)

Check for
updates

A Multi-level Policy Engine to Manage
Identities and Control Accesses in Cloud
Computing Environment

Faraz Fatemi Moghaddaml’z(m) , Siileyman Berk CemberciS,

Philipp Wieder', and Ramin Yahyapour'?

! Gesellschaft fiir wissenschaftliche Datenverarbeitung mbH Géttingen
(GWDG), Gottingen, Germany
{faraz. fatemi-moghaddam, philipp.wieder, ramin.
yahyapour}@gwdg. de
2 Institute of Informatics, Georg-August-Universitit, Gottingen, Germany
3 Systeme, Anwendungen und Produkte in der Datenverarbeitung (SAP),
Walldorf, Germany
suleyman. berk. cemberci@sap. com

Abstract. Security challenges are the most important obstacles for the
advancement of IT-based on-demand services and cloud computing as an
emerging technology. Lack of coincidence in identity management models
based on defined policies and various security levels in different cloud servers is
one of the most challenging issues in clouds. In this paper, a policy-based user
authentication model has been presented to provide a reliable and scalable
identity management and to map cloud users’ access requests with defined
polices of cloud servers. In the proposed schema several components are pro-
vided to define access policies by cloud servers, to apply policies based on a
structural and reliable ontology, to manage user identities and to semantically
map access requests by cloud users with defined polices.

Keywords: Cloud computing * Security - Policy management
Identity management - Access control

1 Introduction

Cloud security issues are mainly classified to three major categories [1]: data protection
in cloud-based data centers, isolated and secure resource provisioning and reliable
access control by identity management and authentication procedures [2]. These con-
cerns are the most apparent reasons why most of individuals and businesses still have
doubt to delegate management of their sensitive data to cloud service providers as third
party collaborates [3]. One of the most challenging security issues in clouds that has led
to the appearance of several researches and solutions is to ensure reliable accesses to
different cloud servers based on various policies in each server. In fact, service pro-
viders needs to manage access requests and map them to resources according to defined
policies from cloud customers or service providers [4].

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kiritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 120-129, 2018.
https://doi.org/10.1007/978-3-319-99819-0_9

http://orcid.org/0000-0002-4531-8683
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_9&domain=pdf

A Multi-level Policy Engine to Manage Identities and Control Accesses 121

Using a federated identity management schema is the most popular solution for
managing accesses to different cloud servers with single identity. In recent years most
cloud services have adopted OpenlD [5] or Shibboleth [6] as the most independent and
flexible authentication and identity management models in cloud-based platforms. The
proliferation of these identity federations has allowed cloud users belonging to one
network (known as home organization) to access the services provided by other net-
works (known as remote organizations), all members of the same federation [7].
Therefore, there isn’t any necessity for cloud users to re-introduce their credentials for
each access in different cloud servers. The most important characteristic of identity
management models is to provide a framework with fast-authentication mechanisms
[8], low access time and reduced authentication data exchanges between different
service access requests [9]. Although the establishment of multiple security mecha-
nisms in each node enhance the security of resources and reduces considerable pro-
cessing power for manipulating sensitive and also non-sensitive data [10], the
authentication data exchange and access time for cloud users in identity management
models are also affected. In particular, two important concerns in cloud-based identity
management models are still challenging:

— Managing defined policies in different virtualized nodes according to capabilities of
service providers, requirements of resource owner and constraints.

— Mapping access requests to cloud-servers based on established security mechanisms
and defined policies of each node.

In this paper, a policy-based user authentication model is presented to provide a
reliable identity management mechanism for establishing multiple access policies in
different virtualized nodes and mapping access requests to defined policies accordingly
capabilities of cloud servers and requirements of resources.

2 Problem Description

As described in previous section, the main aim of proposed model is to manage
identities based on defined policies in cloud servers. Each virtualized node in cloud-
based data center is associated with set of policies. These polices are classified in
several protocols according to Protection Ontology [11]. The classification of security
policies are based on three main parts: Resource Protection (including cryptography
and key management policies), Confidential Transport (including signature and
transport policies) and Identity Management (including authentication and access
control policies). The latter, which is the focus of this work, refers to the capabilities
that are provided to ensure the reliable access mapping between requests and policies
by managing identities based on capabilities of service provider and requirements of
cloud users.

