
JMCTest: Automatically Testing
Inter-Method Contracts in Java

Paul Börding1, Jan Haltermann1, Marie-Christine Jakobs2(B),
and Heike Wehrheim1

1 Paderborn University, Paderborn, Germany
2 LMU Munich, Munich, Germany

M.Jakobs@lmu.de

Abstract. Over the years, Design by Contract (DbC) has evolved as a
powerful concept for program documentation, testing, and verification.
Contracts formally specify assertions on (mostly) object-oriented pro-
grams: pre- and postconditions of methods, class invariants, allowed call
orders, etc. Missing in the long list of properties specifiable by contracts
are, however, method correlations: DbC languages fall short on stating
assertions relating methods.

In this paper, we propose the novel concept of inter-method contract,
allowing precisely for expressing method correlations. We present JMC as
a language for specifying and JMCTest as a tool for dynamically check-
ing inter-method contracts on Java programs. JMCTest fully automat-
ically generates objects on which the contracted methods are called and
the validity of the contract is checked. Using JMCTest, we detected
that large Java code bases (e.g. JBoss, Java RT) frequently violate stan-
dard inter-method contracts. In comparison to other verification tools
inspecting (some) inter-method contracts, JMCTest can find bugs that
remain undetected by those tools.

1 Introduction

Design by Contract (DbC), first proposed by the Vienna definition language [35],
has become a popular concept for documentation, testing, and verification of
(mainly) object-oriented software. Today, DbC concepts exist for languages like
Eiffel [28], Java (JML [26]), .Net (Code Contracts [19]), C (like used in VCC [17])
or Python [31]. Typically, contracts are directly written into the code and thus
also document programs. Contracts are moreover the basis for test generation
(e.g., [7,11,14,29,30] for JML) and runtime verification (e.g., [9,13] for JML).

Contracts can refer to different entities of object-oriented programs. Most
DbC languages contain pre- and postconditions of methods on normal, i.e. non-
exceptional, behavior and class invariants. More sophisticated languages allow
to specify history constraints, behavioral subtypes, or type-state properties (call
order of methods), incorporate the description of normal as well as exceptional
behavior, and include so-called model variables as convenient way of specifica-
tion. However, all these languages cannot explicitly state method correlations.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
I. Medina-Bulo et al. (Eds.): ICTSS 2018, LNCS 11146, pp. 39–55, 2018.
https://doi.org/10.1007/978-3-319-99927-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99927-2_4&domain=pdf

40 P. Börding et al.

(1) Object o;
true → o.equals(o)

(2) Object o1, o2, o3;
o1.equals(o2) AND o2.equals(o3)
→ o1.equals(o3)

(3) Object o1, o2;
o1.equals(o2) →
o1.hashCode() == o2.hashCode()

(4) MyClass mc;
mc.incr() AND int v = mc.get() →
mc.decr() AND v == mc.get()

public class MyClass {

private int i;

@Override

public boolean equals(Object o){

if (o == null) return false;

if (o == this) return true;

if (!(o instanceof MyClass))

return false;

return i == ((MyClass) o).i;

}

@Override

public int hashCode(){

return super.hashCode(); }

public void incr() {i++;}

public void decr() {i--;}

public int get() {return i;}}

Fig. 1. Four contracts (left) on the Java method equals and the Java methods incr

and decr, respectively, and an example class violating contract 3 (right).

Method correlations describe interactions between methods, i.e., the effects
of a method execution on the results of other methods or the relation between
method results. Such correlations often exist and constitute an integral part of
the (intended) behavior of classes. Even the Java API documentation informally
states such correlations and expects application classes extending predefined
Java classes or implementing Java interfaces to satisfy these. The most prominent
one is the contract on the methods equals and hashCode of class Object:

“If two objects are equal according to the equals method, then calling
the hashCode method on each of the two objects must produce the same
integer result.” (From: Java API documentation of class Object)

While this example concerns a general case (all classes must adhere to this
behavior), correlations might also be application specific like one method having
the inverse effect of another (e.g. an increment and a decrement). Today’s DbC
language, however, fall short on specifying method correlations.

In this paper, we rectify this situation by proposing a new type of contract,
called inter-method contract, that allows to specify method correlations. We pro-
pose the language JMC (Java Method Contracts) for writing inter-method con-
tracts for Java. JMC allows to state relations between arbitrary methods of (not
necessarily the same) classes. In its syntax, JMC closely follows Java and is thus
easy to use for Java programmers. As our running example consider the four con-
tracts given in the left of Fig. 1. The first three contracts specify requirements
on the equals method: contract (1) states reflexivity, contract (2) transitivity,
and contract (3) the above mentioned interplay between equals and hashCode.
Contract (4) specifies that a decrement is the inverse of an increment, a prop-
erty not expressible in existing DbC languages. All contracts take the form of

JMCTest: Automatically Testing Inter-Method Contracts in Java 41

an implication (denoted by →): if the first part in the implication is “true”, the
second part should hold as well. Expressions and method calls in JMC follow
standard Java syntax.

