
Anti-forensic = Suspicious: Detection
of Stealthy Malware that Hides Its

Network Traffic

Mayank Agarwal1(B) , Rami Puzis1 , Jawad Haj-Yahya2 ,
Polina Zilberman1 , and Yuval Elovici1

1 Software and Information Systems Engineering, Telekom Innovation Labs,
Ben-Gurion University of the Negev, Beersheba, Israel

{agarwalm,polinaz}post.bgu.ac.il, {puzis,elovici}@bgu.ac.il
2 School of Computer Science and Engineering, Nanyang Technological University,

Singapore, Singapore
jawad@ntu.edu.sg

Abstract. Stealthy malware hides its presence from the users of a sys-
tem by hooking the relevant libraries, drivers, system calls or manipulat-
ing the services commonly used to monitor system behaviour. Tampering
the network sensors of host-based intrusion detection systems (HIDS)
may impair their ability to detect malware and significantly hinders sub-
sequent forensic investigations. Nevertheless, the mere attempt to hide
the traffic indicates malicious intentions. In this paper we show how
comparison of the data collected by multiple sensors at different levels
of resilience may reveal these intentions. At the lowest level of resilience,
information from untrusted sensors such as netstat and process lists are
used. At the highest resilience level, we analyse mirrored traffic using
a secured hardware device. This technique can be considered as fully
trusted. The detection of a discrepancy between what is reported by
these common tools and what is observed on a trusted system operating
at a different level is a good way to force a dilemma on malware writ-
ers: either apply hiding techniques, with the risk that the discrepancy
is detected, or keep the status of network connections untouched, with
a greater ability for the administrator to recognize the presence and to
understand the behaviour of malware. The proposed method was imple-
mented on an evaluation testbed and is able to detect stealthy malware
that hides its communication from the HIDS. The false positive rate is
0.01% of the total traffic analysed, and barring a few exceptions that can
easily be white-listed, there are no legitimate processes which raise false
alerts.

Keywords: Stealthy · Malware · Command & control
Trusted network monitor · Security

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
L. J. Janczewski and M. Kuty�lowski (Eds.): SEC 2018, IFIP AICT 529, pp. 216–230, 2018.
https://doi.org/10.1007/978-3-319-99828-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99828-2_16&domain=pdf
http://orcid.org/0000-0002-6374-6737
http://orcid.org/0000-0002-7229-3899
http://orcid.org/0000-0003-2911-0329
http://orcid.org/0000-0003-3593-7330


Stealthy Malware that Hides Its Network Traffic 217

1 Introduction

In the recent years, there has been an increase in the amount of malware related
security incidents resulting in leakage of personal and corporate information,
DDoS attacks, data loss, etc. [3,5,19]. Malware poses a serious security threat to
organizations, computer networks, and end users. As the sophistication of mal-
ware has advanced, its detection has become more complex. Malware developers
employ various anti-forensic techniques in order to evade the detection mech-
anisms deployed on the targeted systems. Prominent anti-forensic techniques
include: file and directory hiding, process hiding, anti-VM, anti-debug, hiding
sockets and connections, etc. Examples of malwares that employ anti-forensic
techniques include: vlany, azazel, enyelkm [2,6,11] etc.

A host-based intrusion detection system (HIDS) usually consists of various
sensors (e.g., the process sensor, CPU sensor, memory sensor, network sen-
sor, etc.) in order to monitor the various components of the host. There are
stealthy malwares1 that employ network hiding2 anti-forensic feature [2,11].
Malware equipped with such anti-forensic features are harder to detect using
HIDS, because their network communication data is not available. A network
intrusion detection system (NIDS) may be able to flag network packets if they
are sent to suspicious domains or if the traffic patterns resemble an anomalous
behavior (e.g., ping sweep). However, neither rules nor machine learning algo-
rithms commonly employed by NIDS are 100% accurate. Irrespective of whether
the NIDS flags such packets or not, a NIDS cannot determine if a malware tried
to hide its network communication from the HIDS. Furthermore, the technique
used by the malware to hide its network communication from the HIDS cannot
be ascertained. Notwithstanding any other malicious activities performed by a
malware, the fact that a stealthy malware attempts to hide its network commu-
nication is itself an indication that the target system is compromised. However,
this information (hiding network communication) is crucial for efficient forensic
investigation.