Assume that there are N virtualized node (server) in the cloud-based data center,
denoted as {S1,S2,...,Sy}, and the current authentication policy set of node S, with
se{l,2,...,N}is P(S,) = {p1,p2, - - .,pu }- Given I registered users’ access requests
waiting to be processed, denoted as {U;, Us, ..., U;}, and each U; is associated with
specific identity set (authentication and authorization set):

122 F. Fatemi Moghaddam et al.

ID;, h(PW;), (h(ID:) @ h(PW;), (APy, h(ARy), (h(APY) @ h(AR\))),s
AA(U;) = { (AP}, h(AR;), (h(AP;) @ h(AR;))) }

i

where ID, PW,AP and AR are user ID, user basic password, access policy and access
response respectively. There are several authentication and authorization (access)
policies that are defined for each node to enhance the security level of the node in
comparison between other nodes. The authentication policies are focus on confiden-
tiality and integrity of resources, while the authorization policies are based on privacy
and access management features of cloud resources. To provide a semantic mapping
between requests and policies, each of authentication and authorization policies of a
specific node need to be evaluated according to the characteristic of cloud user. The
objective of suggested model is to map elements of the policy set for each node to
appointed access responses for cloud users to provide decisive access permit. For
instance, consider a cloud provider with different services (e.g. storage, platform,
software, efc.) and each service has dedicated security policies (e.g. two factor
authentication for storage and one-time single pass for software). The main problem is
to address the process of mapping security requirements of these cloud services to
defined authentication and authorization capabilities of the cloud user in identity set.
Overall, the access request of specific node is granted if and only if the following
equation is applied to the request:

pi € P(Sa) + (F(APLAR): {(pi = (AP))) A ((AR;) = true)}) (1)

In fact, cloud user needs to provide additional authorization and authentication
capabilities for nodes with higher security policies. The proposed model tries to
manage access requests and map between access policies and authentication capabil-
ities of cloud users.

3 Proposed Schema

Using an agent-based authentication model [12] to send access requests, to search on
policy queues and to match access requests to a specific defined policy may seem like a
plausible solution for achieving the goal. However, this agent-based authentication
process in not scalable and takes lots of processing power to map between requirements
and capabilities. Thus, the design of our proposed model is based on a different
manner. Our schema uses a framework with several components to define, store, check
and match policies with identity details. Figure 1 shows the overall architecture of our
model.

3.1 Policy Engine

The main duty of Policy Engine is to define and generate authentication and autho-
rization policies based on the structural Protection Ontology [10] for cloud customers
according to security requirements. Protection Ontology is a policy language based on

A Multi-level Policy Engine to Manage Identities and Control Accesses 123

=
|

Define Policies”

Policy Engine

I— Match Gate

Check Point

Identity Management

Cloud Users

Fig. 1. Architecture of policy-based identity management

WS-Policy [13] as a recommended W3C [23] language for defining various security
levels in cloud-based environments. Protection ontology classifies security algorithms
to three main levels: Protocol, Mechanism and Algorithm. In the proposed model
authentication and authorization capabilities of service provider are offered according
to this classification. This structural classification helps to apply different security
mechanisms to virtualized nodes and creates security levels based on requirements of
cloud users and sensitivity of resources. Each of the offered algorithms is associated to
a structural semantic resource for security level establishment according to the concepts
of WS-Policy and Protection Ontology. A security-based SLA is the output of security
ring (level) establishment and is defined as Security Level Certificate (SLC).

As described the main duty of policy engine is to define and generate authentication
and authorization policies for different virtualized nodes according to the sensitivity of
nodes and capabilities of service provider. The process of policy application is done by
policy engine based on generated SLC as follows:

Step 1. Policy engine sends SLC ID to node n to apply policies of SLC to the node.
Step 2. According to the associated SLC, node n calls semantic resources of SLC to
create P(S,).

