
Testing Ambient Assisted Living
Solutions with Simulations

Marlon Cárdenas(B), Jorge Gómez Sanz(B), and Juan Pavón(B)

Department of Software Engineering and Artificial Intelligence,
Complutense University of Madrid, Madrid, Spain

{marlonca,jjgomez,jpavon}@ucm.es

Abstract. The paper introduces a testing solution for evaluating Ambi-
ent Assisted Living systems by means of 3D simulations generated with
a game engine, complex event processing, and classifiers. The solution
aims to ensure that: (1) some key features of the problem appear in the
simulation, and (2) the assistive solution interacts with the persons in the
right way. A specific testing solution is needed because of the evolving
nature of the simulation (each iteration of the requirements specification
involves changes in the activities within the simulation) and the assis-
tive solution (it operates in real time and evaluating its performance
may require manually inspecting hours of simulation). The approach is
illustrated with a proof-of-concept experiment.

Keywords: 3D simulation · Ambient Assisted Living (AAL)
Real-time simulation · Requirements gathering

1 Introduction

One of the main areas of application of Ambient Intelligence (AmI) is the support
for improving the autonomy and quality of life of ageing population with Ambient
Assisted Living (AAL) solutions [8]. They cover many needs of the daily life, such
as facilitating the administration of medication, fall detection, and monitoring
of chronic diseases or common activities, among others.

Although these tasks are usually performed by care-givers, AAL technologies
are contributing to the assistance of older persons at home with new services,
which can work 24 h a day and reach a larger population. The development of an
assistive solution must take into account the participation of the end-users in its
process, which has to be user-centered and co-creative [6], to prevent technology
rejection situations. Co-creation happens usually in the context of expensive
facilities, such as living labs.

Some recent tools [7] are translating the co-creation effort to the computer,
addressing both the modeling of the problem and its corresponding assistive solu-
tion through computer 3D simulations [3]. 3D simulations are easier to under-
stand than technical specifications, and do not require special skills by the users.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
I. Medina-Bulo et al. (Eds.): ICTSS 2018, LNCS 11146, pp. 56–61, 2018.
https://doi.org/10.1007/978-3-319-99927-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99927-2_5&domain=pdf


Testing Ambient Assisted Living Solutions with Simulations 57

This facilitates communication in multidisciplinary teams. Though this is an
advance, they have led to new problems: how to ensure that each new iteration
of the 3D simulations is consistent with previous iterations, and how to verify
that the assistive solution and the simulated characters within are behaving as
they should. Since simulations are run in real time, validation requires some sort
of time accounting while analyzing the events that are produced by the sim-
ulation. A way to do this is by using Complex Event Processing (CEP). This
technique analyses incoming events from some user defined sources and applies
user-defined rules to find patterns in them. We apply this feature to arrange unit
tests to support the analysis of the 3D simulation progress.

The contributions of this work are an informal formulation of a unit test and
the identification of the required elements for the validation of 3D simulations of
AAL solutions. Section 2 presents an informal unit test definition. This is followed
by a description of the deployment structure of the solution in Sect. 3. Section 4
presents a proof of concept, an example of memory loss scenario, which has
been developed using simulations generated with the AIDE (Ambient Intelligence
Development Environment) software framework [5], which is based on the use
of model driven development techniques [4], and has been applied in different
domains [2]. Finally, Sect. 5 summarizes the findings.

2 A Unit Test Definition

The unit test considers either the validation of simulation components (be it the
behavior of its constituents, including the assistive solution) or the simulation
as a whole. If the assistive solution is conceived within a use case of a certain
technology in one or many scenarios, a single simulation represents one (prefer-
ably) of those scenarios. The developer expects to model a scenario that reflects
some problem of a person (for instance, a person at home forgets to close a cup-
board door because she initiates another activity), and an assistive solution (for
instance, something detects the situation and reminds her that the door should
be closed).

The testing goal is to generate validation instructions for each of these two
issues (the description of the problem and the assistive solution), and both are
assessed according to the progress of the simulation. The simulation consists of
several elements, which imply specific validation issues:

Avatar. A character that performs actions within the simulation and interacts
with the assistive solution. Avatar validation implies that (1) the character is
in certain locations and that (2) it initiates, and (3) completes certain activities,
successfully or not. The outcome of the activity, since it may involve an interplay
with the assistive solution, needs to account the sensory input of the avatar (e.g.,
determining if anyone has talked to the character) or the status of some elements
in the environment.