The use of HIDS or NIDS alone are insufficient to detect the presence of
stealthy malwares that hide their network communication. In order to detect
stealthy malware, we employ a detection philosophy that combines from both
the observations from host and network sensors in order to ascertain whether an
adversary attempts to hide its traffic from HIDS.

The main contributions of this research are: (1) We propose a multi-level
monitoring method which combines resilient trusted network monitor with mul-
tiple untrusted host-based sensors. By untrusted we mean that they can be
circumvented by attackers with various skill levels. (2) The proposed multi-level
monitoring method detects stealthy malware that attempts to hide its network
1 In this manuscript, the term stealthy malware is used to refer to malware that has

network hiding anti-forensic capability. A stealthy malware can possess other anti-
forensic mechanisms in addition to network hiding.

2 By network hiding, we refer to communication in which the malware hides its network
communication from network sensors (e.g., Wireshark, dumpcap, netstat, etc.) that
a HIDS may employ in order to hide its network activity.



218 M. Agarwal et al.

traffic and also determines the technique adopted by the attacker. (3) The pro-
posed method has been evaluated using stealthy malwares obtained from Internet
sources. The evaluation results confirm that all the stealthy malwares that were
tested are detected successfully while the false positive rate stands at a mere
0.01% of the total packets analyzed.

The rest of this paper is organized as follows. Section 2 describes the multi-
level monitoring method which is the core of the detection method proposed
for the identification of stealthy malware. The experimental setup, information
regarding malware dataset, and the results obtained using the proposed method
are presented in Sect. 3. In Sect. 4 we present the existing approaches used for
stealthy malware detection, and Sect. 5 concludes the work.

2 Proposed Method

The proposed multi-level monitoring method consists of the host sensors (HS)
and a trusted network monitor (TNM) as shown in Fig. 1. The HS are deployed
on the host and consist of packet hashing and netstat sensors. In addition to
these, there is a heartbeat generator that runs on the host which informs about
the running status of the HS. The HS are considered untrusted as they can be
subverted by a malware. The TNM is deployed on a dedicated machine and is
connected to the network via the port mirroring interface. Due to the port mirror
configuration, the TNM receives a copy of all of the packets sent by the host
which traverse the switch.

Fig. 1. Multi-level monitoring method: Uses host sensors (HS) and the Trusted Net-
work Monitor (TNM)

Ideally, in the absence of stealthy malware, for a fixed time interval in which
the network communication is measured using HS and TNM, there should be no
discrepancy between the measurements obtained by them. A benign application
will never hide its network communication from the host sensors, as it does not
have any malicious intentions. However, if a discrepancy arises when the traffic
measured by the host sensors and the TNM is compared, it provides an evidence
of suspicious activity on the host. Not all discrepancies are considered instances
of stealthy malwares as explained below:



Stealthy Malware that Hides Its Network Traffic 219

1. Discrepancy arising out of localhost traffic: Localhost traffic generated on
the host is captured by the host sensors, but since the traffic is destined
for localhost, it does not reach the switch interface. Consequently, it is not
mirrored on the TNM. Such a discrepancy is not considered malicious in the
current research and is ignored.

2. Discrepancy arising from packet losses: Packets that are observed on the
host sensors but are not seen on the TNM are ignored. Such a scenario might
occur as packets seen on host sensors might not be mirrored correctly possibly
due to too many packets being mirrored on the TNM at a given time. Also,
because the host sensors observe the network communication, the malware is
not hidden from the host sensors and does not fall into the category of the
stealthy malware being considered.

3. Discrepancies arising due to the presence of malware: Packets sent from the
host that were observed on the TNM but were hidden from the host sensors).
Such communication definitely points out the presence of malware on the host
which evades the host sensors. A malware can hide its network communication
in various ways like patching the HS deployed, exploiting bugs that may
exist in the libraries used by the HS deployed, detecting their execution and
disabling them etc. The goal of a malware developer is to eventually hide its
traces in order to escape detection.

Thus, by capturing the network communication at different levels of resilience
(by HS and the TNM in our case), and comparing this data, different types of
discrepancies can be identified, and the presence of stealthy malware can be
ascertained. As the stealthy malware has no control over the TNM, it cannot
hide its network communication from the TNM. The various components of the
host sensors and TNM are shown in Fig. 1 and described below.

