predictions respectively. Considering Eq. 4, this means that
when |fk (X)| � 0 the vectors w�

k and z are linearly codependent. For the most
uncertain label prediction then |fk (X)| ≈ 0 which means that w�

k and z are
linearly independent. Based on this, we estimate P (ŷk|X) using a normalization
on fk (X) using the Cauchy–Schwarz inequality as follows

P (ŷk|X) =
1
2

(
w�

k · z (X)
‖w�

k ‖‖z (X) ‖ + 1
)

(8)

Diversity (Div). This method is based on the multi-label active learning
method proposed by Huang et al. [5,6]. This method considers that the most
informative bags are those where the number of predictions are inconsistent with
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the average of predicted labels in the training set. Using the indicator vector
Î (X), φ (X) is formulated as follows

φ (X) =

∣∣∣∣∣
1
K

K∑
k=1

Îk (X) − ρL

∣∣∣∣∣ (9)

where

ρL =
1

LK

L∑
l=1

K∑
k=1

Ik (Xl) (10)

Margin (Mrg). A high positive (or low negative) value of fk(X) means that
the model has a high certainty that X positively (or negatively) belongs to the
kth class. Meanwhile lower absolute values in fk(X) indicate a high uncertainty.
This strategy chooses the bag which average output values are the nearest to
zero. This means

φ (X) = − 1
K

K∑
k=1

|fk (X)| (11)

Range (Rng). This method is similar to the margin query strategy. In this
case is considered that lower range of output values fk (X) indicates higher
uncertainty. This strategy is defined as

φ (X) = −
(

max
k

fk (X) − min
k

fk (X)
)

(12)

Percentile (Prc). This approach is related to ExtMidSelect used by Retz
und Schwenker [9]. This method measures the distance between the upper
and lower values of f (X) = [f1, . . . , fK ] delimited by the percentile value
Fp (X) = percentile(f (X) , p) at the percentage p = 100 (1 − ρL) %, see Eq. 10.
The strategy is defined as

φ (X) = − |F↑ (X) − F↓ (X)| (13)

where F↑ (X) and F↓ (X) are respectively the conditional means of the upper
and lower values, this means F↑ (X) = E [f (X) |fk ≥ Fp] and F↓ (X) =
E [f (X) |fk < Fp].

Information Density (IDC & IDH). It has been suggested that uncertainty
based strategies for SISL are prone to querying outliers. To address this problem,
Settles et al. [13] proposed a strategy that favors uncertain samples nearest to
clusters of unlabeled samples. This strategy uses a similarity measure S (X) and
an uncertainty sampling φu (X) such that

φ (X) = φu (X) · S (X) (14)
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Table 1. Statistics on data sets used in experiments

Instances per bag Labels per bag

Dataset Bags Labels Inst. Feat. min max mean ± std. min max mean ± std.

Birds 548 13 10,232 38 2 43 8.7 ± 7.9 1 5 2.1 ± 1.0

Scene 2,000 5 18,000 15 9 9 9.0 ± 0.0 1 3 1.2 ± 0.4

Reuters 2,000 7 7,119 243 2 26 3.6 ± 2.7 1 3 1.2 ± 0.4

CK+ 430 79 7,915 4,391 4 66 18.4 ± 7.6 2 9 4.0 ± 1.5

UnitPro(G.s.) 379 340 1,250 216 2 8 3.1 ± 1.2 1 69 4.0 ± 7.0

The uncertainty factor φu (X) is formulated as in Eq. 7. We defined two types
of similarity measures. The first approach (IDC) is based on a cosine distance
using the formula

cos (X,X ′) =
x̃ · x̃′

‖x̃‖‖x̃′‖ (15)

where x̃ is a bag-level vector that is the mean of features over all instances
xj ∈ X, this is x̃ = (1/m)

∑m
j=1 xj where m = |X|. The similarity measure

based on cosine distance is defined as

S (X) =
1
U

∑
X′∈ U

cos (X,X ′) (16)

The second approach (IDH) is based on the Hausdorff distance from Eq. 1. The
similarity measure is defined as

S (X) = 1 − exp
(
D̄U (X)

)
∑

X′∈ U
exp

(
D̄U (X ′)

) (17)

where D̄U (X) is the mean distance between the bag X and the unlabeled bags,
this is D̄U (X) = (1/U)

∑U
u=1 DH (X,Xu). In order to have comparable measures

we applied on D̄U (X) a softmax averaging.