With JMCTest we furthermore developed a tool that automatically tests
JMC contracts on Java classes. JMCTest is built on Java’s reflection mecha-
nism to retrieve constructors of classes under test and to call these as to fully
automatically generate objects for test input. Using this input, JMCTest car-
ries out tests evaluating the validity of JMC contracts. Being a dynamic analysis
tool, JMCTest aims at finding violations of contracts, not at proving their cor-
rectness. For the example class of Fig. 1, JMCTest easily finds a violation of the
equals-hashCode contract (as the class specializes equals to the object variable
of the class, but not hashCode).

To evaluate the effectiveness of JMCTest, we applied it on real-world pro-
duction software. Our experiments show that JMCTest can find contract vio-
lations in large code bases and detect violations that static analyzers miss.

2 Inter-Method Contracts

Inter-method contracts describe correlations between methods. We next start
with presenting the syntax and semantics of inter-method contracts.

Syntax. The BNF-style grammar shown in Fig. 2 sketches the syntax of inter-
method contracts like the ones shown in Fig. 1. Terminal symbols are given in
quotes, * denotes iteration (including 0 times) and + iteration at least once.
To ease contract specification and test generation, we decided to rely on Java
syntax for the four non-terminals VARDECLARATION, BOOLEXPR, METHODCALL, and
VARDEFINITION (thus they are not explicitly specified in the grammar).

An inter-method contract specification consists of a set of inputs followed
by the actual contract specification. The inputs of a contract state its partici-
pants and their types. During testing, different (Java) objects will be generated
as concrete participants. The actual contract specification follows the concept of
inference rules and consists of a premise (the part in front of the arrow) and a con-
clusion. Both, premise and conclusion, consist of a sequence of statement blocks
which inspect, manipulate or derive information about objects or classes.1 We
distinguish two types of statement blocks: predicate blocks and function blocks.

Predicate Blocks. The predicate blocks of a contract determine its validity.
More concretely, each predicate block describes a property on the participants
of the contract and possible additionally declared entities. To avoid misun-
derstandings of contracts caused by mistakenly ignoring operator precedence,
predicate blocks must not mix conjunction and disjunction.

Function Blocks. In contrast to a predicate block, the task of a function block
is limited to changing the state, e.g., to properly initialize or configure objects,
and to extract and store information for later usage.

1 An empty sequence is an abbreviation for the one-element sequence true, see con-
tract (1) in Fig. 1.

42 P. Börding et al.

SPECIFICATION ::= INPUTS CONTRACT

INPUTS ::= VARDECLARATION+

CONTRACT := STATEMENTBLOCKS ’->’ STATEMENTBLOCKS

STATEMENTBLOCKS ::= STATEMENTBLOCK*

STATEMENTBLOCK ::= PREDICATEBLOCK | FUNCTIONBLOCK

PREDICATEBLOCK ::= DISJUNCTION | CONJUNCTION

DISJUNCTION ::= BOOLEXPR | BOOLEXPR ’OR’ DISJUNCTION

CONJUNCTION ::= BOOLEXPR | BOOLEXPR ’AND’ CONJUNCTION

FUNCTIONBLOCK ::= FUNCTIONAL+

FUNCTIONAL ::= METHODCALL | VARDEFINITION

Fig. 2. Grammar for inter-method contracts

As an example, consider contract (3) of Fig. 1. The contract declares two partici-
pants (objects o1 and o2). Its premise and conclusion consist of a single predicate
block. Also, contract (2) has just one predicate block in the premise. The AND
operator joins two boolean expressions (BOOLEXPRs), not predicate blocks.

Semantics. Our inter-method contracts use an execution-based semantics, which
builds upon the Java semantics. This has the advantage that the semantics is
well-known to the user and we avoid a semantic gap between contracts and tests.
To execute a contract, we require concrete values for the inputs (participants).

Definition 1. A concrete input for a contract is a function that maps each
input variable (participant) of the contract to a value/object of a proper type.

Given a concrete input for a contract, we can define the semantics of the
contract on that concrete input. To this end, we first of all need to define the
execution of the contract with the given input. Due to side-effects of e.g. method
calls in function blocks, the execution order of statements matters. Our semantics
uses a sequential execution order that starts with the first block of the premise
and ends with the last block of the conclusion. The statements in predicate and
function blocks are also executed from left to right. However, there is a difference
between the execution of predicate and function blocks. While function blocks
only need to be executed, for predicate blocks also the validity of the property
checked by that block must be recorded. During testing, the validity may be
stored directly in a (boolean) variable or encoded implicitly in the control-flow.
Furthermore, a predicate block will be executed lazily, i.e., as soon as its result
(boolean value) is fixed, the remaining expressions are not executed. Thus, we
use the Java operators && and || for conjunction and disjunction during testing.

Next to the execution, we must also define the validity of a contract on
that concrete input. Testing aims at finding contract violations. Thus, we define
when a contract is violated. Since thrown exceptions are ambiguous, they may be
thrown because a contract is violated or the contract is improper (e.g. violates
method preconditions), we exclude exceptions from our violation definition.

JMCTest: Automatically Testing Inter-Method Contracts in Java 43

Definition 2. A concrete input violates a contract if (1) all predicate blocks
occurring in the premise evaluate to true, (2) at least one predicate block occur-
ring in the conclusion evaluates to false, and (3) the execution terminates
normally.

Note again that ANDs and ORs are not used to join predicate blocks, just
boolean expressions. This semantics of contracts is the basis for test generation.