Packet Hashing Sensor: This sensor is a part of host sensors as well as the
TNM. The packet hashing sensor is a network packet sniffer deployed in promis-
cuous mode. It must be noted that host sensors only capture the traffic pertain-
ing to the host on which they are deployed, while the TNM can capture traffic
from multiple hosts simultaneously. The packet hashing sensor ignores packets
having broadcast and multicast address. The reason for ignoring broadcast and
multicast communication is that a stealthy malware aims to minimize its foot-
prints in order to evade detection mechanisms. If it sends broadcast or multicast
communication, the respective frame is received by many hosts in the network.
This leads to an increase in the footprint of the malicious communication which
might eventually aid the detection mechanisms.

The packet hashing sensor only records information relating to transmitted
(Tx) packets from the host and does not record the packets received (Rx) by the
host. The motivation behind this philosophy is twofold: a) the stealthy malware
on the host usually initiates the connection (Tx traffic) with the C&C (or some
other host) and would attempt to hide this communication from the host sensors,
and b) monitoring Rx leads to additional load on the TNM.



220 M. Agarwal et al.

The packet hashing sensor saves the following information for every trans-
mitted packet (src-ip, dst-ip, src-port, dst-port, seq-num, and ack-num), where
src-ip (dst-ip) is the source (destination) IP address of the connection, src-port
(dst-port) is the source (destination) port address of the connection, and seq-
num (ack-num) represents the sequence (acknowledgment) number of a TCP
connection. For UDP packets, the seq-num and ack-num fields are set to null. In
addition, this module computes and stores the hash of the above tuple for every
transmitted packet which is later used for comparison purposes.

Netstat Sensor: This sensor is only a host sensor component. The netstat
sensor records all of the information obtained from the netstat utility. It stores
the unique connections (src-ip, dst-ip, src-port, dst-port) as seen on the host.

Analysis Module: The analysis module is only present on the TNM. The
packet hashing sensor on the host and the TNM, along with the netstat sensor
on the host send their information to the analysis module. On examining the
information received from these sensors, the analysis module determines if there
exists a stealthy malware that is trying to communicate with its C&C server or
any other compromised machine in the network.

Heartbeat Generator and Heartbeat Sensor: In addition to the host sen-
sors the multi-level monitoring method also makes use of a heartbeat generator
on the host and a heartbeat sensor on the TNM. The main task of the heart-
beat generator is to ensure that the host sensors are running and have not been
terminated or disabled by the stealthy malware. In order to accomplish this, the
heartbeat generator running on the host sends periodic keep-alive messages to
the heartbeat sensor running in the TNM.

2.1 Customized Secure Processor

As described above, the TNM may need to monitor multiple hosts which may
be infected by stealthy malware. It is imperative in such cases to ensure that
the TNM’s operations are carried out in a trusted environment. Specifically,
a malware should not be able to manipulate operations of the TNM and its
communication with the switch. To ensure this, the TNM software is running
as a trusted application on a customized secure processor. The secure processor
implements various features to protect against known attacks on the computing
system hardware and the software that is running on it. The features include:

1. Secure IO and Secure Debug - protect against various hardware threats
such as key extraction, illicit debugging, probing, and side-channel at tacks
(SCA).

2. Secure Boot - protects against attacks such as: image hacking, botnet
enrolling, and cold boot attacks.

3. Trusted Execution Environment (TEE) - guarantees an isolated exe-
cution environment for the trusted application. This feature is essential for
protecting against attacks such as: software exploitation, privilege escalation,
and botnet enrolling.



Stealthy Malware that Hides Its Network Traffic 221

4. Secure Storage - an important feature that exists in secure processors in
order to protect against SCAs, probing, and key extraction. In addition, it is
used by the TEE to load and execute the trusted applications, while protect-
ing the code and data of the applications running.

5. Secure Disk Storage - for recording and analyzing network packets and
sending statistics to the Splunk server.

6. Customizable Crypto Primitives - these include ECC, ECDSA, AES.
7. Dual Ethernet Ports - the first of these ports is used for the local area

network (LAN), and the second is used for streaming the mirrored data from
the switch to the TNM.

All of the features above ensure that the TNM is unaffected by the presence of
malware running on a host monitored by the TNM. Hence, the network commu-
nication performed by the stealthy malware eventually appears on the TNM (if
they are destined for the switch), even if the malware succeeds in hiding itself
from the host sensors.