R
for (i =0t Z(rdf : Algorithm)“>

=0

pi = (pi || add (SP,))
X(pi) = h(pi)
HP(S,) = add(X(p,))

124 F. Fatemi Moghaddam et al.

where R is the total of semantic algorithm resources and u = Zf;’gm(HLSm

(rdf : HLSP), are the defined sub-policies for each algorithm based on the
SLC. Also, the hashed value of each policy p; is stored in the set HP(S,).
Step 3. X(S,) = h(x,) @ h(p1) ® h(p2)... D h(py)
where x, and X(S,) are the secret key and the secret value for node n
respectively.
Step 4. Send {(P(S,), HP(S,)),X(S,)} to Policy Database.
The SLC, policy set, hashed policy set and secret value of node n are sent to
policy database.

3.2 Policy Check-Point

The check point component creates, updates and manages identities for accessing to
different nodes. Identities are defined in registration phase, updated in checking phase
and managed in access control phase. In recent years, two types of registration pro-
gresses are performed in web-based models:

e Normal Registration: The creation of personal identity within cloud provider with
User ID, Password and other personal details.
e 3rd-Party Registration: Using identities in social media or other providers.

During the registration phase by each of these models, an Identity set (Authenti-
cation and Authorization) object AA(U;) is created from identity set class for user Us.
The basic identity set with the lowest identity details is associated with the ID and
password:

I(U;) = {ID;, h(PW;), (h(ID;) © h(PW;))}

By the basic identity set, cloud users can access to the nodes with the lowest
security level in cloud environment. However, three types of authentication and
authorization access policies need to be defined and added to the identity set based on
polices and capabilities of service provider:

e User Access Policies (UAP): These types of policies are defined by cloud users
according to capabilities of cloud provider. For instance, cloud user can establish
second password with an authenticator application or email.

e Cloud Access Policies (CAP): These types of policies are awarded to cloud users by
the provider or admin after an identity validation (e.g. RBAC in a university).

e Temporary Access Policies (TAP): These types of policies are based on dynamic
parameters such as location, hardware and time.

An access policy is defined in identity set according to the characteristics of policy
by a triplex set as follows:

A Multi-level Policy Engine to Manage Identities and Control Accesses 125

(AP; h(AR)). (h(AP;) © h(AR;))),
where AP; and AR; refer to semantic resource access policy (e.g. two factor authenti-
cation by Email) and access responses (e.g. confirmed email address) respectively.
Therefore, the authentication set for U; are updated based on defined UAP, CAP and
TAPs as:

ID;, h(PW;), (h(ID;) & h(PWy), (AP1, h(ARy). (h(APy) & h(AR1)));. ..
AA(U;) = { (AP;, h(AR;), (h(AP;) & h(AR;))) }

i

3.3 Policy Match-Gate

The proposed identity management model for mapping accesses requests to defined
policies is based on the performance of policy match gate. Given I registered users’
access requests waiting to be processed, denoted as {U;, Uy, ..., U}, and each U; is
associated with a specific authentication set AA(U;). The main aim of Match Gate is to
process access requests and to map between these requests and defined polices for each
node according to the identity set. To provide an efficient policy mapping algorithm, a
session class is defined by policy match gate for creation of access session objects
according to the capabilities of cloud users. The objects from this class
(AccessSession class) use several security functions and parameters to ensure about the
reliable mapping between capabilities and security policies. After the registration phase
in the check point component, cloud users are able to sign in to cloud computing
environment by their basic internal or external login information. A successful basic
login lets the policy match gate to create a session object from the access session class
for basic or additional security checking. The process of using this object for identity
management is in number of steps as follows:

Step 1. An object is created from AccessSession class with basic parameters.

AccessSession ASU; = new AccessSession(ID;, h(PW;), TS, (h(ID;) ® h(PW;)), TK;, e)

where TK; is a basic token for U; and is valid if login details are matched with
A(U;) and e is a Boolean property that shows the status of 7K; whether is
enabled or disabled.

Step 2. The basic value of TK; after the first login lets the cloud user to access basic
nodes with lowest security level. In this level policy match gate checks if ATS
and e are still valid, the access of cloud user to the root nodes are granted. The
basic value of TK; is calculated as follows:

TK; = (h(h(ID; || TS) & h(PW;)))

126

Step 3.

Step 4.

Step 5.

Step 6.

F. Fatemi Moghaddam et al.

When the cloud user requests for accessing to basic nodes, the match gate
calculates Node Access Request (NAR) as follows:

if ((e = true) A (ATS = Valid)) then {NAR ;) = (TK;, Enc(TK;,x,)) }

where Enc is AES-256 func. with the secret key for node n. The checking
phase confirms the user identity and the value of NAR is sent from match gate
to requested node.