Activities. Activities in the simulation are presented as graphical animations of
the gestures the character should make, such as running, walking, falling, water



58 M. Cárdenas et al.

tap open, switch on light, to cite some. Activities validation implies that
(1) they occur along the simulation in a particular sequence, and that (2), despite
the animation being used, the character is showing certain gestures, such as bend-
ing the arm, even-though there is no explicit isolation animation for that and it
is just a part of a bigger animation. The outcome of the activity is evaluated at
the avatar level.

Environment. The place where activities take place: a house, a mall, an uni-
versity building, etc. This includes Actuators, objects that allow avatars in the
simulation to interact with the environment, such as power switches, TV remote
control, water taps, etc. Environment validation implies that (1) the objects
in the environment produce the expected stimulus at the expected order, such as
a TV showing the expected TV program, and that (2) they perceive the avatar’s
or assistive solution’s actions, such as a fridge door being closed by the avatar
or a house alarm being activated by the assistive solution.

Sensors. They provide information on what is happening in the simulation,
from an avatar, the environment, or the interaction among them. They intend
to reproduce the expected output of a real sensor. Sensors validation implies
(1) determining that the expected sensory input is present at the necessary
moments as a consequence of some actions performed along the simulation by
the character, other objects, or the assistive solution itself. Also, (2) that the
sensor output matches in frequency and data quality those values obtained by
real sensors. For instance, some sensors need to be modeled with noisy signals
because of limitations of the current technology.

2.1 Validation Success Criteria

Evaluating the success of an assistive solution-simulation interplay requires tak-
ing into account two issues. First, that the simulation continuously produces
streams of events that have to be processed on-line (if the simulation is a
long one and the developer wants to identify failures sooner) or off-line (if the
simulation is a short one). Second, that the interaction of the assistive solution
and the simulation may be intermittently successful along the simulation.

The idea of time window is used to partially deal with these two issues. A
time window classifies the events from the simulation into groups correspond-
ing to those produced within two instants of time. The size of the time window
will be defined by the developer depending on the domain.

The success of the simulation-solution will then be defined in terms of: what
situations should occur, or should not, within the time window; and whether what
happened in some window, should or should not happen in some/any/all existing
time windows along the execution.

3 Testing Infrastructure

The software components that are necessary for this validation are run within
three separated nodes, as shown in Fig. 1. Simulations are created and run with



Testing Ambient Assisted Living Solutions with Simulations 59

Fig. 1. UML deployment diagram showing nodes and artifacts involved in the testing

the AIDE tool. AIDE also enables communication between the Solution and
the Simulation. The Tester is the one being introduced in this paper.

The Solution runs outside the Simulation, so as to reproduce real situa-
tions where delays in the decision making may lead to failures in assisting people.
It can be made of emulators (e.g., Android emulators or IoT emulators) or plain
processes enabled with communication facilities towards the simulation. It inter-
acts with the Simulation through AIDE [5] middleware, obtaining information
from the simulated sensors deployed within the simulation (e.g., movements of
some limbs of the avatar) and triggering actions (e.g., speaking to the avatar).
The Simulation uses the open source 3D game engine JMonkey to run the
actions as defined in a custom visual language [1]. The simulation runs in real
time, though it can be accelerated to some extent.

The Tester is the node performing the validation of the simulation and the
interplay of simulation and the solution. It initializes and launches a Complex
Event Processing (CEP) instance with the necessary files containing the Specific
CEP rules, the Trained classifiers, and a particular time window (CEP is
configured with one). The Specific CEP rules analyze the stream of events
as produced by the simulation and generates success/failure states within each
time window. The rules identify patterns in the generated events along the time
window and generates new labeled events, such as the avatar is in the living
room or the avatar is running. Other CEP rules combine the new labeled events
with other pieces of information to implement the success criteria within a time
window and across time windows.

Some low level information cannot be informed directly by the simulation,
such as whether a door is open or closed, if there are people speaking, or if the
character is raising a hand. Focusing on the later, if the situation to be repro-
duced is a character that cannot perform movements with an arm, this cannot
be identified by just checking what animations are being run. The only way is
by checking position and movement data associated to the hand component in
the simulation. Trained classifiers allow to deal with such cases. They are
connected directly with the Simulation and classify low level events, e.g., posi-
tion of elements, into some predetermined categories, such as the arm is being
moved. The classifiers have to be trained to the situations to be recognized,
though, which may not be trivial for all developers.