3 Evaluation of the Proposed Method

In this section, we provide a detailed explanation of the experimental setup and
attack model. The description of the attack model covers the various sophistica-
tion levels of the malware and their detection likelihood under distinct detection
approaches. This is followed by subsections that discuss the malware dataset
characteristics chosen for this research, the false positives obtained, and the
runtime performance of the host sensors and the analysis module.

3.1 Experimental Setup

The experimental setup is similar to the one shown in Fig. 1 except that we used
five machines to execute the malware. On each of the five machines executing the
malware, different operating systems (OSs) were installed depending on malware
requirements; the host sensors are deployed on each of the five machines. The
switch port on which the TNM is connected is configured as a mirror port, so
that it can sniff the traffic sent by the five machines.

3.2 Attack Model

We assume that a stealthy malware possesses at least one the following features
(ordered based on the level of sophistication, from the least to the highest) as
shown in Table 1. It shows the features detectable by different detection mech-
anisms for the malwares that possesses feature A, B, and C. A good detection
system is the one which can detect all of the features possessed by the stealthy
malware. For explanation, we consider a malware having feature C (malware hid-
ing from netstat and packet hiding sensor) and look at the features detectable
by the different detection mechanisms shown in Table 1: (i) Host sensor with



222 M. Agarwal et al.

only the netstat sensor deployed: Since the malware hides itself from net-
stat, ‘only netstat’ monitoring would not help to detect the feature C. (ii) Host
sensor with only the packet hashing sensor deployed: As the malware
hides itself from the packet hashing sensor, it fails to detect feature C. (iii) Host
sensor with both the netstat and packet hashing sensors deployed: The
malware still remains undetected as it hides itself from both of them. (iv) Only
NIDS deployed: The malware traffic may be flagged depending on the traf-
fic generated by the malware and the NIDS configuration, however NIDS alone
cannot determine if the malware hides its network communication from host
sensors. (v) Both host sensors and the TNM are deployed (proposed
approach): The proposed multi-level monitoring method not only detects the
stealthy malware, but it also identifies the network hiding anti-forensic tech-
niques it adopted.

Table 1. Anti-forensic mechanisms of stealthy malware and features detectable by the
different detection mechanisms

Detection mechanism

Host Sensor

(Only Netstat

Sensor)

Host, Sensor

(Only Packet

Hashing

Sensor)

Host, Sensor

(Netstat +

Packet Hashing

Sensor)

Only NIDS Host Sensors +

TNM

(Proposed

Method)

Feature Sophistication

level

Features detected

A Hidden:

Netstat sensor

Visible:

Packet hashing

sensor

None None A None, but may

flag suspicious

communication

A

B Hidden:

Packet hashing

sensor

Visible:

Netstat sensor

None None B None, but may

flag suspicious

communication

B

C Hidden:

Netstat and

packet hashing

sensor

None None None None, but may

flag suspicious

communication

C

3.3 Malware Dataset Characteristics and Evaluation

We used the virussign.com dataset [10] for evaluating the malware samples. A
total of five machines were used to execute malwares. A set of sixty malwares
were executed on a single machine with the host sensors deployed. Thus five
machines could execute 300 malware samples. The network activities generated
by these (300) malwares is collected over a period of twenty minutes and the
statistics from the various sensors are collected and analyzed. The whole setup
of executing 300 malwares and recording the activities for a period of twenty
minutes constitutes a single run. We execute 10 such runs.

http://virussign.com/


Stealthy Malware that Hides Its Network Traffic 223

Table 2. Connections observed by netstat, packet hashing sensor (PHS), or TNM.

Run # Seen on netstat
but hidden from
PHS

Seen on PHS but
hidden from netstat

Seen on TNM
but not on PHS

Seen on TNM
but neither on
PHS & netstat

1 16 147 1317 1305

2 148 259 264 127

3 3 4350 1588 1588

4 120 453 10 10

5 472 1039 1281 811

6 1174 2619 2102 1666

7 170 3368 55 55

8 291 8881 261 221

9 355 10687 5407 5407

10 6 1850 0 0

Total 2755 33653 12285 11190

Fig. 2. Statistical observations of the connections made by the network hiding stealthy
malware that were observed by netstat, packet hashing sensor (PHS), or TNM.