Server n receives the request from Match Gate and access is granted if the
difference between timestamps and the following equation is valid:

if ((ATS = Valid) N\ (TK; = Dec(TK;, x,))) then Access is Granted

This calculation helps to check if the secret key of node n is still valid or not.
In fact, the validated identity from match gate can access to request node if the
secret value of node is valid. If the validity of the equation is not confirmed,
Match Gate should update the secret key of server n in database.

If the cloud user requests for accessing to nodes with the defined security
policies and higher privacy levels, further identity details are requested from
Match Gate based on the defined policies. Thus, Match Gate checks P(S,)
from policy database and asks U; if UAP or TAP policies are needed for
authentication and authorization checking. Also, the user database is checked
by Match Gate for CAP policies for only authorization checking if needed.
Each of the requested access details should be provided by the cloud user (i.e.
UAP and TAP) or the user database (i.e. CAP) and ASU; is updated according
to the provided details:

ASU;.AddAccessCapability(AP,h(ARy), (h(AP) @ h(AR))),AST));
ASU;.AddAccessCapability(AP,, h(AR,), (h(AP,) @ h(AR,)),AST»);
ASU;.AddAccessCapability(AP;, h(AR;), (h(AP;) ® h(AR;)),AST;);

where AST is the Algorithm Session Time that shows the maximum validity of
confirmed access response. For instance, the valid time for confirmed second
password is longer that 1-time password. By each of the additional identity
details the value of TK; is updated as follows:

TK; = TK; & (h(AP; || TS) @ h(AR;))

After updating the value of Tk; and confirming the identity of cloud user by
additional identity request and according to the capabilities of user, the match
gate sends server access requests to the requested node as follows:

X'(S,) = (h(x,) & h(APy) & h(APy)... & h(AP;}))

A Multi-level Policy Engine to Manage Identities and Control Accesses 127

if ((e = true) A (ATS = Valid)) then {NAR; .y = (TK;, Enc(TK;, x,), h(X'(S:)),TS')}

Step 7. Server n receives the request from Match Gate and access is granted if the ATS
and the following equations are valid:

if ((ATS = Valid)) A (TK; = Dec(TK;,x,))A (R(X(S,))
= h(X'(S,)))) then Access is Granted

This calculation checks the validity of timestamp, the validity of secret key
and finally the confirmed application and mapping process of defined policies
by checking the validity of secret value.

Step 8. If the user requests to access to a node with common policies that were
confirmed by match gate before and the Algorithm Session Time for the access
response is still valid for the policy, just un-checked policies are evaluated and
the is no necessity to re-check previous policies. In fact, every functions and
properties of ASU; are confirmed and stay reusable until the algorithm session
time for that authentication or authorization algorithm is still valid. For
instance, the session time for double authentication is less than single
authentication and U; needs to be double-authenticated again after the session
time for double authentication is over while the session time for basic
authentication is still valid. Also, re-authentication for some authorization
access policies (e.g. Geographical or Software authenticators) or One-Time
passwords need to be checked periodically or continuously. These valid ses-
sion times are defined as sub-policies in the ring establishment stage based on
Protection Ontology [11].

4 Discussion and Conclusion

In order to incarnate the superiorities of this schema in cloud-based environments, we
give a performance analysis of the proposed model in this section. In this experiment
the performance of match gate in different types of workloads was evaluated.
Accordingly, the total process time for processing 500 access requests to VMs with
high secure VMs with more authentication and authorization policies was examined in
the first step. The aim of this case study is to examine the effects of static, continuously
changing, dramatic increase and predictable increase workloads on the performance of
match gate task management. The experiment was in 6 rounds based on different types
of workloads. Figure 2 shows the results in details. In the static workload, the number
of user accesses was same in all rounds. However, the total processing time was
decreased slightly due to the common policies in different VMs. Thus, there was not
any necessity to re-check common policies. As expected, in the dramatic increase of
users requests, the total processing time was risen dramatically and in the respective
rounds the total processing time was reduced considerably to the normal range. This
change was less in predictable change due to the predictable scheduling in associated
task processing. Finally, the rate of change in continuously increase of requests is

128 F. Fatemi Moghaddam et al.

significantly slight. That was because two different effects: increase due to the number
of requests and decrease due to the common policies in different VMs. Overall, the
results show the performance of match gate task management for semantic mapping of
access polices to request was scalable enough in different types of workloads.