60 M. Cárdenas et al.

4 Proof of Concept

This framework is illustrated with an assistive system that should detect when
doors are left open. This case is relevant in cases of memory loss, which are fre-
quent in patients with Alzheimer. Table 1 describes the sequence of validations to
be performed and that affects both objects in the environment (the fridge door,
the glass), the location of the avatar (kitchen and living room), and the activities
(walking, drinking, opening doors, sitting down). Some low level evaluation is
required to decide.

Table 1. Definition of the activities of the simulation and the corresponding validation
steps

Fig. 2. Result of all the tests after running the 3D simulation of the scenario

It is expected that step number 5 fails because the patient forgets to close
the door. Only an assistive solution will change the situation and make the test
complete successfully. The assistance could be as simple as reminding the avatar
that the door was left open. To achieve so, the challenge is to determine the
minimal amount of affordable sensors to be deployed in the simulation. The use
case assumes the sensors are located over the avatar (chest - s1, left hand - s2,
right hand - s3). The generated sensor feed is processed by the assistive solution,
or the validation component, the same way as a real sensor feed. With this infor-
mation, it is possible to detect gestures with specific trained classifiers, such as
get up/get down hand. The execution of the simulation with the analysis of the
outputs made with the CEP infrastructure is presented in Fig. 2. The streams of



Testing Ambient Assisted Living Solutions with Simulations 61

events are analyzed and the success of each step decided. Each validation step is
associated with a time window at the right hand part of the figure. To the left,
an actual 3D simulation snapshot is presented. To the right, a sample report
generated by the unit test is presented where step 5 fails. Now, it would be up to
the co-creation team to determine what assistive solution can solve this issue.

5 Conclusion and Future Work

This paper has introduced elements necessary to validate 3D simulations that
capture a daily living issue and permit to address the features required from
an assistive solution. The paper has presented the elements to be validated and
illustrated the general approach using complex event processing technology com-
bined with classifiers to analyze low level raw data. The result is validated in a
3D scenario where one of the validation steps fails and can only succeed when the
assistive solution is attached. This necessary failure could be maintained along
the development to ensure the assistive solution is really making a difference.

Acknowledgments. We acknowledge support from the project “Collaborative
Ambient Assisted Living Design (ColoSAAL)” (TIN2014-57028-R ) funded by Spanish
Ministry for Economy and Competitiveness; and MOSI-AGIL-CM (S2013/ICE-3019)
co-funded by the Region of Madrid Government, EU Structural Funds FSE, and
FEDER.

References

1. Campillo-Sanchez, P., Gomez-Sanz, J.J.: A framework for developing multi-agent
systems in ambient intelligence scenarios. In: Proceedings of the 2015 AAMAS Con-
ference, AAMAS 2015, pp. 1949–1950 (2015)

2. Fernández-Isabel, A., Fuentes-Fernández, R.: Analysis of intelligent transportation
systems using model-driven simulations. Sensors 15(6), 14116–14141 (2015)

3. Gomez-Sanz, J.J., Campillo-Sánchez, P.: Domain independent regulative norms for
evaluating performance of assistive solutions. Pervasive Mob. Comput. 34, 79–90
(2017)

4. Gómez-Sanz, J.J., Pavón, J.: Meta-modelling in agent oriented software engineering.
In: Garijo, F.J., Riquelme, J.C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI),
vol. 2527, pp. 606–615. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36131-6 62

5. GRASIA: AIDE (2018). http://grasia.fdi.ucm.es/aide
6. Pallot, M., Trousse, B., Senach, B., Scapin, D.: Living lab research landscape: from

user centred design and user experience towards user cocreation. In: First European
Summer School “Living Labs” (2010)

7. Pax, R., Cárdenas Bonett, M., Gómez-Sanz, J.J., Pavón, J.: Virtual development of
a presence sensor network using 3D simulations. In: Alba, E., Chicano, F., Luque,
G. (eds.) Smart-CT 2017. LNCS, vol. 10268, pp. 154–163. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59513-9 16

8. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults.
IEEE J. Biomed. Health Inf. 17(3), 579–590 (2013)

https://doi.org/10.1007/3-540-36131-6_62
https://doi.org/10.1007/3-540-36131-6_62
http://grasia.fdi.ucm.es/aide
https://doi.org/10.1007/978-3-319-59513-9_16

	Testing Ambient Assisted Living Solutions with Simulations
	1 Introduction
	2 A Unit Test Definition
	2.1 Validation Success Criteria

	3 Testing Infrastructure
	4 Proof of Concept
	5 Conclusion and Future Work
	References