Ideally, without the presence of malwares, the number of connections
observed on the host sensors and the TNM must be identical. A connection
implies a tuple consisting of (src-ip, dst-ip, src-port, dst-port). Figure 2 depicts
the connections made by the network hiding stealthy malware that were observed
by netstat, packet hashing sensor (PHS), or TNM while the Table 2 shows the
individual statistics per run. It can be concluded from Fig. 2 that circumventing
connections from netsat is the easiest. Netstat observed the least number of hid-
den connections in comparison to the other senors. There are a large number of



224 M. Agarwal et al.

connections which are observed by the packet hashing sensor which are missed
by netstat. The netstat utility being a part of the operating system is widely used
for checking network connection management. Hiding network communication
from netstat is one of the most basic anti-forensics mechanism an attacker would
employ while developing a stealthy malware that performs network communica-
tion. There are connections which are invisible to the packet hashing sensor but
are recorded in netstat. However, there are relatively few connections of such
type as can be observed in Fig. 2.

Next, we observe that a large number of connections were hidden from the
packet hashing sensor that were eventually captured by the TNM. If we compare
the connections that were hidden from netstat but visible in packet hashing
sensor to those that were hidden from packet hashing sensor but seen on TNM,
it can be concluded that hiding network communication from packet hashing
sensors is relatively more complicated as compared to hiding from netstat. But,
seeing the number of connections that were hidden from the packet hashing
sensor, which were visible on the TNM, shows that many malwares are equipped
with network hiding anti-forensic mechanism.

Finally, we inspect the number of connections that were hidden from both
netstat and packet hashing sensor but were visible on the TNM. Such malwares
possess the most sophisticated anti-forensic mechanism that cannot be detected
by an HIDS deployed on the host as the network data is unavailable. We see
that the number of such connections are almost the same as the number of
connections that were hidden from packet hashing sensor but seen on TNM. A
malware developer who writes sophisticated malware to hide from the packet
hashing sensor would mostly include the intelligence to hide itself from netstat.

In Fig. 2, some runs (e.g., Run 9) have a large number of connections that
were hidden from the host sensors. As we mentioned earlier, malwares employ
various mechanism to hide their presence. Some attackers write sophisticated
programs to circumvent the host sensors while others just terminate or disable
the host sensors. As a result, the host sensors are unable to capture statistics
and in the meantime the malware performs its desired activity which eventually
gets logged on the TNM. On the other hand, the run 10 of Fig. 2 does not have
any packets seen on TNM that were hidden from the host sensors. This shows
that the said run did not include malware with network hiding anti-forensic
mechanism. So, depending on the nature of the anti-forensic mechanism built
into the malware, different sets of observations are obtained.

Irrespective of whether the malware hides its communication from netstat,
packet hashing sensor or both, its communication is eventually captured by the
TNM due to multi-level monitoring. As the TNM is unaffected by the presence
of malwares, it identifies all those connections that the malware attempted to
hide from the host sensors. The proposed method not only detects the IPs and
ports contacted by stealthy malware, but also determines the level of stealthiness
adopted by the malware.



Stealthy Malware that Hides Its Network Traffic 225

Fig. 3. Distribution of ports that were contacted by the stealthy malware

Figure 3 shows the distribution of top 5 port numbers that were used by
the stealthy malware for communication. The ports 53, 80, 443, 25 constitutes
a total of the total 93% of the ports communicated by stealthy malwares. The
port 53 is used by the DNS server and constitutes a majority 49% of the ports
communicate by the stealthy malware. It is obvious that a stealthy malware
would want to hide its DNS resolution in order to conceal its activity. Similarly
ports 80, 443 are http and https ports that may be used by the malware in order
to exfiltrate information to C&Cs.

Table 3. Top 5 IPs contacted by stealthy malwares.

IP Unique hits Threat intelligence reports [1,4,7–9]

68.178.213.61 224 Malware, Phishing, Spam, Botnet, Ransomware

194.58.56.172 97 Malware, Phishing

23.253.126.58 49 Malware, Phishing, Botnet

104.239.157.210 46 Malware, Phishing, Botnet, Ransomware

199.2.137.20 44 Malware, Botnet, Blacklisted

Table 3 shows the top five IP addresses contacted by the stealthy malwares.
In total, the proposed method observed connections to 899 unique IPs that were
not captured by the HS but seen on the TNM due to multi-level monitoring app-
roach. The threat intelligence websites [1,4,7–9] reports all these IPs into various
categories like malware, phishing, botnet, ransomware, blacklisted, malicious etc.
Not of the threat intelligence websites report all of the IPs as suspicious. As most
of the threat intelligence websites are community driven, the threat information
depends on its update frequency. We believe that the proposed method can also
be used in order to enhance the information available on the threat intelligence
websites. The proposed method is capable to detect the newer IPs that a stealthy
malware may contact, and also report its stealthiness sophistication. Addition-
ally the proposed scheme can also report on those malwares that subvert the
HIDS in-order to contact the C&Cs.