3 Experiments

We conduct a series of experiments to compare the performance of each of the
query strategies presented in this work. We employed five MIML benchmark
datasets including Birds [1,2], Reuters [11], Scene [22], CK+ [7,8] and Unit-
Pro(G.s.) [16,18]. A summary of the datasets is presented in Table 1. All data
sets are publicly available and prepared as MIML datasets except for the CK+
dataset. We extracted this last one from the Cohn-Kanade dataset and the labels
correspond to action units categories. A bag represents an image sequence and
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Table 2. Miml-knn parameters

ecnamrofrePsretemaraP

Dataset DH κ κ′ h.l. ↓ r.l. ↓ o.e. ↓ co. ↓ a.a. ↑ a.p. ↑ a.r. ↑ a.f1 ↑
Birds med 5 15 0.100 0.080 0.138 2.633 0.431 0.764 0.780 0.781
Scene med 1 9 0.171 0.182 0.340 0.975 0.463 0.620 0.575 0.597
Reuters max 5 17 0.037 0.031 0.078 0.355 0.820 0.895 0.910 0.903
CK+ max 43 19 0.034 0.124 0.198 28.14 0.163 0.757 0.544 0.633
UnitPro(G.s.) avg 43 11 0.025 0.356 0.653 175.9 0.267 0.237 0.297 0.263

we extracted appearance based (local binary patterns) and shape based (his-
togram of oriented gradients) features at each image. UnitPro(G.s.) dataset is
a complete proteome of the bacteria Geobacter sulfurreducens downloaded from
the UniProt databank [16].

For each dataset, we randomly sample 20% of bags as the test data, and the
rest as the unlabeled pool for active learning. Before the active learning tasks, 5%
of the unlabeled pool is randomly labeled to train an initial Miml-knn model.
After each query, we train a Miml-knn model with the extended labeled data
and we test the performance of this model on the test set. Additionally, we run an
experiment with a bag random sampling and use it as a reference. We run each
experiment until we label 50% of the original unlabeled pool. In the experiments,
a simulated Oracle provides the labels requested. We repeat the experiment
30 times for each of the datasets. The performance of the Miml-knn models
using active learning was estimated with eight measures: hamming loss, ranking
loss, coverage, one error, average accuracy, average precision, average recall and
average f1-measure (see [1,22,23]). These measures are common performance
metrics for evaluation in MIML framework. Lower values for hamming loss,
ranking loss, coverage and one error imply a better performance and vice-versa
for the other four measures.

For each data set we tuned the number of neighbors κ, the number of citers
κ′ and the type of Hausdorff distance DH to obtain a maximum model perfor-
mance. We perform a cross-validation test over all combinations of (κ, κ′) ∈
{1, 3, 5, . . . , 75}2 with DH ∈ {Dmax

H ,Davg
H ,Dmed

H }. For each combination we
tested 30 replicas with 20% and 80% of the data randomly selected as test-
ing and training set respectively. At last, we selected the parameters setting
that maximizes the average f1-measure. The results of the parameter tuning are
reported in Table 2.

The results of the performance experiments are shown in Table 3. The black
dot (•) indicates that the performance is significantly better than the bag random
sampling (Rnd). The white dot (◦) indicates the opposite case. Regarding the
query strategy, we observe that among all datasets several strategies have supe-
rior performance than Rnd. The information density based approaches (IDD &
IDH) in UnitPro(G.s.) and Scene have significantly worse performance. In con-
trast, these strategies performed better using the CK+ and Birds dataset. The
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Table 3. Comparison of query strategies at 50% of data labeled. ↑ (↓) indicate that
higher (lower) values imply a better performance. • (◦) indicate that the query strategy
is significantly better (worse) than a random bag sampling (Rnd) based on a paired
t-test at the 5% significance level (p < 0.05).

Rnd Unc Div Mrg Prc Rng IDC IDH

Birds

h.l. ↓ 0.116 0.111• 0.107• 0.097• 0.100• 0.101• 0.106• 0.116
r.l. ↓ 0.099 0.093• 0.089• 0.077• 0.077• 0.079• 0.086• 0.091•
o.e. ↓ 0.188 0.183 0.173• 0.163• 0.157• 0.158• 0.178 0.189
co. ↓ 2.889 2.804 2.752• 2.559• 2.552• 2.584• 2.702• 2.761•
a.a. ↑ 0.730 0.720 0.724 0.718 0.767• 0.768• 0.738 0.731
a.p. ↑ 0.821 0.826 0.835• 0.850• 0.852• 0.848• 0.835• 0.822
a.r. ↑ 0.730 0.720 0.724 0.718 0.767• 0.768• 0.738 0.731
a.f1 ↑ 0.773 0.769 0.775 0.778 0.807• 0.806• 0.783• 0.774
Scene