3 Test Generation

The goal of test generation is to automatically build JUnit tests [23] that check
whether a given set of classes adheres to a contract. The JUnit tests depend on
two main building blocks: (1) checking whether concrete inputs violate contracts
and (2) generating the concrete inputs for testing (test input data generation).

Generating Violation Checking Test Code. First of all, we need code that checks
whether a concrete input violates the contract. To achieve modularity, we decided
to generate a method testContract for that check and to provide the concrete
input via parameters as e.g. done in parameterized JUnit tests. Input generation
itself is done by the second building block. The testContract method has the
following signature

int testContract(list of input types)
where list of input types is a placeholder for the list of parameters. The list
of parameters will contain one parameter for each input variable of a contract.

We use an integer return value instead of a boolean one and no assert state-
ments in the method testContract to be able to return some more information
about the outcome of the check (0 = premise not fulfilled, 1 = premise and
conclusion fulfilled, 2 = contract violated). More specifically, for each contract,
we generate a violation check method of the following form. The generation of
the parameter list, the premise and the conclusion is contract dependent and
explained below.

public int t e s tCont rac t (<parameter l i s t >) {
<premise>
<conc lus ion>
return 1 ; }

Generating the parameter list is simple. Since in the INPUTS of a contract we
use variable declarations without initialization to specify the input variables,
we simply turn the INPUTS into a parameter list. For the premise code, we
need to translate a sequence of statement blocks. The idea is to generate a
sequence of Java statements by translating each statement block into a Java
statement. Function blocks are easy (since this is already correct Java code): we
just take them as they are. In contrast, a predicate block is translated into an
if-statement as to capture the semantics of contracts, which crucially depends
on the evaluation of predicate blocks. The if-statement takes the following form:

44 P. Börding et al.

i f (!(< property >)) {
return 0 ; }

The if-statement checks whether the property of the predicate block is not ful-
filled. In this case, the value 0 is returned, i.e., the contract is not violated on
the concrete test input because the premise is already not fulfilled. Note that
this is correct since a violation (see Definition 2) requires all predicate blocks in
the premise to evaluate to true. The property of a predicate block itself is either
a disjunction or a conjunction, and thus translated either using || or &&.

Generating code for the conclusion (second STATEMENTBLOCKS element in a
contract) is similar to the generation of the premise code. The only difference is
the return value, which for the conclusion is 2 when a property is not fulfilled.
Figure 3 shows the testContract method generated for the equals-hashCode.

public int t e s tCont rac t (Object o1 , Object o2) {
i f (! (o1 . equa l s (o2)) {

return 0 ; }
i f (! (o1 . hashCode () == o2 . hashCode ())) {

return 2 ; }
return 1 ; }

Fig. 3. Generated testContract method checking violation of equals-hashCode

Detecting a contract violation with a single concrete input is unlikely. A con-
tract must be checked with many different concrete inputs. While we could have
created one test case per concrete input, we decided to bundle all violation checks
for a particular class into one JUnit test case and report violation details in a
log. This improves the clarity of the test result. The method testContractImpl
checks such a set of inputs, calling for each input the testContract method,
and logs the following data.

Logging Test Inputs. For each observed contract violation or exception, the
toString() representations of all input values is logged. For the first n2

violations or exceptions, the input values are also serialized to a file associated
with the respective violation or exception.

Logging Statistical Data. Besides test inputs, the testContractImpl method
logs statistical data about the contract checks for the implementation (class).
A list of this data can be found in Table 1.3

The method testContractImpl ends with the JUnit assertion
assertTrue(failures == 0 && exceptions == 0);

referring to the collected statistical data, i.e., JUnit signals a successful test when
no test input violates the contract nor causes an exception to be thrown.
2 The number n is user-configurable.
3 The ratio of PremiseFF to Runs is a metric indicating how many of the generated

tests are relevant for contract checking.

JMCTest: Automatically Testing Inter-Method Contracts in Java 45

Table 1. Logged statistics

Name Description

Runs Number of executions of method testContract

PremiseFF Number of executions of method testContract with fulfilled premise

Failures Number of executions of method testContract with violations

Exceptions Number of executions of method testContract which threw exceptions

FailRate Failures * 100/PremiseFF

Generating Test Input Data. To execute test cases, we need concrete inputs.
We build the concrete inputs from input data given for each input variable.
Hence, we need to generate input values for each type occurring in the INPUTS
of a contract. Note that with respect to coverage, we need not achieve coverage
of the testContract method, which existing white-box input generators would
likely try, but rather of the contract and the methods involved in the contract.
Thus, we decided to use an efficient, black box strategy that mainly generates
input values randomly. In addition, we allow user guidance to steer or restrict
the random generation. Table 2 summarizes the configuration options for test
input generation. In our random generation, we distinguish between primitive
types, Strings, and other object types.

Table 2. Configuration parameters for test input generation

Type Options Description

Int Sampling Values for ints chosen at random, range and number
parameterizable

Fixed Values for ints user defined

Double Sampling Values for doubles chosen at random, range and number
parameterizable

Fixed Values for doubles user defined

String Sampling Values for Strings chosen at random, pattern and number
parameterizable

Fixed Values for Strings user defined

Object Depth Maximal nesting depth in constructor calls.