226 M. Agarwal et al.

3.4 False Positives and Runtime Performance

As the proposed system involves deep packet inspection of the packets seen on the
host sensors and the TNM, the system must be resistant to false positives (FPs).
In order to test for the FPs, we deployed our host sensors on various systems
that did not contain any malware and monitored them by the TNM. The users
were instructed to perform their routine activities. On a few of the systems, some
dedicated tasks were assigned like opening random websites, HD video playback,
downloading large files, rate limited large file download and uploading data. The
goal was to obtain a good mix of the traffic patterns seen during a normal user’s
day-to-day browsing. Table 4 summarizes the false positive results obtained for
the various users.

Table 4. False positives observed.

Total users Packets captured by TNM FPs FP%

11 6,904,567 905
905

6, 904, 567
= 0.0131%

We observed few false positives (905 packets out of 6.9M packets analyzed,
representing 0.01311% of all of the traffic). The 905 packets were distributed
in the following fashion: AS15169 Google: 489, Ben Gurion University Internal
traffic: 399, AS36351 SoftLayer Technologies: 12, AS16625 Akamai Technologies:
2, AS54113 Fastly: 2, AS8068 Microsoft Corporation: 1. A major chunk of the
FPs observed belonged to Google and internal Ben Gurion University traffic(the
place where we conducted our experiments) and they could easily be avoided by
putting them in a whitelist. By configuring a whitelist of the genuine hosts, the
FPs can be further reduced. Now we look into the performance metrics of the
packet hashing sensor and the analysis module.

We use the dumpcap utility for the packet hashing sensor. The packet hashing
sensor consumes an average of 6.329 Mb per run and has a standard deviation
of 0.0164 Mb. The analysis module consumes an average of 45.46 Mb per run
and has a standard deviation of 13.73 Mb. Both the packet hashing sensor and
analysis modules have plausible memory consumption and would not impact the
performance of a system on which they are running. Our assumption is that a
subset of the machines need to be monitored at a given instance for the presence
of stealthy malwares. This helps us to address the scalability issues associated
with our approach. Although we use per packet capture analysis for identifying
stealthy malwares, we envision to use aggregation based analysis (like traffic flow
statistics etc.) as a part of our future work to make it more cost efficient in terms
of large scale deployment.

4 Related Work

Analysis of malware can either be static, dynamic or hybrid [16]. In static anal-
ysis, the malware is not executed at all. Information regarding the malware is



Stealthy Malware that Hides Its Network Traffic 227

gathered via the file hashes, file type, header details, embedded sources etc.
Under dynamic analysis, the malware is executed in a controlled environment;
e.g., sandbox, Virtualbox, or an isolated environment etc. In hybrid analysis,
a combination of static and dynamic analysis is used. We describe the major
approaches currently used to detect stealthy malware.

Intrusion Detection Systems: As mentioned earlier, the use of an HIDS
or NIDS alone would be insufficient for detecting the presence of stealthy mal-
ware. Malware developers usually employ various techniques, including polymor-
phic/metamorphic code mutation, entry point obscuration [12,22] etc., which
leads to the generation of equivalent code (e.g., the addition of NOPs) or the
distribution of malicious code in a benign program in order to evade detection
from signature based IDSs. Anomaly based IDSs have the ability to detect newer
threats, however building the normal network profile required by these systems
is a challenge. In addition, stealthy malware may not leave significant traces that
would enable a signature or anomaly-based IDS to detect its presence.

Emulation Based Techniques: These became popular because they provided
the means for analyzing the behavior of a malicious program in an emulated
environment, allowing anti-malware developers to study the behavior of malware
and use the observations from the emulated environment to detect malware in
real systems. However, malware developers created techniques that enabled them
to determine whether they were operating under emulated or real environments,
e.g., volume identifiers, network interfaces, special strings [20] etc. Since we deal
with stealthy malware, we assume that it has built-in anti-emulation forensics,
so that it can evade analysis in an emulated environment.