h.l. ↓ 0.196 0.204◦ 0.200◦ 0.187• 0.190• 0.191• 0.205◦ 0.209◦
r.l. ↓ 0.210 0.221◦ 0.213 0.191• 0.193• 0.195• 0.221◦ 0.226◦
o.e. ↓ 0.380 0.396◦ 0.383 0.352• 0.362• 0.363• 0.396◦ 0.404◦
co. ↓ 1.100 1.140◦ 1.110 1.036• 1.039• 1.046• 1.140◦ 1.160◦
a.a. ↑ 0.493 0.492 0.496 0.470◦ 0.496 0.506• 0.487 0.494
a.p. ↑ 0.754 0.744◦ 0.752 0.771• 0.767• 0.766• 0.744◦ 0.739◦
a.r. ↑ 0.493 0.492 0.496 0.470◦ 0.496 0.506• 0.487 0.494
a.f1 ↑ 0.596 0.592 0.597 0.584◦ 0.603 0.609• 0.588 0.592
Reuters

h.l. ↓ 0.045 0.042• 0.041• 0.050◦ 0.048◦ 0.051◦ 0.104 0.104
r.l. ↓ 0.039 0.035• 0.034• 0.044◦ 0.033• 0.039 0.121 0.121
o.e. ↓ 0.100 0.087• 0.085• 0.120◦ 0.090• 0.106◦ 0.274 0.274
co. ↓ 0.409 0.387• 0.381• 0.436◦ 0.374• 0.407 0.916 0.916
a.a. ↑ 0.872 0.901• 0.896• 0.826◦ 0.905• 0.883• 0.675 0.675
a.p. ↑ 0.934 0.941• 0.943• 0.923◦ 0.941• 0.931 0.816 0.816
a.r. ↑ 0.872 0.901• 0.896• 0.826◦ 0.905• 0.883• 0.675 0.675
a.f1 ↑ 0.902 0.921• 0.919• 0.871◦ 0.922• 0.906 0.738 0.738
CK+

h.l. ↓ 0.041 0.040 0.040 0.040 0.043◦ 0.042◦ 0.039• 0.040•
r.l. ↓ 0.163 0.152• 0.150• 0.157 0.157 0.157 0.146• 0.149•
o.e. ↓ 0.270 0.246• 0.247• 0.268 0.264 0.263 0.250 0.240•
co. ↓ 32.84 31.98 31.00• 32.19 32.31 32.08 30.54• 30.97•
a.a. ↑ 0.492 0.514• 0.520• 0.514• 0.524• 0.526• 0.511• 0.500
a.p. ↑ 0.599 0.615• 0.617• 0.609• 0.605 0.607 0.622• 0.622•
a.r. ↑ 0.492 0.514• 0.520• 0.514• 0.524• 0.526• 0.511• 0.500
a.f1 ↑ 0.540 0.560• 0.564• 0.557• 0.561• 0.563• 0.561• 0.554•
UnitPro(G.s.)

h.l. ↓ 0.040 0.043 0.032• 0.027• 0.064◦ 0.061◦ 0.076◦ 0.086◦
r.l. ↓ 0.503 0.496 0.494 0.498 0.501 0.514 0.531◦ 0.519
o.e. ↓ 0.834 0.826 0.819 0.811• 0.824 0.828 0.865◦ 0.866◦
co. ↓ 196.9 192.3 192.5 187.6• 189.9• 192.6 212.5◦ 201.7
a.a. ↑ 0.180 0.202• 0.181 0.170 0.221• 0.202• 0.185 0.206•
a.p. ↑ 0.141 0.148 0.154 0.168• 0.158• 0.153 0.101◦ 0.108◦
a.r. ↑ 0.180 0.202• 0.181 0.170 0.221• 0.202• 0.185 0.206•
a.f1 ↑ 0.157 0.170 0.166 0.168 0.183• 0.173• 0.129◦ 0.141◦

best performance among all datasets is achieved by the percentile strategy (Prc)
followed by margin (Mrg) and diversity (Div) strategies. Regarding the dataset,
in the Reuters and UnitPro(G.s.) dataset we observe in general a remarkable
performance of the strategies. In the Reuters dataset, uncertainty (Unc) and
diversity (Div) strategies are significantly better for all metrics.
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Fig. 1. Example of query strategies performance based on the average f1-measure
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Fig. 2. Example of query strategies performance based on the hamming loss

Figures 1 and 2 shows the performance curves as the number of labeled data
increases until the stop criterion is reached (50% labeled). We show a selection
of the most representative curves based on the avg. f1-measure and hamming
loss metrics. We observe in Fig. 1b that the Miml-knn model can reach its best
performance with much less labeled data (∼25%) using uncertainty (Unc) or
percentile (Prc) query strategies. A similar situation can be observed in Fig. 2c
where the Miml-knn reaches nearly the lowest hamming loss at approx. 35% of
labeled data using the margin (Mrg) query strategy.

4 Conclusion

In this paper we proposed an active learning approach to reduce the labeling
cost of the MIML dataset using Miml-knn as base classifier. We introduced
novel query strategies and also implemented previously used query strategies for
MIML learning. Finally, we conducted an experimental evaluation on various
benchmark datasets. We demonstrated that these approaches can achieve sig-
nificantly improved results than no active selection for all datasets on various
evaluation criteria.
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