AllowNull Allow/Disallow null as parameter in constructor calls
above Depth

Creation Search (all constructor combinations) or Random samples

#Empty Number of objects constructed with parameterless (empty)
constructor

#NonEmpty Number of random objects constructed with other
(non-empty) constructors (only if Creation is set to Random)

46 P. Börding et al.

Primitive Data Types. We use a rather standard generation for primitive data
types. For boolean types, the test generator uses both values true and false.
In all other cases, the test generator relies on a predefined selection from the
range of the data type. The selection depends on the configuration and consists
of the fixed set and a number of random values from the sample range.

Strings. Whenever a String value is required, the test generator chooses the
value from a predefined set of String literals. This predefined set consists of a
set of user-provided Strings and a fixed number of randomly created Strings.

Objects. In contrast to the previous values, arbitrary objects cannot be repre-
sented by literals. To create objects, one must call constructors. Depending on
the constructor, parameter values are also required. For primitive data types and
Strings as parameters, the predefined value sets described above are used. All
other objects have to be created, which again requires calling constructors and
building objects for their parameters. The nesting depth of object creation is set
by the user. Beyond that limit, only null values are used to avoid infinite object
creation. By default, the test generator does a search, i.e., via Java’s reflection
mechanism it retrieves all available constructors of a class and calls these with
all combinations of parameter values available, which is rather exhaustive. To
speed up the test process, the user can fix the number of created objects for each
input variable with an object type. In this case, the constructors are selected ran-
domly for each object creation. Additionally, the user may add the null value
and decide if the parameterless constructor should be used multiple times.

JUnit Test Generation. Knowing how to check contract violations and how to
generate test input data, we have everything at hand to generate the actual tests.
To easily identify the generated tests for a contract, we decided to generate one
JUnit test class per contract. The class is named after the contract. The following
code skeleton illustrates the structure of the generated JUnit test class.

// imports

public class <cont rac t name> {
// set-up

// test cases

// testContract and testContractImpl

// testImplXXX methods }

The import section ensures that the types, the classes under test, and the JUnit
elements are known. The set-up section hard codes the test values for primitive
data types and Strings, initializes the object generator, and ensures that for each
test case the object generator creates test values for all input objects that are
not under test. Furthermore, it sets up the loggers.

The third part adds the test cases. Next to the two methods testContract
and testContractImpl described above, there exists one test case per imple-
mentation (class XXX under test).4 Each test case tests whether the respective
4 Note that we could have used one parameterized JUnit test instead, but we think

our solution simplifies the detection of the contract violating implementations.

JMCTest: Automatically Testing Inter-Method Contracts in Java 47

Contract
Specification

Test
Generation

JUnit
Testing

Reportconfigure

jar

Fig. 4. JMCTest workflow

class under test sticks to the contract. All test cases are defined by the same
schema illustrated by the following piece of code.

@Test
public void testImplXXX () {

XXX[] cut =
(XXX[]) ob jectGenerator . c r ea t e Input (XXX. class) ;

t e s tContract Impl (. . . , cut , . . .) ; }
A test case is described by a testImplXXX method. The method is annotated

with the @Test tag to tell the JUnit framework that the method should be treated
as a test case. During its execution, it generates the input values for those input
variables that are under test5. To this end, it uses the creation method of the
object generator. Thereafter, it calls the testContractImpl method to test the
implementation against the contract. For the parameters, it uses the local array
cut and the test values defined in the set-up part.

4 Implementation and Evaluation

We briefly explain our implementation of this testing framework (called
JMCTest) and report on the results of our experimental evaluations.

4.1 JMCTest

JMCTest is a research prototype written in Java that supports specification
and automatic testing of inter-method contracts for Java.

Figure 4 describes the workflow of JMCTest. The user starts with the con-
tract definition using the graphical contract editor of JMCTest. Thereafter, she
configures and starts the test generation for that contract. In her configuration,
she specifies how to generate input data. Additionally, she provides a jar-file
that defines which class implementations to test. Based on the given configu-
ration, JMCTest automatically creates a set of JUnit tests, one for each class
in the jar-file. After all tests are generated, they are executed with the JUnit
4 Framework [22]. Finally, the number of executed and failed test cases as well

5 Currently, all input variables under test must have the same object type.

48 P. Börding et al.

as the failed test cases together with their failure reason are reported. Detailed
information about the executed and failed test cases are provided in the log files.

4.2 Evaluation

We carried out a number of experiments to evaluate the effectiveness and effi-
ciency of JMCTest. Since our JMC language contains a large part of Java’s
expression language, we easily expressed the informal Java API contracts as
well as all contracts from our projects in JMC. Writing contracts in JMC is
effective.

Comparison with Other Tools. For the evaluation, we wanted to compare
JMCTest with other analysis tools (for Java). As there have been no inter-
method contracts before, the number of tools checking a comparable sort of
properties is limited. Model checkers like Java PathFinder [34] are designed to
check specific properties of programs and thus cannot directly be used for inter-
method contracts. Nevertheless, we found two categories of tools that principally
can check at least some form of inter-method contracts: (a) property-based test-
ing tools (similar to QuickCheck [15]) and (b) bug pattern detection tools. To
decide against which tools to compare JMCTest, we took a closer look at some
tools and evaluated them with respect to the following criteria:

– for testers only: the ability to automatically generate test input, for primitive
data types as well as for objects,

– the ability to check arbitrary contracts, possibly via an encoding of them in
a different form (e.g., property),

– the ability to work on a jar-file and test all classes in it,
– the ability to return all errors found (vs. stop with the first error found).