System Hook Detection Methods: Many stealthy malwares use process
hijacking, divert the normal code flow, or modify the function pointers in order
to execute the malicious code prior to or after the execution of system calls.
Such techniques are known as hooking and they can be performed in a variety of
ways. Various malware detection techniques are used to identify the presence of
malware by detecting the hooks [13,18,21], however not all hooks are inherently
malicious, and as a result, malware detection techniques that simply reply on
the detection of hooks can lead to a large number of false positives.

Visualization Based Techniques: These techniques employ various visual-
ization techniques in order to depict the various connections between the clients
and servers [14]. Visualization methods often require manual intervention once
its tags anything suspicious, making the process cumbersome.

Noninvasive Techniques: Authors in [17] propose a noninvasive method to
detect the malwares possessing anti-forensic mechanisms. Their method requires
tracing flow of instructions (Opcode) and the flow of input-output operations
(IO) of a malware under multiple execution environments (forensic vs non-
forensic) and comparing the traces for suspected vulnerabilities. Although it
is a promising approach being noninvasive, executing malwares under multiple
execution environments and recording traces is challenging.



228 M. Agarwal et al.

Cross View Detection Techniques: These techniques employ a number of
measures to determine the system state, for example, by obtaining the number
of files in a directory using system API calls and via actual traversal using a non-
API call. Under normal conditions, the results of such operations should yield
the same result. If a discrepancy is found, it indicates the presence of malware
that hides files from the system. Several detection tools, including Rootkit [15],
Strider Ghostbuster etc. make use of cross view detection technique in order
to detect the presence of stealthy malware. Cross view detection methods often
offer high detection rates. For the detection of stealthy malware that hides its
traffic from HIDS, our method makes use of the cross-view detection principle
via the host sensors and trusted network monitoring.

Existing techniques make use of a variety of methods in order to detect
stealthy malware and often require non-trivial changes at the operating system
level or are limited in terms of detecting the sophistication level of the malware
hiding technique etc., making malware detection relatively complex and prone
to false positives. In contrast, the proposed multi-level monitoring method is not
limited by such constraints and has the potential to effectively detect even newer
stealthy malware.

5 Conclusion and Discussion

In this paper, we propose a method to detect the presence of stealthy malware
that hides its traffic from HIDSs. In order to escape detection by HIDSs, state
of the art malware is equipped with various anti-forensic mechanisms like anti-
debug, anti-VM, hiding network connections and network communication. Our
proposed method aims to enhance the security of the existing malware detection
infrastructure, and we believe it should be integrated with threat detection mech-
anisms in place in order to increase the robustness and resilience of the existing
threat detection mechanisms. If the proposed multi-level monitoring technique
will be widely adopted, malware developers would have to identify other means
of hiding their network traces. The proposed method not only overcomes the
drawbacks associated with the existing approaches for detecting stealthy mal-
ware, but also possesses the ability to detect newer malware with network hiding
anti-forensic capabilities.

The approach has been tested with real malwares and was shown to be effec-
tive against anti-forensic techniques that circumvent host-based traffic sensors.
Evaluation was carried out on a testbed with hardware PCs, as opposed to a
Virtualbox, sandbox, etc. Thus, we can be confident that stealthy malware that
has a built-in anti-VM or anti-sandboxing or anti-emulation technologies, etc. is
also executed and detected. Had this research been conducted on a VM or in a
sandbox or hypervisor environment, stealthy malware that is able to detect its
execution environment would not have been detected.

Detecting malware that performs stealthy communication is crucial as such
malware can effectively hide itself from HIDSs. The proposed method not only
detects the traffic that was hidden but also identifies the technique used by the



Stealthy Malware that Hides Its Network Traffic 229

attacker to hide its network traffic. Employment of the proposed method leads
to a catch 22 situation for the malware developers that need to conceal out-
going traffic – If they do, their presence will be detected using our method. If
they don’t, their detection using standard measures will be easier. As a result
of the proposed method, a malware developer is left with a choice either not to
hide its communication from HIDS or rely on steganography, covert channels
etc. to conceal their communication. The latter requires much more advanced
attack infrastructure (e.g. presence on the organization gateway, man in the
middle, etc.) than hooking some libraries on the host machine. Many organiza-
tions employ traffic monitoring on their premises in order to detect the presence
of malware or identify suspicious traffic. For such organizations, the proposed
method can easily be augmented in order to detect malware that hides its traffic
from HIDS.