6000 mMs 6000 ms
5000

4000 4000
3000

2000 5~% e
1000
0

0
Ruond I Ronud 2 Ronud 3 Round 4 Round 5 Round 6 o o g}
—— Static g Continuously Change u Static m Continuously Change

Ruond 1 Ronud 2 Ronud 3 Round 4 Round 5 Round 6

@=={Jm== Dramatic Change Predictable Change B Dramatic Change Predictable Change

Fig. 2. Effects of different workload on the performance of match gate task management

Acknowledgement. This research has been supported by CleanSky project (No. 607584)
funded by the Marie-Curie-Actions within the 7th Framework Program of the European Union
(EU FP7).

References

1. Fatemi Moghaddam, F., Ahmadi, M., Sarvari, S., Eslami, M., Golkar, A.: Cloud computing
challenges and opportunities: a survey. In: 1st International Conference on Telematics and
Future Generation Networks (TAFGEN), pp. 34-38 (2015)

2. Sadiku, M.N.O., Musa, S.M., Momoh, O.D.: Cloud computing: opportunities and
challenges. IEEE Potentials 33(1), 34-36 (2014)

3. Wang, C., Ren, K., Lou, W., Li, J.: Toward publicly auditable secure cloud data storage
services. [IEEE Netw. 24(4), 19-24 (2010)

4. Coppolino, L., D’Antonio, S., Mazzeo, G., Romano, L.: Cloud security: emerging threats
and current solutions. Comput. Electr. Eng. 59, 126-140 (2017)

5. Recordon, D., Reed, D.: OpenlD 2.0: a platform for user-centric identity management. In:
Proceedings of the Second ACM Workshop on Digital Identity Management - DIM 2006,
p. 11 (2006)

6. Morgan, R.L., Cantor, S., Carmody, S., Hoehn, W., Klingenstein, K.: Federated security: the
Shibboleth approach. Educ. Q. 27(4), 12-17 (2004)

7. Pérez Méndez, A., Marin Lopez, R., Lopez Millan, G.: Providing efficient SSO to cloud
service access in AAA-based identity federations. Futur. Gener. Comput. Syst. 58, 13-28
(2016)

8. de Carvalho, C.A.B., de Castro Andrade, R.M., de Castro, M.F., Coutinho, E.F., Agoulmine,
N.: State of the art and challenges of security SLA for cloud computing. Comput. Electr.
Eng. 59, 141-152 (2017)

9. Liu, Z., Yan, H., Li, Z.: Server-aided anonymous attribute-based authentication in cloud
computing. Futur. Gener. Comput. Syst. 52, 61-66 (2015)

10.

11.

12.

13.

A Multi-level Policy Engine to Manage Identities and Control Accesses 129

Fatemi Moghaddam, F., Wieder, P., Yahyapour, R.: Policy Engine as a Service (PEaaS): an
approach to a reliable policy management framework in cloud computing environments. In:
IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud),
pp. 137-144 (2016)

Fatemi Moghaddam, F.: Multi-layered policy generation and management in clouds.
University of Gottingen (2018)

Hajivali, M., Fatemi Moghaddam, F., Alrashdan, M.T., Alothmani, A.Z.M.: Applying an
agent-based user authentication and access control model for cloud servers. In: International
Conference on ICT Convergence (ICTC), pp. 807-812 (2013)

Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker, P., Hondo, M.,
Kaler, C., Langworthy, D., Malhotra, A.: Web Services Policy Framework (WS-Policy).
Specif. IBM, BEA, Microsoft, SAP AG, Sonic Software, VeriSign (2004)

	A Multi-level Policy Engine to Manage Identities and Control Accesses in Cloud Computing Environment
	Abstract
	1 Introduction
	2 Problem Description
	3 Proposed Schema
	3.1 Policy Engine
	3.2 Policy Check-Point
	3.3 Policy Match-Gate

	4 Discussion and Conclusion
	Acknowledgement
	References