In the first category, we chose the property-based tester JCheck
6 found at

GitHub. There were more options available, but none seemed to be frequently
used. For the second category, we chose three tools: EqualsVerifier

7, which
is specifically tailored to properties of the equals-method, FindBugs [2,22], a
static analysis tool frequently employed today (e.g. also at Google) to find com-
mon bug patterns in Java programs, and RANDOOP [30], a feedback-directed
random test generator. An alternative for FindBugs could have been PMD8,
but we decided not to have two tools using the same basic checking princi-
ple. Table 3 provides a summary of the evaluation. Due to their limitations e.g.
on input generation, JCheck and EqualsVerifier are improper for auto-
matic contract checking. Thus, we only compare JMCTest with FindBugs and
RANDOOP.

6 http://www.jcheck.org/.
7 https://github.com/jqno/equalsverifier.
8 https://pmd.github.io/.

http://www.jcheck.org/
https://github.com/jqno/equalsverifier
https://pmd.github.io/

JMCTest: Automatically Testing Inter-Method Contracts in Java 49

Table 3. Functionality of tools considered for the comparison

Tool Input generation Arb. contracts jar All errors

Primitive data type Object

JCheck � × � × �
EqualsVerifier � × × × ×
FindBugs n.a. n.a. × � �
RANDOOP � � × � �
JMCTest � � � � �

Claims. Besides showing that it is feasible to use JMCTest for testing inter-
method contracts, our experiments aimed at evaluating the following claims.

Claim 1 JMCTest can find real violations of inter-method contracts.
Claim 2 JMCTest can find violations that other tools do not detect.
Claim 3 JMCTest is fast enough to be integrated into the build process.

For the evaluation of these claims, we planned the following experiments.

Claim 1. We used JMCTest to check the equals-hashCode contract on three
real-world software projects: (1) CPAchecker (a software analysis tool, [5]),
(2) JBoss (a J2EE middleware framework) and (3) Java rt.jar (the Java system
library). We restricted ourselves to the equals-hashCode contract since it is
universally applicable to all Java source code and Java programmers are trained
to follow this contract. Thus, violations of the contract constitute a bug.

Claim 2. To evaluate claim 2, we compare JMCTest against FindBugs and
RANDOOP. FindBugs checks for specific patterns, e.g., classes overriding either
equals or hashCode, to detect violations of the equals-hashCode contract.
RANDOOP generates random sequences of constructor and method calls and
e.g. checks that the resulting objects meet the equals-hashCode contract.

Claim 3. For the evaluation of the last claim, we run JMCTest on the three
software projects with different configurations (in particular, differences in the
number of objects constructed). In the experiments, we wanted to see the runtime
and the number of objects to be constructed until bug finding converges, i.e.,
until no more bugs are found when the number of test cases is increased. This
helps to see whether it is possible to run JMCTest during a nightly build.

Results. We performed our experiments on a machine with an Intel i5-300HQ
v6 CPU with a frequency of 2.3 GHz, 16 GB of memory, and a Windows 10
operating system. Execution times are reported in seconds. Note that a ground
truth for the experiments, i.e., the real number of violations of the equals-
hashCode contract in the three software projects, is not known.

50 P. Börding et al.

Table 4. Overview of the JMCTest analysis

Software Tested classes Reported errors #NonEmpty objects Depth

CPAchecker 316 3 50 3

JBoss 214 9 50 3

Java rt.jar 1088 124 100 3

Claim 1. For all three software projects, Table 4 shows the number of
classes9 tested against the equals-hashCode contract, the number of contract
violations found as well as the number of objects constructed during the
test using non-empty constructors (i.e., not the parameterless construc-
tor) and the nesting depth of object creation. We see that JMCTest

detects contract violations in all three projects, even in the Java runtime
library (Java rt.jar). Violations in Java rt.jar were found in the package
com.sun.org.apache.bcel.internal.generic.

Claim 2. We let FindBugs, RANDOOP, and JMCTest analyze the same
classes and compared the number of reported violations. Figure 5 shows the
results of this comparison in two bar charts. Each bar chart shows for every
analyzed software project10 the number of violations reported by FindBugs

(RANDOOP), by JMCTest, by both (i.e., the intersection of bugs found), and
by JMCTest only (i.e., bugs found by JMCTest, but not by the other tool).
We see that JMCTest always finds some violations that are not detected by
the other tool (rightmost bars). FindBugs and RANDOOP always find more
violations than JMCTest. A manual inspection of some randomly chosen warn-
ings revealed that many of FindBugs’ violations are false warnings. Some real
bugs are, however, missed by JMCTest. Real bugs reported by FindBugs are
missed because JMCTest fails to construct objects of the classes under test
due to (1) abstract classes (no object construction possible) and (2) missing
access permissions, which disallowed object construction. As such problems are
inherent to our technique (testing needs object creation and method execution),
we see no way of circumventing them. For two bugs reported by RANDOOP,
JMCTest’s random input generator did not build suitable inputs, although in
principle it could. The other three are missed because JMCTest cannot deal
with generics and does not test the equals-hashCode contract with objects of
different classes.