References

1. AbuseIPDB - IP address abuse reports. https://www.abuseipdb.com/
2. Azazel is a userland rootkit. https://github.com/chokepoint/azazel
3. Cloudflare Bug - Cloudbleed May Have Leaked Data From Millions of Sites.

https://www.wired.com/2017/02/crazy-cloudflare-bug-jeopardized-millions-
sites/

4. Data Mining for Threat Intelligence. https://www.threatminer.org
5. DDoS attacks in Q4 2017 - Securelist. https://securelist.com/ddos-attacks-in-q4-

2017/83729/
6. enyelkm - LKM rootkit for Linux x86 with the 2.6 kernel. https://github.com/

David-Reguera-Garcia-Dreg/enyelkm
7. Open Threat Exchange. https://otx.alienvault.com
8. Open Threat Intelligence. https://cymon.io/
9. Ransomware Tracker. https://ransomwaretracker.abuse.ch

10. VirusSign—Malware Research & Data Center, Virus Free Downloads. http://
samples.virussign.com/samples/

11. vlany is a Linux LD-PRELOAD rootkit. https://github.com/mempodippy/vlany
12. Alam, S., Horspool, R.N., Traore, I., Sogukpinar, I.: A framework for metamorphic

malware analysis and real-time detection. Comput. Secur. 48, 212–233 (2015)
13. Butler, J., Hoglund, G.: VICE-catch the hookers. Black Hat USA 61, 17–35 (2004)
14. Chen, S., Guo, C., Yuan, X., Merkle, F., Schaefer, H., Ertl, T.: Oceans: online col-

laborative explorative analysis on network security. In: Proceedings of the Eleventh
Workshop on Visualization for Cyber Security, pp. 1–8. ACM (2014)

15. Cogswell, B., Russinovich, M.: Rootkitrevealer v1. 71. Rootkit detection tool by
Microsoft (2006)

16. Damodaran, A., Troia, F.D., Visaggio, C.A., Austin, T.H., Stamp, M.: A compar-
ison of static, dynamic, and hybrid analysis for malware detection. J. Comput.
Virol. Hacking Tech. 13(1), 1–12 (2017)

17. Guri, M., Kedma, G., Sela, T., Carmeli, B., Rosner, A., Elovici, Y.: Noninvasive
detection of anti-forensic malware. In: 2013 8th International Conference on Mali-
cious and Unwanted Software: “The Americas” (MALWARE), pp. 1–10. IEEE
(2013)

https://www.abuseipdb.com/
https://github.com/chokepoint/azazel
https://www.wired.com/2017/02/crazy-cloudflare-bug-jeopardized-millions-sites/
https://www.wired.com/2017/02/crazy-cloudflare-bug-jeopardized-millions-sites/
https://www.threatminer.org
https://securelist.com/ddos-attacks-in-q4-2017/83729/
https://securelist.com/ddos-attacks-in-q4-2017/83729/
https://github.com/David-Reguera-Garcia-Dreg/enyelkm
https://github.com/David-Reguera-Garcia-Dreg/enyelkm
https://otx.alienvault.com
https://cymon.io/
https://ransomwaretracker.abuse.ch
http://samples.virussign.com/samples/
http://samples.virussign.com/samples/
https://github.com/mempodippy/vlany


230 M. Agarwal et al.

18. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-Wesley
Professional, Boston (2006)

19. Kalita, E.: WannaCry Ransomware Attack: Protect Yourself from WannaCry Ran-
somware Cyber Risk and Cyber War. Independently Published (2017)

20. Musavi, S.A., Kharrazi, M.: Back to static analysis for kernel-level rootkit detec-
tion. IEEE Trans. Inf. Forensics Secur. 9(9), 1465–1476 (2014)

21. Rutkowska, J.: Detecting windows server compromises with patchfinder 2. Personal
Communication, January 2004

22. Szor, P.: The Art of Computer Virus Research and Defense. Pearson Education,
London (2005)


	Anti-forensic = Suspicious: Detection of Stealthy Malware that Hides Its Network Traffic
	1 Introduction
	2 Proposed Method
	2.1 Customized Secure Processor

	3 Evaluation of the Proposed Method
	3.1 Experimental Setup
	3.2 Attack Model
	3.3 Malware Dataset Characteristics and Evaluation
	3.4 False Positives and Runtime Performance

	4 Related Work
	5 Conclusion and Discussion
	References