Claim 3. Finally, for claim 3 we were interested in runtimes of JMCTest. To
be practically usable, testing results should be obtained in a reasonable amount
of time. Figure 6 shows the results for the three software projects. On the x-axis
the number of non-empty constructor calls made during the tests is given. The
y-axis gives the runtimes in seconds. For both CPAchecker and Java rt.jar,

9 We tested all public classes which did not use Object.equals.
10 We compare RANDOOP and JMCTest only on the CPAchecker project because

RANDOOP failed on Java rt.jar and got stuck on JBoss.

JMCTest: Automatically Testing Inter-Method Contracts in Java 51

CPAchecker JBoss Java rt.jar

0

50

100

150

200

6
27

216

3 9

124

0 8

120

3 1 4

FindBugs JMCTest both JMCTest only

CPAchecker

2

4

6

7

3

2

1

RANDOOP JMCTest both JMCTest only

Fig. 5. Comparing JMCTest with FindBugs (left) and RANDOOP (right)

50 100 150 200 250

0

100

200

Number of non-empty constructor calls

R
un

ti
m
e
in

se
co
nd

s

CPAchecker
JBoss

Java rt.jar

Fig. 6. Runtimes of JMCTest

test results are obtained within some seconds. For JBoss, runtimes are higher.
This is due to the complicated nature of constructors in JBoss, which for instance
have to bind ports. We were also interested in finding out how many constructor
calls are necessary to find all bugs: for CPAchecker and JBoss the number of
bugs remains stable after testing with 50 constructor calls, for Java rt.jar it is
100 constructor calls. More experiments are, however, needed to find out what a
good value for the #NonEmpty configuration parameter is. Nevertheless, even
if we set this configuration parameter to 150 or 200, JMCTest finished after a
few minutes. Thus, JMCTest is fast enough to run as part of the build process.

In summary, the experiments show that JMCTest can be practically
applied, also on large code bases, and can detect contract violations, which other
tools do not detect.

52 P. Börding et al.

5 Related Work

Behavioral Contract Languages. One of the first contract language is the
Eiffel language [28]. Nowadays, various contract languages exist. All of them
are either embedded contracts or contracts defined by an additional language.
Embedded contract languages like e.g. jContractor [24], TreatJS [25], the Spec#
programming language [3] or the conditional properties used by QuickCheck [15]
directly write contracts in the programming language itself. In contrast, con-
tracts like Jass [4], the Java modeling language (JML) [26], Praspel [18], and the
VCC annotated C [17] are defined in an additional language, whose sole purpose
is to specify the respective contract. Nevertheless, the mentioned contracts are
often embedded in the comments of the source code. We also developed a sepa-
rate contract language. Instead of pre-, postconditions, invariants, protocols or
refinement, our language tackles inter-method relations. The only other contract
languages that can express inter-method relations are conditional properties [15]
and parametrized unit tests [33], which express properties by arbitrary function
code. In contrast to our approach, both mix specification and testing code, which
impairs the developer’s access to inter-method contracts.

A different type of contracts are algebraic specifications of abstract data
types [21]. Algebraic specifications use algebraic equations, the contracts, to
state relationships among operations of abstract data types. Our inter-method
contracts cover these relations, but allows us to specify relations beyond abstract
data types, e.g., relations between methods of different classes.

Checking Behavioral Contracts. Techniques like static analysis [1,3,8], run-
time verification [3,4,18,20,26], or testing [7,11,14,16,27,29,30,32,36] are used
to check behavioral contracts. Next, we focus on testing, the technique we apply.

Few test approaches [16,32] automatically test fixed contracts. JCrasher [16]
creates tests to inspect the robustness of public methods. Pradel and Gross [32]
test substitutability of subclasses. Both randomly sample primitive values. Con-
structors and methods with a proper return type are used to create objects.
JMCTest checks user-defined contracts, also uses random primitive values in
addition to fixed values, but only uses constructors for object creation.

Like us, many test approaches, e.g., [7,11,12,27,29,30,36], use the contract
specification to generate a test oracle, which decides if a test fails or passes. Those
approaches, however, build the oracle from class invariants and a method’s pre-
and postconditions and differ in their input generation.

The JML-JUnit framework [11] is semi-automatic and generates tests based
on user-specified inputs. Bouquet et al. [6] build tests that cover all parts of a
(method’s) specification. Often, test inputs are generated randomly. Jartege [29]
randomly creates sequences of method calls to generate input objects. Similarly,
JET [12] applies a random approach in which input objects are created by a
constructor call followed by a sequence of method calls mutating the object.
Both, Jartege and JET rely on JML specifications. In contrast, RANDOOP [30]
and ARTGen [27] check contracts provided by classes implementing specific
interfaces. RANDOOP [30] builds a test case concatenating randomly chosen
existing sequences and extending them with a random method call. ARTGen [27]

JMCTest: Automatically Testing Inter-Method Contracts in Java 53

performs adaptive random testing [10], i.e., it selects the test case from a pool
of test inputs that is farthest away from the already used test cases. The pool
is modified randomly, calling methods on existing objects or adding new objects
created from random method sequences. QuickCheck [15] tests properties defined
by functions in the code. Test cases are created randomly with (user-defined)
generators. Parametrized unit tests [33], unit test methods with parameters sim-
ilar to our testContract method, check properties defined in the test method
code. Often, test inputs are generated with symbolic execution to execute the
parametrized unit tests and to achieve high code coverage.

In contrast to JMCTest, Korat [7] and JMLAutoTest [36] systematically
explore a bounded search space. Korat [7] uses a finitization code that describes
the search space and a predicate checking if an input is valid. JMLAutoTest [36]
also relies on finitization code. Provided with a finitization and a JML specifi-
cation, it systematically generates all non-isomorphic test cases, excluding those
which violate class invariants, and checks them against the JML specification

JMCTest uses the inter-method contract as test oracle and generates inputs
from random samples and fixed inputs. However, it is limited to constructor calls
for object generation. While conditional properties [15] and parametrized unit
tests [33] subsume our inter-method contracts, in contrast to QuickCheck and
parametrized unit tests, JMCTest is fully automatic.

6 Conclusion

For more than 20 years, languages and tools have been developed to support the
idea of Design by Contract. Regardless, existing languages and tools mostly focus
on pre-, postconditions, and invariants. This makes it difficult if not impossible
to state and check contracts that focus on correlations between methods.

Our inter-method contract language offers a mechanism to formally describe
method correlations and, thus, enables their automatic validation. Due to its
similarity to Java, our language is easy to learn. Furthermore, we did not stop
at the language level, but we carried on with tool support for specification and
validation of inter-method contracts. Our prototype tool JMCTest provides a
user interface for inter-method contract specification. It can automatically test
a set of implemented classes against a specified inter-method contract. Although
JMCTest is an academic prototype, it already detected real violations of the
equals-hashCode contract in existing, well-maintained software projects. More
impressively, some of these violations have not been found by other tools.

References

1. Ahrendt, W., et al.: The KeY platform for verification and analysis of Java pro-
grams. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 55–71. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12154-3 4

2. Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W.: Using static
analysis to find bugs. IEEE 25(5), 22–29 (2008). https://doi.org/10.1109/MS.2008.
130

https://doi.org/10.1007/978-3-319-12154-3_4
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/MS.2008.130

54 P. Börding et al.

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

4. Bartetzko, D., Fischer, C., Möller, M., Wehrheim, H.: Jass - Java with assertions.
Electr. Notes Theor. Comput. Sci. 55(2), 103–117 (2001). https://doi.org/10.1016/
S1571-0661(04)00247-6

5. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

6. Bouquet, F., Dadeau, F., Legeard, B.: Automated boundary test generation from
JML specifications. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 428–443. Springer, Heidelberg (2006). https://doi.org/10.
1007/11813040 29

7. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java
predicates. In: ISSTA, pp. 123–133. ACM (2002). http://doi.acm.org/10.1145/
566172.566191

8. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 16

9. Chalin, P., Rioux, F.: JML runtime assertion checking: improved error reporting
and efficiency using strong validity. In: Cuellar, J., Maibaum, T., Sere, K. (eds.)
FM 2008. LNCS, vol. 5014, pp. 246–261. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68237-0 18

10. Chen, T.Y., Leung, H., Mak, I.K.: Adaptive random testing. In: Maher, M.J. (ed.)
ASIAN 2004. LNCS, vol. 3321, pp. 320–329. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30502-6 23

11. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: the
JML and JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp.
231–255. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7 10

12. Cheon, Y.: Automated random testing to detect specification-code inconsistencies.
In: Karras, D. (ed.) Conference on Software Engineering Theory and Practice, pp.
112–119. International Society for Research in Science and Technology (2007)

13. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java Modeling Lan-
guage (JML). In: Conference on Software Engineering Research and Practice, pp.
322–328. CSREA Press (2002)

14. Cheon, Y., Rubio-Medrano, C.E.: Random test data generation for Java classes
annotated with JML specifications. In: Arabnia, H.R., Reza, H. (eds.) Conference
on Software Engineering Research and Practice, pp. 385–391. CSREA Press (2007)

15. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP, pp. 268–279. ACM (2000). http://doi.acm.org/10.
1145/351240.351266

16. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness tester for Java.
Softw. Pract. Exper. 34(11), 1025–1050 (2004). https://doi.org/10.1002/spe.602

17. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: contract-
based modular verification of concurrent C. In: ICSE, pp. 429–430. IEEE (2009).
https://doi.org/10.1109/ICSE-COMPANION.2009.5071046

https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1016/S1571-0661(04)00247-6
https://doi.org/10.1016/S1571-0661(04)00247-6
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/11813040_29
https://doi.org/10.1007/11813040_29
http://doi.acm.org/10.1145/566172.566191
http://doi.acm.org/10.1145/566172.566191
https://doi.org/10.1007/11804192_16
https://doi.org/10.1007/978-3-540-68237-0_18
https://doi.org/10.1007/978-3-540-68237-0_18
https://doi.org/10.1007/978-3-540-30502-6_23
https://doi.org/10.1007/978-3-540-30502-6_23
https://doi.org/10.1007/3-540-47993-7_10
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
https://doi.org/10.1002/spe.602
https://doi.org/10.1109/ICSE-COMPANION.2009.5071046

JMCTest: Automatically Testing Inter-Method Contracts in Java 55

18. Enderlin, I., Dadeau, F., Giorgetti, A., Ben Othman, A.: Praspel: a specification
language for contract-based testing in PHP. In: Wolff, B., Zäıdi, F. (eds.) ICTSS
2011. LNCS, vol. 7019, pp. 64–79. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24580-0 6

19. Fähndrich, M.: Static verification for code contracts. In: Cousot, R., Martel, M.
(eds.) SAS 2010. LNCS, vol. 6337, pp. 2–5. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15769-1 2

20. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC,
pp. 2103–2110. ACM (2010). http://doi.acm.org/10.1145/1774088.1774531

21. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Informatica 10(1), 27–52 (1978). https://doi.org/10.1007/BF00260922

22. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39(12), 92–106
(2004). http://doi.acm.org/10.1145/1052883.1052895

23. JUnit: Junit4 (2012–2017). http://junit.org/junit4/
24. Karaorman, M., Hölzle, U., Bruno, J.: jContractor: a reflective java library to

support design by contract. In: Cointe, P. (ed.) Reflection 1999. LNCS, vol. 1616,
pp. 175–196. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48443-
4 18

25. Keil, M., Thiemann, P.: TreatJS: higher-order contracts for JavaScripts. In: Boy-
land, J.T. (ed.) ECOOP. LIPIcs, vol. 37, pp. 28–51. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2015). https://doi.org/10.4230/LIPIcs.ECOOP.2015.28

26. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006). http://doi.acm.org/10.1145/1127878.1127884

27. Lin, Y., Tang, X., Chen, Y., Zhao, J.: A divergence-oriented approach to adaptive
random testing of Java programs. In: ASE, pp. 221–232. IEEE (2009). https://doi.
org/10.1109/ASE.2009.13

28. Meyer, B.: Design by contract: the Eiffel method. In: TOOLS, p. 446. IEEE (1998).
https://doi.org/10.1109/TOOLS.1998.711043

29. Oriat, C.: Jartege: a tool for random generation of unit tests for Java classes. In:
Reussner, R., Mayer, J., Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J.
(eds.) QoSA/SOQUA -2005. LNCS, vol. 3712, pp. 242–256. Springer, Heidelberg
(2005). https://doi.org/10.1007/11558569 18

30. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: ICSE, pp. 75–84. IEEE Computer Society (2007). http://doi.acm.
org/10.1145/1297846.1297902

31. Ploesch, R.: Design by contract for Python. In: APSEC, pp. 213–219. IEEE (1997).
https://doi.org/10.1109/APSEC.1997.640178

32. Pradel, M., Gross, T.R.: Automatic testing of sequential and concurrent substi-
tutability. In: ICSE, pp. 282–291. IEEE (2013). https://doi.org/10.1109/ICSE.
2013.6606574

33. Tillmann, N., Schulte, W.: Parameterized unit tests. In: FSE, pp. 253–262. ACM
(2005). http://doi.acm.org/10.1145/1081706.1081749

34. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking pro-
grams. Autom. Softw. Eng. 10(2), 203–232 (2003). https://doi.org/10.1023/A:
1022920129859

35. Wegner, P.: The Vienna definition language. ACM Comput. Surv. 4(1), 5–63
(1972). http://doi.acm.org/10.1145/356596.356598

36. Xu, G., Yang, Z.: JMLAutoTest: a novel automated testing framework based on
JML and JUnit. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931,
pp. 70–85. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24617-
6 6

https://doi.org/10.1007/978-3-642-24580-0_6
https://doi.org/10.1007/978-3-642-24580-0_6
https://doi.org/10.1007/978-3-642-15769-1_2
https://doi.org/10.1007/978-3-642-15769-1_2
http://doi.acm.org/10.1145/1774088.1774531
https://doi.org/10.1007/BF00260922
http://doi.acm.org/10.1145/1052883.1052895
http://junit.org/junit4/
https://doi.org/10.1007/3-540-48443-4_18
https://doi.org/10.1007/3-540-48443-4_18
https://doi.org/10.4230/LIPIcs.ECOOP.2015.28
http://doi.acm.org/10.1145/1127878.1127884
https://doi.org/10.1109/ASE.2009.13
https://doi.org/10.1109/ASE.2009.13
https://doi.org/10.1109/TOOLS.1998.711043
https://doi.org/10.1007/11558569_18
http://doi.acm.org/10.1145/1297846.1297902
http://doi.acm.org/10.1145/1297846.1297902
https://doi.org/10.1109/APSEC.1997.640178
https://doi.org/10.1109/ICSE.2013.6606574
https://doi.org/10.1109/ICSE.2013.6606574
http://doi.acm.org/10.1145/1081706.1081749
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859
http://doi.acm.org/10.1145/356596.356598
https://doi.org/10.1007/978-3-540-24617-6_6
https://doi.org/10.1007/978-3-540-24617-6_6

	JMCTest: Automatically Testing Inter-Method Contracts in Java
	1 Introduction
	2 Inter-Method Contracts
	3 Test Generation
	4 Implementation and Evaluation
	4.1 JMCTest
	4.2 Evaluation

	5 Related Work
	6 Conclusion
	References

